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Abstract—This paper designs a novel in-place LSD (least
significant digit first) radix sort for data-intensive applications.
Our framework, which we call Typhoon, drops the histogram
pass on each level of the sort except the last one, incorporates a
high-performance architecture for dynamically expanding output
buckets using low-overhead memory blocks we call slices, and
includes a number of optimizations that reduce pipeline stalls
due to cache conflicts and read-after-write bottlenecks. Because
Typhoon scatters slices in each bucket randomly across RAM, it
has to employ novel mechanisms for non-linear prefetch that
combat tendencies of the CPU to pollute the cache on each
jump. At the end of the sort, Typhoon uses OS virtual-memory
primitives to unscramble the slices and put them in correct order
within the input buffer. Results show that Typhoon achieves
a significant single/multi-core improvement over the existing
methods, including recent AVX-512 efforts from Google [18] and
Intel [23], often doubling or tripling their performance.

I. INTRODUCTION

Sorting has become a ubiquitous building block behind
many big-data computational frameworks and distributed sys-
tems, including various MapReduce platforms [3], [4], [14],
large-scale databases [8], and external-memory graph analytics
[13]. After decades of research, improving sort performance
has become a difficult target, which we formalize in five
main parameters – single-threaded speed, robustness against
adversarial/non-uniform inputs, RAM usage during the sort
(i.e., in-place vs out-of-place), stability (i.e., preservation of
original order between duplicate keys), and performance in
multi-core environments.

In particular, single-threaded speed measures an algorithm’s
useful work per CPU cycle, which is a top priority in scenarios
that are not bottlenecked by the total RAM bandwidth of the
system. This may include HBM (High Bandwidth Memory)
server architectures (e.g., 900 GB/s per socket [17]), optimiz-
ing for power consumption, and/or sorting on fewer than all
available cores. Resilience against non-uniformity guarantees
predictably high performance on real-world datasets, which
are often skewed, while in-place operation either saves on
hardware cost (i.e., requires half the RAM) or allows fewer
passes in external memory compared to out-of-place methods.
Stability is an important property in key-value sorts (e.g., in
databases and MapReduce), where it is crucial to ensure that
an existing order of values is not disturbed by subsequent
sorts of the data. Finally, scaling behavior in multi-core
settings reflects the algorithm’s synchronization overhead and
combined memory traffic across multiple threads, which in
some cases can become a separate choke point.

Unfortunately, prior work exhibits a tradeoff between these
objectives, which includes sensitivity to key distribution [10],

[20], [25], out-of-place and/or unstable operation [5], [10],
[18], [20], [25], [36], [37], low speed [7], [12], [31], and
non-trivial complexity in achieving efficient multi-threading
[10], [18], [20]. Our goal in this paper is to develop a sorting
framework that not only rivals the existing methods in terms
of robustness, stability, and RAM usage, but also surpasses
them in single/multi-core performance. Since the LSD (least-
significant digit first) radix sort is stable and insensitive to
input distribution, it is an excellent starting point for our
investigation.

To establish an upper bound on performance of an LSD sort,
we first assume that buckets are pre-allocated by an oracle
to never overflow in a method we call Static Typhoon (S-
Typhoon). This allows the algorithm to skip the histogram
pass at each level, except the last one where the keys must
be returned to the input buffer. Under these conditions, we
focus on optimizing the LSD partitioning loop and the his-
togram to reduce CPU pipeline stalls due to read-after-write
dependencies and cache-associativity conflicts, create a non-
temporal streaming engine that allows destination buckets to
be unaligned to SIMD vector width during software write-
combine offloads, and parallelize the resulting architecture.

To make S-Typhoon practical in terms of memory usage,
we next augment this approach with a novel dynamically-
resizing and in-place bucket architecture, calling the combined
framework Typhoon. This method treats the available memory
as a sequence of slices, which are contiguous regions of RAM
consisting of multiple physical pages each. After finishing an
input slice, its pointer is released into a free stack, which
is then used to extend output buckets as they become full.
Our main priority here is to keep the partitioning loop at a
complexity similar to that of S-Typhoon, which we accomplish
by careful optimization of the various operations on the free
stack and the slice database.

While this is a good start, additional challenges are created
by the non-contiguous nature of slices. Because keys within
each bucket are kept at disjoint locations in virtual memory,
reading through them causes the CPU hardware prefetchers
to pollute the cache with irrelevant data. To overcome this
setback, we design a novel non-linear prefetch logic for
Typhoon that anticipates leaps through memory and loads the
future data into the cache ahead of each jump. At the end of the
sort, keys lie in randomly shuffled slices. To unscramble this
mishmash, Typhoon unmaps all slices via OS primitives and
remaps them back to the input array in correct order, avoiding
the need for memcpy or additional space.

Result shows that Typhoon with 16-KB slices yields perfor-
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mance within 2% of S-Typhoon, despite having to deal with
data randomly scattered across RAM. For an 8-GB input of
32-bit uniform keys on an Intel Skylake-X i7-7820X, its single
thread sorts at 256M/sec, exceeding the speed of the fastest
existing LSD sort [32] by 2.7×, the top AVX-512 quick sort
[23] by 1.7×, the fastest AVX-512 merge sort [5] by 2×, and
the closest MSD radix sort [20] by 1.7×. Using 8 threads,
Typhoon hits 1,869M/sec, which is 2× faster than the nearest
multi-core implementation [5] in prior work. For 32-bit keys
coupled with 32-bit values, Typhoon beats the top single-
threaded [20] and multi-threaded [25] competitors by 1.5×.
Furthermore, in a real-world benchmark that requires stable
key-value sorting (i.e., graph inversion), Typhoon delivers 2-
2.8× better performance.

II. BACKGROUND

Historically, sorting algorithms have focused mostly on
speed, sacrificing certain characteristics that may be important
in practice – robustness, in-place operation, and stability. It
is thus not surprising that prior work usually achieves only a
subset of these objectives. This complicates comparison due to
emergence of multiple tradeoffs that do not have a clear winner
unless application requirements and data properties are known
ahead of time. Instead, our aim is to design a framework
that simultaneously optimizes all five objectives. We next
highlight the various considerations that go into making such
an approach feasible.

Speed. Assume an input array of n items, each consisting of
a w-bit key and an optional value. The fastest methods in re-
lated work can be split into three broad avenues – scalar radix
sort [7], [12], [20], [25], [26], [27], [28], [30], [31], [32], [33],
[35], [36], [37], SIMD merge sort [5], [11], [21], and SIMD
quick sort [10], [18], [39]. Radix sort is generally appealing
because its high fan-out factor (i.e., 2b-way partitioning using
groups of b bits) is coupled with low computational cost per
key (i.e., bit shifts and masking). Whether it examines bits
starting from the MSD (most-significant digit) or LSD (least-
significant), radix sort requires at most ⌈w/b⌉ partitioning
passes over the data. In contrast, merge/quick sorts execute a
lot more scans (i.e., log2 n); however, recent results [5], [18]
show that vectorization, i.e., comparison of multiple keys per
SIMD instruction, can boost each binary pass to 3 − 4× the
rate of those in radix sort, which helps reduce the negative
impact of the low fan-out, making merge/quick sort a viable
alternative.

Robustness. Distribution-insensitivity (i.e., consistent per-
formance regardless of data skew) trivially holds for merge sort
and LSD. Even though quick sort has quadratic complexity in
the worst case, SIMD methods [10], [18], [39] typically im-
plement defenses against adversarial inputs (e.g., median-of-
medians sampling, detection of duplicates, fallback to n log n
sorts at large recursion depth), which makes them fairly robust.
In contrast, MSD is highly vulnerable to key non-uniformity
and bucket imbalance, which can result in orders-of-magnitude
performance degradation.

Memory usage. For the discussion below, a sort is called
in-place if it uses n + O(1) space as n → ∞ and out-of-
place otherwise [20]. Even though in-place sorts are highly
desirable for large workloads, only two traditional approaches
achieve this property by design – quick sort [10], [18], [39] and
MSD variants [19], [28], [31], [35] derived from the classical
American Flag Sort (AFS) [27], although AFS-based methods
are usually not competitive in terms of speed.

There are several focused efforts to convert out-of-place
methods (e.g., streaming MSD [7], [12] and sample sort
[6], [7]) to in-place, but they require a hefty performance
cost to manage overflow buckets, reshuffle memory blocks,
and memcpy the keys to establish proper ordering. A more
promising approach is Vortex [20], which is an MSD sort that
catches page faults in user space to transparently extend output
buckets, detect which blocks can be freed, and map them to
new locations in virtual memory. One of the drawbacks to this
framework is that it requires relatively large blocks (i.e., 1 MB)
in order for the OS memory manager to not bog down the sort,
resulting in ∼135 MB of extra memory under uniform keys
and up to 1 GB under non-uniform. Additionally, manipulating
the page table in the kernel, which includes expensive locks
and TLB flushes, leads to a 20% speed penalty in the MSD
partitioning engine, while multi-threading of Vortex streams is
currently an open problem.

For LSD, prior attempts [2] to achieve in-place operation
have resulted in dismal performance, while the fastest imple-
mentations [31], [32], [33], [36], [37] all work out-of-place.

Stability. A sort is called stable if it preserves the original
order between duplicate keys, which is a major benefit during
multi-pass/multi-key sorting. One example that we use later in
the paper is graph inversion, where an out-graph consisting of
adjacency lists (si, Li) needs to be converted into an in-graph.
In this notation, si is a 32-bit ID of the i-th source node in
non-decreasing order (i.e., si ≥ si−1) and Li is a sorted list of
its out-neighbors. A stable sort can accomplish this task using
64-bit (dest, src) key-value tuples, while an unstable sort must
treat each pair as a monolithic 64-bit key, which is often more
expensive.

Unfortunately, stability is rarely guaranteed by existing
methods. For example, a scalar merge sort satisfies this
requirement; however, faster SIMD versions [5], [11], [21]
rely on sorting networks [9], which are inherently unstable.
Similarly, a streaming MSD radix sort can be stable in theory,
but fast implementations [20], [25] invoke sorting networks
once bucket size drops below a threshold. Finally, SIMD
quick sorts [10], [18], [23] are unstable because pivot-based
partitioning fails to preserve the original order of tuples and
unstable sorting networks are necessary at the end of recursion
for speed. One exception is [15], which combines MSD parti-
tioning with a comparison sort at the end of recursion instead
of using faster, but inherently unstable, sorting networks [20],
[25]. As we show below, this approach comes at a significant
performance loss. The other alternative is LSD [32], [33],
[37], which is stable by design. Since development of both
efficient and stable sorting networks is an open problem, LSD
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Algorithm 1: Textbook LSD

1 Func LSD(Item *input, int n)
2 allocate aux array of size n
3 for (L = 0; L < ⌈w/b⌉; L++) do
4 if (L & 1) == 0 then
5 Split(input, n, aux, L); ▷ even level
6 else
7 Split(aux, n, input, L); ▷ odd level
8

9 Func Split(Item *in, int n, Item *out, int L)
10 buck = Histogram(in, out, L); ▷ set up pointers in out array
11 for (i = 0; i < n; i++) do
12 idx = ExtractIdx(in[i], L); ▷ bucket index
13 *buck[idx]++ = in[i]; ▷ write item, increment pointer

is currently the main option for achieving both stability and
maximum performance.

Summary. Considering the various options, LSD provides
the most promising platform towards our goals. In what
follows, we examine how to achieve additional improvements
in speed, which means omitting the counting pass, reducing
RAM traffic, helping the CPU with memory disambiguation,
and minimizing TLB misses, how to redesign the method to
maintain an n + O(1) memory footprint, and how to reduce
the dependency on the OS and enable efficient execution with
small block sizes.

III. STATIC TYPHOON (S-TYPHOON)

A. Baseline LSD

Assume n input keys, each consisting of w bits. Algorithm 1
shows a textbook out-of-place version of LSD (least significant
digit first) radix sort. After creating an auxiliary array of size n
(Line 2), the method runs ⌈w/b⌉ passes (levels) that alternate
between partitioning the input into the aux buffer and vice
versa (Lines 3-7), where b ≥ 1 is the number of bits examined
at each level. The Split function begins with a histogram (Line
10) that sets up 2b destination bucket pointers buck, where
buck[0] = out and buck[i+1] - buck[i] is the number of keys
that will be written into the i-th bucket. Following this, Line
12 isolates the b bits that represent the bucket index of each
key in[i] and Line 13 writes the item into the corresponding
memory location, updating the destination pointer buck[idx]
in the process.

On each level, Algorithm 1 reads n items from RAM during
the histogram pass and another n during splitting. On top of
that, it writes n items to the output buckets, which causes the
CPU to additionally read for ownership all destination cache
lines in the output buffer. Thus, Algorithm 1 ends up with
a total of 4n keys of memory traffic per level. One can do
significantly better by utilizing software write-combine (WC)
[8], [20], [25], [31], [33], [34], [40], which initially stores data
into small tmp buckets contained in the L1/L2 cache and then
offloads them to RAM using non-temporal (streaming) stores
that bypass the cache. For efficiency reasons, tmp bucket size
B is usually assumed to be a multiple of cache-line size.
Because streaming avoids read-for-ownership, this reduces
RAM traffic to 3n per level, i.e., 25% lower than the naive

Algorithm 2: WCv1

1 Func Split(Item *in, int n, Item *out, int L)
2 buck = Histogram(in, out, L);
3 for (i=0; i < n; i++) do
4 prefetch (in + i + D);
5 idx = ExtractIdx(in[i], L);
6 p = tmpBuckets + idx*B;
7 p[tmpSize[idx]] = in[i];
8 if ++tmpSize[idx] == B then
9 OffloadAVX(buck[idx], p);

10 buck[idx] += B;
11 tmpSize[idx] = 0;
12

13 Func OffloadAVX( m256i *dest, m256i *src)
14 for (i=0; i < R / sizeof( m256i); i++) do
15 x = mm256 load si256(src + i);
16 mm256 stream si256(dest + i, x);

TABLE I
WCV1A SPEED

run len M/sec c/key
1 1,121 4.2
4 938 5.0

16 826 5.7
512 883 5.3

approach. Assuming 2b is larger than the TLB size, which is
commonly the case, this also decreases the number of TLB
misses from one per key in Algorithm 1 to one per B keys.

Drawing inspiration from [20], which is currently the fastest
implementation of WC, assume tmpBuckets is an array of
(2b · B) items and tmpSize[i] stores the current number of
keys in bucket i. Algorithm 2, which we call WCv1, shows the
baseline partitioning function of an optimized LSD. Its Line 4
runs a prefetch at some distance D in the input buffer, Line 8
detects tmp bucket overflow, and Line 9 uses a non-temporal
memcpy from the start of the tmp bucket (i.e., pointer p) to the
corresponding location in RAM (i.e., buck[idx]). Note that R =
B · ItemSize in Line 14 is the length of each bucket in bytes,
which is assumed to be a multiple of 256-bit AVX register
data type m256i.

To make discussion more focused, it should be noted that
b = 8 is currently the optimal value for LSD, in both
Algorithm 1 and 2. Larger values of b (such as 10 or 11) may
be used to reduce the number of passes; however, each pass
becomes significantly slower due to the increased number of
TLB misses and page-table walks, making performance of the
whole sort noticeably worse. Therefore, most of the examples
below assume b = 8 and 256-way partitioning. In this setup,
sorting 32-bit keys (i.e., four levels) requires 16n memory
traffic in Algorithm 1 and 12n in Algorithm 2.

B. Overview of S-Typhoon

While the basic partitioning engine in Algorithm 2 is a good
starting point, we are interested in the question of achieving the
absolute maximum performance, both in terms of CPU cycles
per key and RAM traffic, in order to establish a definitive
upper bound on LSD speed. At a minimum, each pass of
the sort has to read through the input keys, decide on their
buckets, and send them to output, i.e., the work done in Lines
3-11 must remain. However, the histogram in Line 2 can be
omitted unless keys in adjacent output buckets must appear
contiguously in RAM, which is a requirement only for the final
level. Avoiding the histogram not only reduces the amount of
CPU cycles by ∼30%, but also leads to lower RAM pressure
in multi-threaded scenarios. If this idea can be implemented
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Fig. 1. S-Typhoon workflow overview (32-bit keys).

efficiently in practice, 32-bit keys would require three levels
of 2n memory traffic (i.e., non-counting) and one level of 3n
(i.e., counting), for a total of 9n per full sort, dropping the
memory load of Algorithm 2 by another 25%.

Eliminating the histogram requires expanding buckets dy-
namically without knowing their final size. We delay this
issue until the next section, but in the meantime assume that
an oracle pre-allocates two sets of static buckets, bp[0] and
bp[1], that never overflow. In this notation, bp[L&1][i] points
to bucket i during level L. Then, Static Typhoon (S-Typhoon)
proceeds in five steps shown in Fig. 1, where partitioning levels
L0 − L2 are non-counting, level L3 is the histogram on the
most-significant digit, and the final distribution pass L4 returns
all items back into the input buffer. Note that buckets during
L0−L2 are kept in disjoint memory locations, while those in
L4 are tightly packed (i.e., appear with no gaps).

C. Read-After-Write Bottlenecks

Our first topic is to analyze WCv1 under skewed key
distributions. While the method works well for uniform keys,
our results show that it inexplicably reduces speed when
multiple adjacent keys are sent into the same bucket, which is
a common occurrence for non-uniform inputs. Define WCv1a
to be Algorithm 2 without the histogram pass in Line 2. Then,
Table I demonstrates this issue with 1 GB of 32-bit keys and
an Intel Skylake-X i7-7820X clocked at a fixed 4.7 GHz,
where the run length in the first column specifies how many
back-to-back copies of each random key are generated. The
speed begins at 1,121M keys/sec (4.2 cycles/key) in the first
row (all unique), drops to 826M/sec in third row (5.7c/key),
and finally settles on 883M/sec (5.3c/key) for sufficiently long
runs. The worst case is 1.4× slower than the best, which is
not a negligible drop. We next examine this problem in more
detail and develop a solution that allows S-Typhoon to remain
robust against such cases.

A key component of data partitioning, whether it uses write-
combine or not, is to perform updates to shared counters
as items arrive from input. These can be bucket pointers
in Algorithm 1 (Line 13) or tmp bucket sizes in Algorithm
2 (Line 8). To better understand the challenges the CPU
faces in these cases, first consider a simplified problem, also
of relevance to S-Typhoon, whose purpose is to compute a
histogram using the first byte of each item in an array. A
baseline solution [25], [31], which we call Hv1, is illustrated
by Algorithm 3. Its performance using the same setup as
before is shown in Table II. In this case, the reduction in speed
is even sharper, i.e., 2.4× between all-unique and all-duplicate.

Algorithm 3: Histogram Hv1

1 Func Hist(Item *in, int n)
2 for (i=0; i < n; i ++) do
3 prefetch (in + i + D);
4 idx = *(uint8*)(in + i);
5 hist[idx]++;

TABLE II
HV1 SPEED

run len M/sec c/key
1 2,250 2.1
4 1,817 2.6

16 1,454 3.2
512 927 5.1

To delve deeper, consider the CPU pipeline for Hv1, which
repeats a pattern of two loads, an increment, and a store:

idx0 = *(uint8*)in; c0 = hist[idx0]; inc c0; hist[idx0] = c0;
idx1 = *(uint8*)(in+1); c1 = hist[idx1]; inc c1; hist[idx1] = c1;

where idx0-idx1, c0-c1 are registers. For performance rea-
sons, the CPU’s out-of-order execution engine attempts to
hoist loads ahead of preceding stores unless its memory-
disambiguation module detects a conflict. As the pipeline
decodes the uops, it sees a store to hist[idx0], followed by
a load from hist[idx1], both from yet-unknown buckets idx0,
idx1. Without additional hints, the CPU cannot decide whether
this presents a conflict and optimistically assumes that these
uops are independent, which causes it to reorder the load from
hist[idx1] to precede the store into hist[idx0].

When adjacent keys refer to different buckets, load hoisting
allows higher levels of instruction-level parallelism as counters
from multiple locations can be fetched and incremented con-
currently. However, doing the same for pairs of keys with idx0
= idx1 leads to consistency violations, which are detected by
the CPU just before these instruction retire, causing expensive
pipeline flushes. It is speculated [16] that Intel maintains
a history of mispredictions for each load and temporarily
disables hoisting after a threshold of violations is reached.

While hoisting is inoperable and duplicate keys are still
arriving, the histogram runs into dependency chains between
each load from the L1 cache and the preceding store. Going
into a latency-bound regime (i.e., 4c/load for Skylake-X) is
already a major bottleneck, but an additional problem arises
from having to search through the store buffer and forward
loads out of it [22], which sometimes has an even higher
latency [41]. Breaking loop-carried dependencies and reducing
frequency of pipeline stalls is our next topic.

D. Reducing Store-Forwarding Costs

This analysis gives rise to the following idea. Dependency
between k adjacent store-load pairs can be resolved by reading
k histogram counters upfront, performing comparison across
all k(k − 1)/2 pairs of bucket indexes, and incrementing
the relevant counters using the result of the comparison.
For k = 2, this is demonstrated by Algorithm 4, which
simultaneously reads two indexes from input and obtains their
counters at the start of each iteration (Lines 4-6), keeping them
in registers. It then updates counter c0 (Line 7) and decides
the value of c1 based on whether the two buckets are the same
(Line 8). To keep the algorithm branchless, ternary operator
? is implemented using a conditional move CPU instruction
cmov, which needs only 0.5c/iteration (i.e., 0.25c/key). If the
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Algorithm 4: Histogram Hv2

1 Func Hist(Item *in, int n)
2 for (x = in; x < in + n; x += 2) do
3 prefetch (x + D);
4 idx0 = *(uint8*)x;
5 idx1 = *(uint8*)(x + 1);
6 c0 = hist[idx0]; c1 = hist[idx1];
7 c0++; hist[idx0] = c0;
8 c1 = (idx0 == idx1) ? c0 : c1;
9 c1++; hist[idx1] = c1;

TABLE III
HV2 SPEED

run len M/sec c/key
1 2,496 1.9
4 2,478 1.9

16 2,275 2.1
512 1,402 3.4

compiler does not issue cmov, assembly can be used instead.
Table III displays the performance of Hv2. For unique keys

in the first row, the speed goes up 11% compared to Hv1.
As the run length increases, performance gains become more
substantial, where Hv2 finishes with a 1.5× advantage in the
last row compared to Table II. The gradual reduction in speed
as the burst length increases in Table III can be explained by
Hv2’s success at eliminating store-load dependencies within
each pair of items, but not between pairs. Unfortunately, for
k ≥ 3, the quadratic cost of doing all-to-all scalar comparisons
becomes prohibitively high, i.e., no further improvement is
currently possible under the same umbrella.

It should be noted, however, that with vector intrinsics of
AVX-512, the majority of this work can be reduced to four
instructions, i.e., vpgather, vpconflict, vpopcnt, and vpscat-
ter, that respectively collect counters from k disjoint locations,
perform all k(k−1)/2 comparisons to create a mask, count the
number of set bits in the mask, and distribute the result back
to memory. With a few extra steps, the algorithm can offload
k = 16 keys per iteration of the loop. The main problem is
that conflict/scatter instructions are still expensive, amounting
to roughly 2.7c per key [1], which is not competitive against
the majority of rows in Table III. Additionally, the AVX-512
histogram fails to deliver useful lessons towards improving
WCv1, linearly drops speed as keys become larger, and has
difficulties when item and counter sizes mismatch.

We therefore leverage conflict detection in Algorithm 4 by
applying the same principles to key distribution. This is shown
in Algorithm 5 under the name of WCv2. Unlike the previous
version WCv1a, bucket addresses in RAM are passed into the
function in the third argument (i.e., array of pointers buck),
which refers to either bp[0] or bp[1] depending on the level.
Additionally, the fourth argument specifies an array of pointers
t to the starting position in each tmp bucket. The algorithm
further assumes that the number of bytes in each tmp bucket R
= B · ItemSize is a power of two and the start of tmpBuckets
is aligned to R bytes.

For each pair of items, macro MOVE reads their indexes
from the corresponding byte of the key (Lines 7-8) and obtains
both pointers p0, p1 (Line 9) without yet knowing if there
exists a conflict. It then calls a macro WRITE, which stores
the first key into p0 and checks for the end of the tmp bucket
(Line 16). If so, it jumps p0 to the start of that bucket and
offloads its B items to RAM. At the end, it updates t[idx0]
in Line 20 to reflect the new position. At this point, p1 can

Algorithm 5: WCv2

1 Func Split(Item *in, int n, Item **buck, Item **t, int L)
2 for (x = in; x < in + n; x += 2) do
3 prefetch (x + D);
4 MOVE(x);
5

6 Macro MOVE(x)
7 idx0 = *((uint8*)x+L);
8 idx1 = *((uint8*)(x+1)+L);
9 p0 = t[idx0]; p1 = t[idx1];

10 WRITE(x[0], p0, idx0);
11 p1 = (idx0 == idx1) ? p0 : p1;
12 WRITE(x[1], p1, idx1);
13

14 Macro WRITE(key, p, idx)
15 *p++ = key; ▷ store item
16 if (p & (R-1) == 0) then ▷ overflow?
17 p –= B; ▷ roll back to start of bucket
18 OffloadAVX(buck[idx], p);
19 buck[idx] += B;
20 t[idx] = p;

TABLE IV
WCV2 SPEED

run len M/sec c/key
1 1,128 4.2
4 1,128 4.2

16 1,118 4.2
512 1,302 3.6

be computed using a conditional move in Line 11 and the
process repeats for the second key. Note that WCv2 avoids
store forwarding within each pair of keys because t[idx1] is
read (Line 9) before t[idx0] is written (Line 20).

Table IV shows the resulting speed. Compared to WCv1a
in Table I, this version gains a few M/sec in the first row,
improves by 20% in the second, 35% in the third, and 47% in
the last one. While Table IV shows no major slowdown when
dealing with duplicates, the same cannot be said about the
Hv2 histogram in Table III. The reason for this discrepancy
is that WCv2 even at its best speed (i.e., 3.6c/key) it is still
slower than Hv2 at its worst (i.e., 3.4c/key). This suggests
that the CPU executes movement of keys largely in parallel
with intra-pair conflict resolution and that the former is the
bottleneck, which makes WCv2 mostly insensitive to presence
of duplicates.

E. Cache Conflicts

Another non-uniform key pattern that breaks performance
of WCv1 relates to repetitive (round-robin) writing into tmp
buckets. On Intel CPUs, the optimal size of each tmp bucket
is R = 256 bytes, which serves as a middle ground between
offloads interrupting the CPU pipeline with mispredicted
branches too frequently and the tmp buckets becoming too
big to fit in the cache. Across all 2b = 256 buckets, the
tmp buffer occupies 64 KB, i.e., double the L1 cache size,
and thus requires evicting keys into L2. Under uniform loads,
this presents no problem as evicted cache lines carry enough
useful data to keep the L1→L2 pipeline faster than the splitter.
However, non-uniform keys can break this pattern and result
in significant performance loss. We look into this issue next.

Recall that L1 in modern CPUs is a k-way set-associative
cache, where the lowest c bits of a virtual address specify the
offset within the cache line and the next r bits are used as an
index that determines the corresponding cache set. When data
items collide on a cache set, the CPU can accommodate up to
k cache lines without creating a conflict, after which it must
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TABLE V
ROUND-ROBIN SPLITTER SPEED (M/SEC)

skip s CS CL WCv1a WCv2 sWCv1a sWCv2
1 16 16 536 594 1,104 1,237
2 8 16 470 534 1,128 1,241
4 4 16 268 361 1,119 1,256
8 2 16 206 218 1,099 1,245

16 1 16 160 199 1,122 1,242
32 1 8 1,137 1,234 1,230 1,328

evict one of the cache lines from the set. Thus, there are 2r

cache sets, each containing k cache lines of size 2c bytes, i.e.,
k2r+c is the total size of L1. While the exact operation of CPU
caches is proprietary, it is not difficult to construct examples
that trigger the worst-case, i.e., collision of all buckets on just
one cache set. In this situation, the application evicts a full
cache line for every item written into tmp buckets.

To examine how this works in practice, we construct a 32-
bit key sequence that causes level 0 of LSD to round-robin
through every s-th bucket, i.e., the i-th key is xi = s · i
(mod 2b), where 2b/s is an integer. Note that s = 1 has the
same effect on the cache as a fast random-number generator
called the LCG (linear congruential generator), which makes
this case of special interest. Performance is broadly determined
by two factors – the number of unique cache sets CS being
hit and the number of cache lines CL the splitter attempts to
simultaneously put into each set. As long as CL > k, there will
be a possibility for conflict eviction. Since sR is the number
of bytes between adjacent stores into the tmp buckets, we
get that CS = max(2r+c/(sR), 1), from where the cache-set
occupancy is the number of non-empty buckets divided across
the available cache sets, i.e., CL = 2b/(sCS).

For Intel Skylake-X with its 32-KB L1 cache, k = 8,
and c = 6, we get r = 6. Table V examines performance
of WCv1a/WCv2 for different values of s. In the first row,
the splitter uses CS = 16 cache sets out of the 64 available
and attempts to stuff 16 cache lines into each, resulting in a
drastic performance reduction compared to the uniform case
in Tables I and IV. While WCv2 is still faster than WCv1a,
it is definitely not immune to L1-L2 cache thrashing. As
s increases and CS reduces, the speed undergoes additional
deterioration, eventually bottoming out below 200M/sec with
s = 16. As predicted, this row elicits the worst behavior from
the cache since CS = 1 and CL > k are simultaneously true.
Even though the next row also has CS = 1, it places only 8
cache lines into each set, leading to no unnecessary evictions
(due to CL ≤ k) and therefore much faster speed.

Since robustness is one of the goals for S-Typhoon, behavior
of WCv1a/WCv2 in Table V is unacceptable. In order to re-
main distribution-insensitive, S-Typhoon applies a randomized
stagger to the address of the first item in each tmp bucket
(i.e., tmpSize[i] in WCv1a and t[i] in WCv2) to ensure that
the initial bucket pointers sweeps all 2r cache sets. Assuming
each tmp bucket is a multiple of cache line, i.e., R/2c is an
integer, Algorithm 6 computes the byte-increment stag[i] that
needs to be added to the start of tmp bucket i before each

Algorithm 6: Optimal cache stagger

1 Func ComputeStagger(int *stag)
2 groupSize = max(2r+c / R, 1) ; ▷ buckets with equal

stagger
3 for (i=0; i < nBuckets; i++) do
4 stag[i] = ((i / groupSize) * cacheLineBytes) % R;
5 RandomShuffle(stag, nBuckets)

Algorithm 7: WCv2L4, dealing with level L4

1 Func AdjustBucket(int idx)
2 x = buck[idx] % cacheLineBytes;
3 stag[idx] += x; stag[idx] /= ItemSize;
4 t[idx] = tmpBuckets + idx*B + stag[idx];
5

6 Func OffloadL4(Item *dest, Item *src, int idx)
7 if (stag[idx] > 0) then ▷ first offload of this bucket?
8 OffloadScalar (dest, src + stag[idx]);
9 stag[idx] = 0; ▷ remove stagger from later offloads

10 else
11 OffloadAVX(dest, src); ▷ switch to regular AVX

offload

level of LSD begins. It first decides in Line 2 on the number
of adjacent buckets that are guaranteed to hit different cache
sets. It then applies in Line 4 the same stagger within each
group, which ensures that none of them collide on the same
cache set, and increases the stagger by 1 cache line between
the groups. Finally, Line 5 makes the stagger unpredictable to
prevent adversarial inputs that undo the effects of Algorithm
6.

We prefix splitters running over optimally staggered buckets
with the letter s, i.e., sWCv1a and sWCv2. Their perfor-
mance is shown in the last two columns of Table V. Results
demonstrate that sWCV1a recovers back to the uniform speed
of WCv1a, while sWCv2 runs ∼100M/sec faster on round-
robin inputs than previously in the first row of Table IV. It
also beats sWCv1a in Table V by roughly the same amount.

F. Offload Alignment

We now deal with architectural nuances of streaming stores
in OffloadAVX, which require alignment of the destination
pointer to SIMD vector length. For convenience, we align the
input buffer and all buckets to cache-line size (i.e., 64 bytes).
Thus, for levels L0−L2 of the S-Typhoon workflow in Fig. 1,
dealing with stagger is simple – function OffloadAVX streams
full tmp buckets, including the stag[i] dummy bytes in the
front. The leading garbage is ignored on the next level by
pushing the starting pointer of the bucket forward by stag[i].
On the other hand, the situation gets more complicated during
the last level L4, where a) destination buckets are no longer
aligned to SIMD width; and b) the dummy stagger bytes may
destroy the contents of the preceding bucket.

While prior work [25] can tackle a) by rolling back the
destination pointer to the nearest multiple of SIMD width (e.g.,
32 bytes for AVX), this solution does not work with constraint
b). Instead, Algorithm 7 summarizes the changes in sWCv2
needed to address both problems. Function AdjustBucket,
called once for each bucket before L4 begins, computes the
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offset x within the cache line of the destination pointer and
uses it to adjust stagger of the corresponding tmp bucket. This
ensures that proper SIMD alignment will be reached after the
first offload on this bucket. Next, Line 18 of Algorithm 5 gets
replaced with a call to OffloadL4, shown at the bottom of
Algorithm 7, which either offloads using a scalar loop when
stag[idx] is non-zero or falls back to AVX otherwise. Note that
the scalar branch in Line 8 is taken at most once per bucket,
i.e., mispredicted ≤ 256 times out of millions of offloads.

G. Histograms Revisited

We now deal with the issue of designing the histogram for
level L3, keeping in mind that we no longer need this solution
to be applicable to a key splitter. Our next approach, illustrated
as Hv3 in Algorithm 8, unrolls the loop to grab multiple keys
at once and writes updated counters into separate histograms.
While this example shows unrolling to r = 4 keys and
h = 4 histograms, other combinations are possible as well.
Furthermore, when r exhausts general-purpose registers, our
implementation of Hv3 uses SIMD (SSE/AVX) to hold the
keys. A crucial element of this technique is the use of an
offset, which specifies the distance (in bytes) between the start
of each histogram and the end of the previous one. Since each
histogram is exactly 256×8 = 2 KB, offsets are needed to
avoid 4K aliasing and conflicts in set-associative caches [22].

Using r = 16 keys and h = 8 histograms, the upper half
of Table VI shows that a zero offset can produce a 16-35%
improvement over Hv2, but the resulting method still chokes
on duplicate keys, losing over a billion keys/sec between the
first and last rows. On the other hand, offsetting the histograms
by 8 bytes yields a drastically different result, i.e., a constant
1.6c/key, as also shown in the table.

H. Multi-Threading

Assume a joint sort across T threads, each holding its own
dual set of RAM buckets bp[0], bp[1] and local tmp buckets
in the corresponding L1/L2 cache, possibly with a different
stagger. Suppose matrix M consists of all sub-buckets written
by the threads after a particular level of splitting, i.e., Mij

represents the contents of bucket i created by thread j. To
identify a sub-bucket, it is sufficient to specify its 2D index
(ij). Furthermore, let triple (ijr) refer to the r-th key in bucket
Mij . Then, a row-major order on keys is defined as (xyr) ≺
(uvt) iff (x < u) ∨ (x = u, y < v) ∨ (x = u, y = v, r < t).
Note that for level L0, we assume M = (M00) is a 1 × 1
matrix consisting of the input array.

Multi-threading requires assigning each thread p =
1, 2, . . . , T a set of keys ∆p consisting of n/T triples (ijr)
such that {∆1, . . . ,∆T } forms a partition on M . Two rules
must be satisfied in order to ensure correctness: a) each
thread processes keys assigned to it in row-major order;
and b) if (xyr) ∈ ∆p and (uvt) ∈ ∆q , where p < q,
then (xyr) ≺ (uvt) must hold. This guarantees stability,
i.e., that the next level of LSD does not break the relative
order established within each bucket on the previous level.
To achieve b), our load-balancing algorithm views all n keys

Algorithm 8: Histogram Hv3

1 Func Hist(Item *in, int n)
2 for (x = in; x < in+n; x += 4) do
3 prefetch (x + D);
4 idx0 = *(uint8*)x;
5 idx1 = *(uint8*)(x+1);
6 idx2 = *(uint8*)(x+2);
7 idx3 = *(uint8*)(x+3);
8 hist0[idx0]++;
9 hist1[idx1]++;

10 hist2[idx2]++;
11 hist3[idx3]++;

TABLE VI
HV3 SPEED

run len M/sec c/key
offset = 0

1 2,912 1.6
4 2,688 1.7

16 2,215 2.1
512 1,904 2.5

offset = 8
1 2,941 1.6
4 2,941 1.6

16 2,941 1.6
512 2,941 1.6

as a one-dimensional array in the row-major order of M and
assigns its p-th consecutive batch of size n/T to thread p.

The cost of computing these boundaries depends on the
number of buckets 2b and thread count T , but this is usually
negligible (i.e., under 10 µs) compared to the sort time.
Since threads require data in sub-buckets Mij created by
other threads, each level L0 − L4 ends with a barrier that
synchronizes the threads. In summary, S-Typhoon runs three
passes L0 − L2 using sWCv2, which combines Algorithm 5
with stagger in Algorithm 6, a single counting pass at L3 using
Hv3 in Algorithm 8, and another pass at L4 using a modified
sWCv2 from Algorithm 7, for a total of 9n memory traffic.

IV. TYPHOON

To make the framework developed in the previous section
practical, the first challenge is to design a low-overhead
technique for dynamically expanding output buckets as they
are written to. While this problem has been touched upon
in prior work [6],[7], [20], [31], [36], performance of these
solutions leaves much to be desired, as we discussed in Section
II. Our objective here is to create a new bucket-management
infrastructure that runs L0 − L4 at almost the same speed
as S-Typhoon, but without using an oracle to statically pre-
allocate the buckets. After L4, the data will end up in a number
of disjoint locations in RAM, where the second challenge
is to restore proper order between the keys using a novel
unscrambling level we call L5.

Define a slice to be contiguous region of S bytes in virtual
memory starting from an address that is aligned to S. Slices
come from two places – the input buffer and some auxiliary
space that is needed to provide support to partially filled slices
during the split. To speed up detection of end-of-slice, we
assume S is a power of 2, and to prevent offloads from crossing
slice boundaries, let S be a multiple of tmp bucket size R. For
reshuffling at L5, S must also be a multiple of page size.

A. Data Structures

We start by considering single-threaded execution. Suppose
the sort maintains a stack of free slices, which is an array of
64-bit pointers to the start of each slice. Compared to other
data structures, stacks have an advantage in their low push/pop
cost, i.e., one stackTail pointer, a load/store instruction, and
a register increment/decrement. Additionally, stacks achieve
high temporal locality because of immediate reuse of slices
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Algorithm 9: WCv4 (simplified)

1 Func Split(Item **s, int ns, Item **bp, Item **t, int L)
2 for (j=0; j < ns; j++) do ▷ iterate over all slices
3 cur = s[j]; next = s[j+1]; dist = next - cur;
4 do
5 prefetch (cur + dist); ▷ prefetch next slice
6 MOVE(cur);
7 cur += 2;
8 while cur & (sliceSize - 1);

between input and output. As we see below, this allows
Typhoon to run certain levels of the sort faster than S-Typhoon.
At the start of the sort, the free stack is initialized to A
auxiliary slices, where A determines the O(1) constant in
n+O(1) memory usage. Each level of the sort requires at least
2b slices in the free stack, plus the space wasted due to stagger,
i.e., R/2 bytes per tmp bucket. Thus, A ≥ 2b(1 + R/(2S))
must hold. We refine this bound later in the section.

To keep track of the slices assigned to each bucket, suppose
slice database sd contains in sd.p[i][j] the address of the j-
th slice in bucket i. For each new slice popped from the free
stack, the splitter records tuple (bucket idx, slice pointer) into a
separate pre-allocated buffer. After the level is over, this array
is processed to count the number of slices that went into each
bucket i, which allows easy construction of sd. Since Typhoon
alternates between two sets of buckets, each set requires a
separate slice database, which we call sd[0] and sd[1]. If the
sort reads slices from sd[k], where k is either 0 or 1, it keeps
track of the new ones in sd[1–k].

B. Aligned Splitter (L0 − L2)

We extend the S-Typhoon WCv2 splitter, which we now
call WCv3, to accept an array of slice pointers s[] rather
than one large buffer. These pointers typically come from a
single bucket, where the first slice may be offset by stagger, all
intermediate slices are full, and the last one may be partially
filled. The main loop in Algorithm 5 remains essentially the
same, except it gets interrupted every S bytes to load the next
input slice pointer. This involves four CPU instructions per
slice and a mispredicted branch.

On output, the OffloadAVX function has to check if the
destination pointer buck[idx] is aligned to slice boundary
using bitwise masking. If so, a free slice is popped from the
stack and added to the array sd[k].p[idx]. To ensure proper
operation at the start, all buckets begin such that buck[idx]
= NULL, which causes a trip to the stack on first access to
each destination pointer. In total, output slice management
requires one mask instruction and a well-predicted branch per
offload, which adds at most 1/4 cycle per R bytes, as well
as 6 additional mov/add/sub instructions per slice, which add
∼1.5 cycles per S bytes. Because of the simplicity of its data
structures, WCv3 can fit all pointers and variables into 13
general-purpose registers, leaving three unused. This ensures
no register pressure, spills to the stack, or reloads.

Considering the low cost of managing the slice database
and the stack, it is perhaps unexpected that WCv3 runs a

TABLE VII
LEVEL L1 SPLITTER SPEED (M/SEC)

WCv2 WCv3 WCv4
(static) 4 KB 8 KB 4 KB 8 KB

1,128 872 939 1,117 1,139

lot slower than WCv2 during L1. With 4-KB slices and 32-
bit keys, Intel i7-7820X shows a reduction in speed from
1,128M/sec to 872M/sec, a loss of 23%! Further investigation
reveals that this issue is caused by two compounding effects
– software prefetch at distance D in Line 3 of Algorithm 5,
which pollutes the cache with irrelevant data ahead of each
jump, and CPU hardware prefetchers that detect scans and
also load some amount of garbage following each slice.

There is not much we can do about the latter issue, but the
former can be alleviated by introducing a non-linear prefetch
into WCv3, which keeps both the current slice pointer cur =
s[j] and the next one s[j+1] in registers, prefetching at address
(x + D) when x + D < cur + S and (next + x - cur + D - S)
otherwise. In cases when the CPU allows a range of prefetch
options sufficiently-far in the future to work at optimal speed,
which is the case for Intel and AMD, the loop can be further
simplified to always prefetch from the next slice. For these
situations, Algorithm 9 shows a high-level operation of the
new approach WCv4. Note that separate logic is needed to
handle stagger on the first slice and the partially filled slice at
the end of s, which we omit for brevity.

Generally, it is expected that larger slices are faster because
the CPU prefetches less garbage compared to the amount of
useful data in the slice. Additionally, the cost of managing the
free stack and database sd becomes smaller as well. Results
in Table VII confirm this observation using 4 and 8 KB slices.
Even with 8-KB slices, WCv3 struggles to match the static
speed. On the other hand, WCv4 essentially ties S-Typhoon
with 4KB slices and exceeds its performance using 8KB slices.
As mentioned earlier, stack-based reuse of slices sometimes
gives Typhoon an advantage over S-Typhoon. Additional cases
will be illustrated later in the paper.

C. Histogram (L3)

As level L3 runs almost 3× faster than the splitter, the
effect of incorrect prefetch becomes even worse. In particular,
the speed of Hv3 drops by 47%, i.e., from 2,941M/sec in
Table VI to 1,560M/sec (4-KB slices). Applying the trick from
Algorithm 9 improves the result to 2,744M/sec, but this is still
200M/sec slower than static.

In contrast to the splitter, which must process the items
in row-major order within matrix M , the histogram is not
constrained in how it visits the keys. Hence, it is sufficient to
identify all contiguous runs of keys in virtual memory and call
Hv3 on each of them. To determine these regions, one option
is to sort all slice pointers in the sd database and merge the
ones next to each other. However, sorting 256K slices per GB
of data is too expensive, which makes the result slower than
random jumping using the prefetch of WCv4.
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On the other hand, the same outcome can be obtained by
extracting the chunks of unused space from the free stack
and partial slices in sd, sorting them, and computing the
contiguous runs of valid keys by complementing the empty
space. Note that a bucket can have up to two partial slices (i.e.,
the first one due to stagger and the last one), which combined
with the empty stack amounts to at most A separate regions of
free memory. Thus, the sort involves a few hundred integers,
regardless of n. We call this method Hv4 and note that it easily
hits the speed of S-Typhoon even with 4-KB slices.

D. Unaligned Splitter (L4)

For L4, a new challenge arises due to stagger and the
possibility that function OffloadL4 may cross slice bound-
aries. The general structure for this level follows WCv4with
modifications in Algorithm 7, except both OffloadAVX and
OffloadScalar need to detect when the destination pointer
moves to the next slice. Because the latter runs only once per
bucket, this check can be done for every key; however, the
former needs further optimizations.

In particular, OffloadAVX examines if the current slice can
accommodate another R bytes; if so, it runs the standard
(uninterrupted) offload loop. Otherwise, it moves enough keys
to finish the current slice, obtains a new one from the stack,
and completes the offload there, in both cases using AVX. The
frequency of taking the slice-crossing branch is determined by
the ratio of tmp bucket size to slice length, i.e., R/S. With
S = 4 KB, the probability to take the slower branch on Intel
CPUs is 6.25% (i.e., R = 256). Combined with the extra cost
of branch misprediction, this explains why Typhoon’s L4 runs
slightly slower than its L1 − L2.

E. Multi-Threading

We now deal with slice management across T threads.
Assume each of them maintains a local state consisting of
a free stack, a tmp bucket buffer, two sets of bucket pointers
bp[0], bp[1], and two slice databases sd[0], sd[1]. The goal of
this setup is to make threads run with as little interaction with
each other as possible. To handle partitioning of matrix M , we
extend the row-major order introduced earlier to organize keys
by (bucket, thread, slice). For speed reasons, threads never
share slices from each sub-bucket, but the rest of the load-
balancing algorithm (Section III-H) remains the same.

For L0 − L2, if a thread begins a level with A0 = 2b(1 +
R/(2S)) free slices in its local stack, it has sufficient extra
memory to cover the wasted bytes due to stagger and leave
one almost-empty slice at the end of each bucket. Thus, WCv4
can run independently and without modification within each
thread using its local stack. However, because a thread reads
other thread’s sub-buckets, its stack size at the end of a level
can be anywhere from zero to the total number of partial slices
in the sub-buckets it visited. Thus, each level introduces a
size-imbalance into thread stacks, which, if left uncorrected,
eventually leads to a crash.

To address this problem, Typhoon introduces a global stack
that contains the remaining slices not currently assigned to

any thread. After finishing a level, but before the barrier, each
thread returns excess slices (i.e., those above A0) to the global
stack. Similarly, when a level begins (i.e., after the barrier),
each thread acquires the missing slices to bring its local stack
size back to A0. Under these rules, a thread can either return
or acquire slices at a particular level, but not both.

This works well for L0−L2, but additional difficulties arise
during L4. Because keys must be contiguous in space at the
end of the sort, there can be up to T · 2b slices that are shared
across bucket boundaries, including between different threads.
The main challenge here is to prevent allocation of redundant
slices when WCv4 moves into the last (partial) slice of each
bucket. To address this, the last thread of Typhoon that reaches
the barrier at the end of L3 pre-allocates all shared slices and
then kicks off L4. This entails examining T · 2b boundaries
between sub-buckets, assigning each a slice from the global
free stack, and notifying the threads that these slices have been
pre-allocated.

The notification is done through the sd database – any time
WCv4 aims to obtain a new slice, it loads the pointer x for
the current slice j of bucket i for its thread p; if this value is
NULL, it gets a new slice from its local stack; otherwise, it
uses x as a pointer to the pre-allocated slice. Not only that, but
x specifies the exact location within the slice where sub-bucket
(ip) begins. Combining this logic with generalized offloads
that can move across slices (Section IV-D) leads to our final
WCv4L4 splitter in Typhoon.

The worst-case memory usage happens at L4. Observe
that threads may hold T · A0 slices in matrix M before
the level begins, they are given T · 2b additional shared
slices in pre-allocated memory, and they request T · 2b new
slices immediately after starting the level. As a result, the
smallest number of auxiliary slices A that the sort needs is
T · 2b(3 + R/(2S)). With 4-KB slicesand R = 256 bytes
per tmp bucket, this leads to 3 MB per thread. Compared
to 1 GB/thread worst-case in Vortex [20], this is a major
improvement.

It should also be noted that the modified histogram Hv4
applies only to the single-threaded case since complementing
the empty space does not reveal which thread is responsible
for which slice. Additionally, T ≥ 2 leads to tight interleaving
of slices, where the length of contiguous regions assigned to
each thread, even if they could be determined efficiently, is
often no more than 2 slices, which negates the sought-after
benefits. Therefore, we run histogram Hv4 only for T = 1
thread and Hv3 otherwise.

F. Reshuffle (L5)

After L4, the data is located in ⌈n · ItemSize/S⌉ slices,
which are randomly scattered in RAM. Assume {v1, v2, . . .}
is a list of pointers in row-major order within matrix M
recorded in the slice database during L4, ignoring duplicate
slices shared across adjacent buckets. Now the remaining task
is to make each slice vi appear at offset iS in the input buffer.
To accomplish this, the Typhoon constructor obtains a chunk
of memory buf, big enough to hold both n input items and
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TABLE VIII
TYPHOON SPEED (M/SEC) ON 1 GB INPUT (UNIFORM KEYS)

Single core All cores
32-bit keys 64-bit key-value pairs 32-bit keys 64-bit key-value pairs

Level Static 4KB 8KB 16KB Static 4KB 8KB 16KB Static 4KB 8KB 16KB Static 4KB 8KB 16KB
0 1,128 1,162 1,182 1,183 815 831 854 865 8,308 8,902 8,944 8,846 4,381 4,504 4,505 4,513
1 1,110 1,126 1,158 1,161 812 790 820 846 8,289 8,355 8,554 8,575 4,386 4,309 4,413 4,456
2 1,131 1,134 1,167 1,174 828 794 833 853 8,298 8,379 8,554 8,541 4,391 4,327 4,411 4,460
3 2,941 2,955 2,933 2,934 2,174 2,037 2,035 2,036 20,831 17,197 17,927 18,286 10,354 9,291 9,896 10,217
4 1,124 1,121 1,148 1,161 814 788 821 846 8,132 8,129 8,345 8,407 4,352 4,219 4,305 4,344

0-4 256 259 265 266 187 182 189 193 1,878 1,878 1,919 1,922 990 971 991 1,002
5 9,323 11,441 14,451 4,682 5,798 7,370 59,005 68,237 75,655 28,718 33,789 38,347

0-5 252 259 261 175 183 188 1,820 1,866 1,874 939 963 976

TABLE IX
STRONG SCALING OF TYPHOON SPEED (M/SEC) ON 1 GB OF 32-BIT KEYS (16-KB SLICES, UNIFORM KEYS)

Level 1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores 8 cores
0 1,183 2,340 2.0× 3,533 3.0× 4,680 4.0× 5,824 4.9× 6,978 5.9× 8,041 6.8× 8,846 7.5×
1 1,161 2,312 2.0× 3,462 3.0× 4,605 4.0× 5,714 4.9× 6,813 5.9× 7,788 6.7× 8,575 7.4×
2 1,174 2,340 2.0× 3,490 3.0× 4,628 3.9× 5,752 4.9× 6,835 5.8× 7,822 6.7× 8,541 7.3×
3 2,931 5,256 1.8× 7,747 2.6× 10,163 3.5× 12,479 4.3× 14,651 5.0× 16,643 5.7× 18,286 6.2×
4 1,161 2,327 2.0× 3,456 3.0× 4,609 4.0× 5,733 4.9× 6,827 5.9× 7,750 6.7× 8,407 7.2×

0-4 266 524 2.0× 783 2.9× 1,039 3.9× 1,290 4.9× 1,536 5.8× 1,755 6.6× 1,922 7.2×
5 14,451 28,731 2.0× 39,097 2.7× 49,160 3.4× 58,511 4.0× 65,985 4.6× 67,140 4.6× 75,655 5.2×

0-5 261 515 2.0× 768 2.9× 1,018 3.9× 1,262 4.8× 1,501 5.7× 1,711 6.6× 1,874 7.2×

TABLE X
STRONG SCALING OF TYPHOON SPEED (M/SEC) ON 1 GB OF 64-BIT KEY-VALUE PAIRS (16-KB SLICES, UNIFORM KEYS)

Level 1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores 8 cores
0 865 1,718 2.0× 2,557 3.0× 3,380 3.9× 4,144 4.8× 4,538 5.2× 4,564 5.3× 4,513 5.2×
1 846 1,683 2.0× 2,495 2.9× 3,279 3.9× 4,010 4.7× 4,421 5.2× 4,468 5.3× 4,456 5.3×
2 853 1,692 2.0× 2,504 2.9× 3,306 3.9× 4,034 4.7× 4,433 5.2× 4,484 5.3× 4,460 5.2×
3 2,034 3,427 1.7× 5,084 2.5× 6,700 3.3× 8,154 4.0× 9,290 4.6× 9,940 4.9× 10,217 5.0×
4 846 1,677 2.0× 2,493 2.9× 3,295 3.9× 3,945 4.7× 4,267 5.0× 4,333 5.1× 4,344 5.1×

0-4 193 377 2.0× 559 2.9× 737 3.8× 897 4.7× 986 5.1× 1,003 5.2× 1,002 5.2×
5 7,370 13,849 1.9× 19,683 2.7× 24,427 3.3× 29,339 4.0× 32,811 4.5× 36,358 4.9× 38,347 5.2×

0-5 188 367 2.0× 544 2.9× 716 3.8× 870 4.6× 957 5.1× 976 5.2× 976 5.2×

A auxiliary slices, using OS primitives that allow physical
pages to be mapped/unmapped within this virtual space. For
Windows, this translates into a call to VirtualAlloc with the
MEM PHYSICAL flag. Typhoon then grabs enough physical
pages using AllocateUserPhysicalPages and maps them to
this buffer via MapUserPhysicalPages. The buf array is then
given to the user to fill in the keys.

Note that the OS provides the PFN (physical frame number)
of each allocated page, which Typhoon stores internally in the
pfn array for later use during remapping. Level L5 begins
with unmapping all slices in buf using T parallel threads. The
information within these pages does not get destroyed, but
becomes temporarily inaccessible. After finishing the unmap,
threads jointly construct the nextPfn array that specifies the
page frames that need to appear in each position in buf.

In more detail, assuming P is page size in bytes, ob-
serve that (v[i] - buf)/P is the offset in the pfn array that
contains the S/P page frames from slice vi. Similarly, the
offset in the nextPfn buffer where vi should be mapped to
is given by i*S/P. Therefore, construction of nextPfn is a
sequence of operations memcpy(nextPfn + i*S/P, pfn + (v[i]-
buf)/P, S/P*sizeof(void*)) for all i. After the threads are done

with unmapping and memcpy, they synchronize on a barrier
and call MapUserPhysicalPages with their assigned portion
of nextPfn. Another barrier follows, after which Typhoon
finishes the sort by swapping pfn and nextPfn pointers in
preparation for the next iteration (if needed). The sort can be
called repeatedly any number of times, reusing buf and other
data structures, without causing allocating of new memory.

V. EVALUATION

Our primary benchmark platform is an Intel i7-7820X,
which is an 8-core Skylake-X CPU with a 32-KB L1, 256-
KB L2, and 16-MB L3, clocked for these experiments at a
fixed 4.7 GHz on each core. We run 32 GB of DDR4-3200
RAM in a quad-channel memory configuration, which yields a
peak non-temporal AVX memcpy bandwidth of 37 GB/s and a
maximum AVX read speed of 86 GB/s across 8 cores. Single-
threaded Typhoon is bottlenecked by the splitter’s 4.2c/key in
Table IV, while the performance of the multi-core version is
upper bounded by four memcpy passes and one read pass, i.e.,
2088M keys/sec for 32-bit items and half of that for 64-bit.

Typhoon, whose source code is available from [38], is
compiled in Visual Studio 2019, while prior methods are
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reported using the best achievable speed among Clang 19, Intel
oneAPI C++ 2025 (ICX), and VS 2019. Benchmarks run on
Windows Server 2016 and Ubuntu 24.04.

A. Static vs Sliced Typhoon

Our first topic is to examine Typhoon in comparison to its
static version and assess performance loss due to slicing and
remapping. Table VIII shows this result using 4-16 KB slices
and breaks down the speed for individual levels L0, . . . ,L5.
For 32-bit keys in the first four columns, the single-threaded
Typhoon shows a 1-5% advantage over the static version due
to slice reuse and ties S-Typhoon at L3. Even 4-KB slices
allow Typhoon to finish the sort on levels 0-4 faster than S-
Typhoon (i.e., 259 vs 256M/sec). Adding remapping at L5,
which is 8-13× faster than the splitter, yields a final Typhoon
speed between 252 and 261M/sec, depending on slice size.
This is quite competitive against S-Typhoon; in fact, slices 8
KB or larger lead to no loss of performance.

For 64-bit items (i.e., 32-bit keys with 32-bit values), the
number of records per slice is reduced by half, which means
that all slice-related activities occur twice as frequently on a
per-key basis. Thus, it is not surprising that in these cases
Typhoon needs double the slice size to achieve the same
relative performance (e.g., 16 KB to match S-Typhoon on 64-
bit items vs 8 KB on 32-bit, shown in bold in Table VIII). For
multi-threaded cases on the right side of the table, Typhoon
again generally runs faster than S-Typhoon when splitting on
L0 − L2; however, it now loses up to 18% on the histogram
pass (i.e., level L3). This is because the optimized version Hv4
does not work with T ≥ 2 threads and the sort has to use the
slower Hv3. Adding the cost of L5, where the OS struggles
to maintain linear scaling of remapping speed, results in 1-
5% loss on the full sort. Nevertheless, Typhoon-16KB hits
1874/2088 = 89% of memcpy bandwidth using 32-bit items
and 976/1044 = 93% using 64-bit.

Table IX examines strong scaling of 32-bit speed as the
number of threads increases, including a multiplicative factor
improvement compared to the single-threaded version. We fix
the input size at 1 GB and set the affinity mask to one thread
per core, which yields the best result. From the table, observe
that splitter speed (levels L0−L2,L4) scales almost perfectly
until 6 cores, but then slows down to 6.7× at 7 cores and
7.3× at 8 cores as it starts approaching RAM bandwidth. At
the peak, the splitter reaches 8.8B keys/sec, or 35.3 GB/s. On
the other hand, the histogram at L3 shows a noticeably worse
scaling behavior, which arises from the fact that the single-
threaded version Hv4 has an 11% advantage over the multi-
threaded Hv3. In particular, the former runs at 2,931M/sec
(first column), while the latter delivers at most 5,256/2 =
2,628M/sec per core (second column), eventually saturating at
18.3B/sec, or 73 GB/s, in the last column. It is also interesting
to observe that the OS fails to linearly scale its remapping
speed on L5, finishing with a 5.2× speed-up on 8 cores.
Considering all these factors, Typhoon’s final speed in the
bottom row is quite reasonable.

Table X examines the same benchmark on 64-bit key-value
pairs. Given the larger item size, RAM-bandwidth saturation
occurs earlier, where 6 threads are essentially enough. As
shown in the first row, the splitter’s best rate (i.e., 4.5B/sec, or
36.5 GB/s) is only barely faster than the 32-bit result in Table
IX, but the 64-bit histogram manages to hit 82 GB/s (i.e.,
10.2B/sec) in the last column, exceeding the 32-bit rate by a
much bigger margin (i.e., 9 GB/s). This was expected since the
amount of CPU cycles per key is about the same in both cases,
but larger items generate more RAM traffic. In fact, this can be
gleaned by comparing the single-threaded speed of L3 across
both tables – the 32-bit histogram reads at 12 GB/s, while the
64-bit version goes 16 GB/s. This faster RAM scanning also
explains the increased penalty from incorrect prefetch in Hv3,
which in Table X runs 16% slower than Hv4. The parallel
component of the sort from Amdahl’s law can be estimated as
p = 0.99 in Table IX and 0.98 in Table X.

To analyze weak scaling, we vary the number of cores
c = 1, 2, . . . , 8 and set input size to nc, where n = 2
GB, which produces sorts that range from 2 to 16 GB.
Compared to Table IX, the biggest difference in the new
setup is a 2% improvement in L0 speed at 8 cores, which
reaches 9,035M/sec (i.e. 36.1 GB/s). The overall sort speed
increases slightly, but remains within 1% of the previous
results. Compared to Table X, the 64-bit outcome shows even
less variation, with all numbers staying within 0.7%. To avoid
clutter, we omit these tables. Curve-fitting Gustafson’s law
to the data, the parallel component of the sort comes out to
p = 0.93.

B. Baseline Sorts

For the next group of tests, we use five synthetic 8-GB
datasets: uniformly random integers (D1); a sorted sequence of
uniform numbers, where every 7-th key is set to UINT MAX
(D2); uniformly random keys, each repeated U times, where
U is drawn from the Zipf distribution with α = 1, β = 7,
then shuffled randomly (D3); integer keys drawn from a
normal distribution with mean UINT32 MAX/2 and standard
deviation equal to 1/3 of the mean (D4); and uniformly random
floats between 0 and FLT MAX (D5). We also use one real-
world dataset, which is an inter-domain out-graph G from
the IRLbot web crawl [24], consisting of 89M nodes and
1.8B edges. We leverage G for two standard applications –
computation of in-degree, which entails sorting 7.2 GB of out-
neighbor adjacency lists, and graph inversion, which requires
either a stable key-value sort on 14.4 GB of (dest, src) pairs,
where each node ID is 32-bit, or an unstable 64-bit key sort.

Table XI shows the speed on 32-bit keys, where we partition
prior work into four groups (top to bottom) – MSD (most
significant digit) radix sort, LSD (least significant digit) radix
sort, quick/sample sort, and merge sort – each in chronological
order of publication. When a method relies on SIMD, we
specify after its name the vector width (i.e., 128, 256, or 512)
used in the benchmark. We highlight the fastest prior approach
in each column with a gray background, run Typhoon with 16-
KB slices (i.e., 12 MB of aux memory per thread), and show
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TABLE XI
SINGLE-CORE SPEED (M/SEC) ON 32-BIT KEYS

Sort D1 D2 D3 D4 D5 G
Gorset [19] 37 52 51 38 42 44
Polychroniou [31] 34 34 32 32 30 –
Ska [35] 40 96 81 51 84 84
Regions [28] 77 58 93 79 96 85
Voracious [30] 79 80 86 81 84 86
Vortex [20] 150 122 128 135 147 127
IPS2Ra [7] 46 107 121 58 101 127
Dovetail [15] 103 99 94 103 102 99
Reinald [32] 96 100 103 101 100 111
Fast-Radix [37] 69 68 71 70 70 72
DFR [36] 76 69 97 67 79 129
pdqsort [29] 34 55 80 34 53 56
Blacher-256 [10] 133 109 117 133 133 131
IPS4o [7] 36 50 51 36 50 55
Highway-512 [18] 115 128 176 115 115 140
Intel-512 [23] 149 158 48 154 153 78
Origami-512 [5] 131 131 131 131 131 131
Typhoon-16KB 257 259 261 260 259 261

1.7× 1.6× 1.5× 1.7× 1.7× 1.9×

the speed-up factor against the best alternative in the bottom
row. Dashes indicate inability to finish the sort (e.g., crashing,
failing sortedness checks, unsupported input size).

There are three types of methods that stand out – the Vortex
MSD [20], an SIMD quick sort from Blacher [10], with more
general implementations at Google [18] and Intel [23], and the
Origami SIMD merge sort [5]. All three perform quite well,
delivering over 130M/sec on at least one dataset, but there
is no clear winner between them. Origami posts remarkably
stable speed in all columns, but it is neither the fastest nor in-
place. Vortex wins on uniform data, but drops 19% between D1

and D2. Blacher/Highway have similar levels of fluctuation,
while Intel takes a 68% dive on D3 and 48% on G. In contrast,
Typhoon wins in all six columns, runs in-place, and posts a 50-
90% improvement over the best prior methods. Furthermore,
its speed on non-uniform data is never slower than on D1,
while the deviation between the max and the min is only
1.9%. This was expected from its robustness against key non-
uniformity.

Among the 17 prior methods in Table XI, only six support
multi-threading. Their all-core speed is displayed in Table XII.
Across related work, Origami wins in the uniform case by a
large margin and delivers the best result in three additional
columns; however, it needs double the RAM of Typhoon and
uses power-hungry AVX-512 intrinsics to achieve this level of
performance. With just SSE, its speed drops by 1.6×, while
the other AVX-512 methods in Table XI sustain even more
damage (e.g., Highway is 2.8× slower with SSE than with
AVX-512). In contrast, Typhoon in Table XII operates mostly
using scalar instructions and still almost doubles the speed of
the best prior work in all six cases. This outcome is even faster
than we saw previously in Table VIII because of larger input
(i.e., 8 GB instead of 1 GB), where longer runs of full slices
in each bucket lead to higher efficiency.

For the next experiment, we use 64-bit items composed of
32-bit key-value pairs. Some of the prior work does not have

TABLE XII
ALL-CORE SPEED (M/SEC) ON 32-BIT KEYS

Sort D1 D2 D3 D4 D5 G
Regions [28] 689 667 689 700 675 761
Voracious [30] 581 906 566 597 587 688
IPS2Ra [7] 526 967 1049 650 777 816
Dovetail [15] 312 350 257 339 326 267
IPS4o [7] 327 432 450 327 417 458
Origami-512 [5] 919 927 930 939 946 931
Typhoon-16KB 1,879 1,879 1,920 1,891 1,915 1,912

2.0× 1.9× 1.8× 2.0× 2.0× 2.1×

TABLE XIII
SINGLE-CORE SPEED (M/SEC) ON 64-BIT KEY-VALUE PAIRS

Sort D1 D2 D3 D4 D5 G
Gorset [19] 21 46 21 24 21 20
Polychroniou [31] 27 20 11 25 14 –
Ska [35] 36 83 68 38 67 32
Raduls2 [25] 82 65 56 92 58 53
Regions [28] 49 45 70 56 72 29
Voracious [30] 57 54 59 53 53 56
Vortex [20] 120 102 68 117 63 57
IPS2Ra [7] 45 96 104 45 88 38
Dovetail [15] 67 67 67 67 68 62
Reinald [32] 39 39 39 38 40 37
Fast-Radix [37] 40 40 43 40 43 38
DFR [36] 49 47 – 48 33 –
pdqsort [29] 31 48 32 31 31 30
IPS4o [7] 31 38 41 30 39 27
Highway-512 [18] 57 57 58 57 57 54
Intel-512 [23] 76 73 75 76 76 69
Origami-512 [5] 55 55 55 55 55 53
Typhoon-16KB 184 188 193 186 202 192

1.5× 1.8× 1.9× 1.6× 2.3× 2.8×

a separate provision for this case, requiring that such items
be treated as monolithic 64-bit keys. Reasons include faster
performance (e.g., in comparison-based SIMD methods) and
ability to use unstable sorts to achieve common database tasks
that would otherwise need stability (e.g., graph inversion). In
this comparison, we omit Blacher [10] since it only works
with 32-bit keys and add another MSD method Raduls2 [25],
which was absent previously as it requires key length to be a
multiple of 8 bytes.

Table XIII shows the single-threaded outcome. First notice
that, compared to 32-bit cases in Table XI, the three AVX-
512 methods take a huge performance hit, sinking from 115-
149M/sec to 55-76M/sec. Second, even though Vortex delivers
excellent results for the uniform case D1 (i.e., 120M/sec), it
degrades to ∼65M/sec on D3 and D5. Graph inversion on
G also gets derailed, achieving only 57M/sec, i.e., a 2.1×
reduction compared to the uniform case. This highlights our
earlier point that real-world datasets are often skewed in a way
that can heavily destabilize performance of MSD methods. In
another similar case, Raduls2 suffers a 1.5× speed drop on G.
Things get worse on adversarial inputs, where Vortex slows
down to a measly 13M/sec. In contrast, Typhoon in Table XIII
shows consistent performance across the columns, delivering
a speed-up that ranges from 1.5× on D1 to 2.8× on G.

Scalability to multiple threads is shown in Table XIV.
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TABLE XIV
ALL-CORE SPEED (M/SEC) ON 64-BIT KEY-VALUE PAIRS

Sort D1 D2 D3 D4 D5 G
Raduls2 [25] 656 478 394 737 433 491
Regions [28] 365 382 359 351 296 291
Voracious [30] 402 510 397 405 340 298
IPS2Ra [7] 409 737 623 418 466 318
Dovetail [15] 198 206 177 197 197 130
IPS4o [7] 286 366 351 291 341 286
Origami-512 [5] 380 389 395 394 395 392
Typhoon-16KB 986 989 998 986 1,001 997

1.5× 1.3× 1.6× 1.3× 2.1× 2.0×

TABLE XV
SINGLE-CORE L0 SPEED (M/SEC)

Sort 32-bit 64-bit
D1 N1 N2 D1 N1 N2

Gorset [19] 113 128 178 75 90 157
Ska [35] 253 300 224 187 270 206
Raduls2 [25] – – – 462 358 140
Vortex [20] 649 555 160 652 501 155
IPS2Ra [7] 547 504 163 370 341 163
Dovetail [15] 266 224 242 175 166 178
Reinald [32] 383 291 142 227 229 122
Fast-Radix [37] 215 182 93 128 121 74
DFR [36] 227 215 66 160 158 56
Typhoon-16KB 1,183 1,189 1,211 865 1,050 862

Among prior work, Raduls2 wins in three columns, while
IPS2Ra owns the top spot for the remaining cases. As
encountered before, decision between previous methods is
difficult, especially considering that IPS2Ra is in-place, while
Raduls2 is not. However, with the introduction of Typhoon,
this choice becomes simpler – our method reliably, and by a
wide margin, yields the best speed. Its current performance is
stifled by insufficient RAM bandwidth, where linear scaling
of the numbers in Table XIII suggest a peak rate of 184×8
= 1472M/sec, i.e., 1.5× more than shown in Table XIV. Its
auxiliary memory overhead is just 1.2% of the input, which
can dropped to 0.3% using 4-KB slices at the cost of 3-4%
speed reduction.

C. Raw Splitter Speed

To better understand Typhoon’s splitter performance in the
context of prior methods, Table XV benchmarks the available
radix-partitioning implementations using uniform numbers
from dataset D1, uniform numbers repeated back-to-back with
run length 64, which we call dataset N1, and the round-robin
input with skip factor s = 16, which we call N2. The last two
tests are similar to those we performed for Tables IV-V using
S-Typhoon.

In the D1 column, observe that Typhoon’s main algorithm
(i.e., WCv4) defeats all prior methods by a large margin.
Reasons for the slow performance in existing work include the
need for a histogram pass [15], [19], [25], [35], [32], expensive
dynamic bucket expansion [7], [20], [37], [36], and inefficient
interaction with RAM (e.g., lacking write-combine [7], [15],
[19], [32], [35], [37], [36] and/or latency-related bottlenecks
during key swapping [19], [35]).

Algorithm 10: Dataset N2 (LSD order, 32-bit keys)

1 Function Generate(Item *in, int n, int s)
2 d1 = 256/s; d2 = d1 * d1; d3 = d2 * d;
3 for (i = 0; i < n; i++) do
4 i1 = (i / d3) % d1; i2 = (i / d2) % d1;
5 i3 = (i / d1) % d1, i4 = i % d1;
6 in[i] = ((i1*s) ≪ 24) + ((i2*s) ≪ 16) + ((i3*s) ≪ 8) + i4*s;

TABLE XVI
IMPACT OF SKEWED DISTRIBUTIONS (1 GB)

Family Sort D1 Dataset Speed Change
LSD Reinald [32] 113 N2 (32-bit) 36 –68%

Fast-Radix [37] 85 31 –63%
DFR [36] 123 29 –76%
Typhoon-16KB 260 260 0%

MSD Ska [35] 47 N3 (64-bit) 28 –40%
Raduls2 [25] 114 22 –81%
Vortex [20] 147 13 –91%
IPS2Ra [7] 52 28 –46%
Typhoon-16KB 187 198 6%

Quicksort Blacher-256 [10] 153 N4 (32-bit) 56 –76%
Typhoon-16KB 260 289 11%

For N1, some of the prior methods avoid store-to-load
forwarding stalls by using a much slower splitter, while the
faster approaches [20], [25], [32] take a significant (i.e., up to
24%) performance hit. Things get worse in N2, where the
penalty of cache/TLB conflict evictions affects 6 of the 9
methods, even if they do not use write-combine. For example,
Vortex suffers a 4.2× drop, while Raduls2, DFR, and IPS2Ra
slash speed by 3.3×. In contrast, Typhoon remains robust in
both situations, delivering over 1180M/sec on 32-bit items and
860M/sec on 64-bit.

D. Robustness

We next examine the impact of skewed distributions on sort
speed and resilience of the methods against non-uniformity.
We first extend the dataset N2 to implement round-robin in
every byte of the key. For LSD methods, this is shown in
Algorithm 10, which increments the lowest byte by s until
that byte overflows, adds s to the next byte, and restarts the
process from the lowest byte. Applying this input to the three
LSD methods under consideration yields the result in the first
section of Table XVI. Note that this table uses smaller (1-GB)
inputs than before, which yields faster runtimes than in Table
XI. Compared to the uniform case D1, all three methods take
a significant hit, dropping performance 60-75%. In contrast,
Typhoon remains at 260M/sec on both datasets due to the
introduced stagger of tmp buckets in Section III-E.

For MSD methods, we construct a 64-bit sequence N3,
which takes a uniform key x and uses it to produce a batch
of m keys y1, . . . , ym. Batches have an important property
that a) at every level of recursion, they split off one “rogue”
key into some bucket and send the remaining items into
another; and b) the batch size at each level exceeds threshold
T for stopping recursion and switching to another sort. This
guarantees maximum depth of recursion for m−d keys, where
d = ⌈w/b⌉ is the number of levels needed for a w-bit key
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Algorithm 11: Dataset N3

1 Function Generate(Item *in, int n, int T )
2 d = sizeof(KeyType); ▷ depth of recursion
3 for (i = 0; i < n; ) do
4 x = random(0, KEY MAX);
5 for (k = 0; k < T ; k++) do
6 in[i + k] = x ˆ k; ▷ batch stays together
7 for (k = 0; k < d; k++) do
8 mask = 0xFF ≪ (8*k); ▷ flips the k-th byte
9 in[i + T + k] = x ˆ mask; ▷ rogue key

10 i += T + d;

Algorithm 12: Dataset N4

1 Function Generate(Item *in, int n)
2 for (i=0; i < n; i++) do
3 p = random(0, 1);
4 if p < 0.92 then
5 in[i] = n;
6 else if p < 0.94 then
7 in[i] = i * i;
8 else
9 in[i] = n – i;

under b-bit splitting. Furthermore, this construction defeats
sortedness checks that can stop recursion early and prefix
jumping, i.e., detection of a common prefix on all keys in
a bucket and skipping over it. Finally, by setting m to its
minimum value T + d, we can also ensure maximum relative
overhead in scanning 2b buckets to determine which ones
are non-empty compared to the work being done during key
partitioning of size-m buckets.

Algorithm 11 shows how to generate the baseline N3,
which is then randomly shuffled to separate the keys in each
batch from each other. Performance reduction of existing MSD
methods on this dataset is shown in the middle of Table XVI.
While all of them are affected to some degree, none drop
speed more than Vortex, which suffers an 11× slowdown.
This can be explained by a 2.7× increase in recursion depth
(i.e., from 3 to 8) and the tiny threshold T = 32 used in the
method, where scanning 256 buckets at each level to find a
batch of T +d = 40 keys makes the splitter significantly more
expensive. In contrast, Typhoon gains a 6% speed-up on this
dataset since LSD is not sensitive to bucket sparsity.

We round up this discussion with Blacher’s SIMD quicksort
[10], for which dataset N4 in Algorithm 12 produces much
deeper recursion chains than the expected log2 n. This is done
by ensuring that no pivot can be selected in each bucket to
produce load-balanced partitions, which is achieved by mixing
a large number of duplicates with two sequences of unique
keys that grow in opposite directions. Even with protection
against quadratic worst-case scenarios, [10] exhibits a 76%
reduction in speed due to imbalance in partition size, as shown
at the bottom of Table XVI. On the other hand, Typhoon is
not effected by these types of input, which was expected, and
actually delivers an 11% speed-up.

TABLE XVII
MACHINE SPECIFICATIONS FOR IN-PLACE TESTS

Model Year Family RAM GB
Intel Xeon E5-2690 2012 Sandy Bridge (SB) DDR3-1333 256
Intel Xeon E5-2680v2 2013 Ivy Bridge (IB) DDR3-1866 192
Intel Xeon E5-2680v4 2016 Broadwell (BW) DDR4-2400 128
Intel i7-8700K 2017 Coffee Lake (CL) DDR4-3200 64
Intel i5-12600K 2021 Alder Lake (AL) DDR5-6400 32
AMD 7950X 2022 Raphael (Zen4) DDR5-6400 32
AMD 9600X 2024 Granite Ridge (Zen5) DDR5-6400 32

TABLE XVIII
SINGLE-CORE IN-PLACE SPEED (M/SEC) ON 32-BIT KEYS

Sort SB IB BW CL AL Zen4 Zen5
Gorset [19] 25 26 24 48 46 71 73
Polychroniou [31] 20 21 23 35 44 49 53
Ska [35] 40 43 41 84 99 116 120
Regions [28] 53 57 52 89 124 121 142
Vortex [20] 54 56 53 162 178 203 265
IPS2Ra [7] – – 47 90 109 110 121
pdqsort [29] 23 24 24 33 40 45 47
IPS4o [7] – – 22 33 34 46 50
Highway [18] 21 22 42 77 106 149 185
Intel [23] – – 63 118 167 177 240
std::sort 7 7 7 9 10 13 13
Typhoon-16KB 120 129 129 265 328 388 491

2.2× 2.3× 2.0× 1.6× 1.8× 1.9× 1.8×

E. Other Platforms and In-Place Experiments

We next examine performance across seven additional CPU
architectures whose characteristics are shown in Table XVII.
The first three entries are server CPUs that use quad-channel
memory, while the other four are dual-channel desktop chips.
Sandy/Ivy Bridge implement SIMD instruction sets up to
AVX, Broadwell/Coffee/Alder Lake support up to AVX2, and
Zen4/Zen5 allow AVX-512. For each of the configurations,
we leave 5 GB for background processes and fill the rest with
uniform keys. This leads to sort sizes 27-251 GB and requires
methods that can operate in-place.

Only 10 prior implementations satisfy this criterion. Their
performance on 32-bit keys is shown in Table XVIII, where
std::sort is added for reference. Note that we remove Blacher
[10] since its usage of AVX2 gather instructions restricts array
indexes to 4 bytes, which limits the sort to 16 GB. In the
first two columns of Table XVIII, Highway [18] is forced
to use SSE, resulting in worse speed (i.e., 21M/sec) than a
basic implementation [19] of the American Flag Sort [27] in
the first row. This is in contrast to earlier Skylake-X results
(Table XI), where [18] was 3.1× faster. The Intel version [23]
of the same algorithm does not support SSE, while both IPSxx
methods crash on inputs above ∼128 GB. In the end, Vortex
[20] squeaks out a win on Sandy Bridge and Regions [28] on
Ivy Bridge, but Typhoon in the last row manages to more than
double their performance.

Once AVX2 kicks in on Broadwell, SIMD methods become
more competitive in the third column, with Intel climbing to
the top. Vortex mounts a comeback on Coffee/Alder Lake
in the next two columns, but is still 1.6-1.8× slower than
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TABLE XIX
SINGLE-CORE IN-PLACE SPEED (M/SEC) ON 64-BIT KEY-VALUE PAIRS

Sort SB IB BW CL AL Zen4 Zen5
Gorset [19] 16 16 15 32 28 47 48
Polychroniou [31] 14 15 15 27 30 33 34
Ska [35] 31 32 33 66 71 80 79
Regions [28] 36 39 47 74 84 96 99
Vortex [20] 29 31 31 133 175 187 239
IPS2Ra [7] – – 36 77 80 85 88
pdqsort [29] 17 19 20 29 41 47 47
IPS4o [7] – – 19 31 34 44 47
Highway [18] 10 11 18 35 46 92 123
Intel [23] – – 22 43 60 89 135
std::sort 7 7 7 9 10 13 13
Typhoon-16KB 76 79 83 197 233 321 404

2.1× 2.0× 1.8× 1.5× 1.3× 1.7× 1.7×

Typhoon. With a jolt from AVX-512 in the last two columns,
Intel almost catches up to Vortex; however, both methods
are still roughly half of Typhoon’s 388M/sec on Zen4 and
491M/sec on Zen5. Similar observations hold for 64-bit key-
value pairs in Table XIX. Outside of Vortex, which uses up
to 1 GB of extra memory and exhibits high volatility on non-
uniform keys, the other prior methods are at least 2.6× slower
on Coffee Lake, 3.3× on Zen4, and 3× on Zen5.

Overall, results show that across a range of desktop/server
generations, Intel/AMD CPU offerings, and SSE/AVX2/AVX-
512 instruction sets, Typhoon delivers the best performance,
consistently taking the top spot in every comparison and
finishing 32-bit sorts 38× faster than std::sort on AMD Zen5.
Furthermore, it is highly skew-resilient, as well as the only
method in this comparison that is both stable and in-place.
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VII. CONCLUSION

We developed a novel LSD sort called Typhoon and demon-
strated that it worked remarkably fast across a variety of CPU
architectures, memory configurations, single/multi-core sce-
narios, input skew, and array sizes. Not only that, but Typhoon
is also stable, in-place, and distribution-insensitive. Future
work involves handling longer keys and testing Typhoon in
big-data frameworks/databases.
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