Modeling Randomized Data Streams in Caching, Data Processing, and Crawling Applications

Sarker Tanzir Ahmed and Dmitri Loguinov

Internet Research Lab Department of Computer Science and Engineering Texas A&M University

April 29, 2015

Introduction

- Analysis of 1D Streams
 - LRU Performance
 - MapReduce Disk I/O
- Analysis of 2D Streams
 - Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Introduction

- Key-value input pairs are common to MapReduce and many other types of applications
- Input is typically a finite length stream where the keys come off a finite set
- Experience of the processing application (e.g., RAM/disk usage, processing speed) depends largely on the properties of the stream (i.e. key frequency)
- Example: Least Recently Used (LRU) cache's hit rate is governed by popularities of items

Introduction (2)

- MapReduce applications' combined output (the result of merging duplicate keys in a window of pairs)
 - Depends on the frequency properties of the keys
 - Usually, the higher the frequencies of each item, the smaller the size of the combined output
 - Existing literature is missing accurate model
 - Common to assume linear ratio between input and output

- Introduction
- Analysis of 1D Streams
 - LRU Performance
 - MapReduce Disk I/O
- Analysis of 2D Streams
 - Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Analysis of 1D Streams

- Define one-dimensional (1D) streams as discrete-time processes $\{Y_t\}_{t\geq 1}$, where each item Y_t is observed at t
 - Y_t is unique (i.e., previously unseen) with probability p(t) (also called *uniqueness probability*), and duplicate otherwise
 - Input is a stream of length T
 - Keys belong to a finite set V of size n
 - Each key v is repeated $\mathcal{I}(v)$ times (random variable \mathcal{I} also denotes frequency distribution of v's)
 - The seen set at t is denoted by S_t , and the unseen set by U_t
- We also assume uniform shuffle of the items across the stream
 - Independent Reference Model (IRM)

Analysis of 1D Streams (2)

• <u>Theorem 1:</u> The probability of seeing a unique (previously unseen) key at t (using $\epsilon_t = t/T$) is:

Analysis of 1D Streams (3)

• Theorem 2: The size of the seen set at t after using $|A| = \phi(A)$ is:

$$E[\phi(S_t)] = nE[1 - (1 - \epsilon_t)^{\mathcal{I}}]$$

1D Streams - Applications

- We consider two applications:
 - Miss rate of LRU cache
 - Disk I/O of MapReduce
- For verification, we use the following two workloads in addition to simulated input:
 - IRLbot host graph (640M nodes, 6.8B edges, 55 GB)
 - WebBase web graph (635M nodes, 4.2B edges, 35 GB)

LRU Cache Miss Rate

• <u>Theorem 3</u>: The miss rate of a LRU cache of size *C* is: $m(t) = \frac{1}{E[\mathcal{I}]} E[\mathcal{I}(1 - \epsilon_{\min(t,\tau)})^{\mathcal{I}-1}].$

Here, the value τ is obtained as $f^{1}(C)$, where $f(t)=E[\phi(S_{t})]$

10

1D Streams - MapReduce Disk I/O

- Input is a stream of length T
 - Entries are key-value pairs, each K+D bytes
 - At time step *t*, one pair is processed by MapReduce
- Disk I/O consists of:
 - Input with *T* pairs (some duplicate)
 - Output with n unique pairs
 - Sorted runs of size L
- Total disk overhead is W = (K+D)(T+n+2L)
 - Our goal is to derive L
- RAM can hold m pairs in a merge-sort MapReduce
 - Then, $k = \lceil T/m \rceil$ is the number of sorted runs, where each contains $E[|S_m|]$ pairs on average

MapReduce Disk I/O (2)

• <u>Theorem 4</u>: Disk spill *L* of a merge-sort MapReduce is: $L = nk(K + D) \left(1 - E\left[(1 - \epsilon_m)^{\mathcal{I}}\right]\right),$ And, the total disk I/O is thus: $W = n(K + D) \left\{E[\mathcal{I}] + 1 + 2k \left(1 - E\left[(1 - \epsilon_m)^{\mathcal{I}}\right]\right)\right\}.$

- Introduction
- Analysis of 1D Streams
 - LRU Performance
 - MapReduce Disk I/O
- Analysis of 2D Streams
 - Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Analysis of 2D Streams

- Two-dimensional (2D) streams are mainly applicable in analyzing graph traversal algorithms
- Consider a simple directed random graph G(V,E)
 - V and E are the set of nodes and edges, respectively. Let |E| = T and the in/out-deg sequences be $\{\mathcal{I}(v)\}_{v \in V}$ and $\{\mathcal{O}(v)\}_{v \in V}$
- Define the stream of edges of this graph seen by a crawler as a 2D discrete-time process $\{(X_t, Y_t)\}_{t=1}^T$
 - Here X_t is the crawled node and Y_t the destination node
- Define the crawled set as $C_t = \bigcup_{i=1}^t \{X_i\}$, the seen set as $S_t = \bigcup_{i=1}^t \{Y_i\}$, and the frontier as $F_t = S_t \setminus C_t$
- The goal is to analyze the stream of Y_t 's, and the sets S_t and F_t as they change over crawl time t 14

Analysis of 2D Streams (2)

Fig. Verification of p(t) under BFS crawl on graph ($E[\mathcal{I}]=10, n=10K$).

Fig. Verification of the seen set size in BFS ($E[\mathcal{I}]=10$, n=10K). ¹⁵

Seen Set Properties

<u>Theorem 5:</u> The average in/out-degree of the nodes in $\bar{\mathcal{I}}(S_t) \approx \frac{E[\mathcal{I} \cdot (1 - (1 - \epsilon_t)^{\mathcal{I}})]}{1 - E[(1 - \epsilon_t)^{\mathcal{I}}]},$ $\bar{\mathcal{O}}(S_t) \approx \frac{E[\mathcal{O} \cdot (1 - (1 - \epsilon_t)^{\mathcal{I}})]}{1 - E[(1 - \epsilon_t)^{\mathcal{I}}]}.$ the seen set: 8 simulation simulation model model 6 O(S₁)/E[O] $(S_{t})/E[I]$ 0, 0^L 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 link fraction t/T link fraction t/T Fig: Verification of the average in/out-degree 16 of the seen set

Destination Node Properties

- <u>Theorem 6:</u> The in-degree distribution of the Y_t is : $P(\mathcal{I}(Y_t) = k) = \frac{kP(\mathcal{I} = k)}{E[\mathcal{I}]}.$
 - Helps obtain an unbiased estimator of $P(\mathcal{I}=k)$ after observing m edges: $\frac{\sum_{t=1}^{m} \mathbf{1}_{\mathcal{I}(Y_t)=k}}{k \sum_{t=1}^{m} 1/\mathcal{I}(Y_t)}$.
- <u>Theorem 7:</u> The average in/out-degree of Y_t is independent of time and equals:

$$E[\mathcal{I}(Y_t)] = \frac{E[\mathcal{I}^2]}{E[\mathcal{I}]}, \qquad E[\mathcal{O}(Y_t)] = \frac{E[\mathcal{I}\mathcal{O}]}{E[\mathcal{I}]},$$

while that of Y_t , conditioned on its being unseen is:
$$E[\mathcal{I}(Y_t)|Y_t \in U_{t-1}] = \frac{E[\mathcal{I}^2 \cdot (1 - \epsilon_t)^{\mathcal{I}-1}]}{E[\mathcal{I}(1 - \epsilon_t)^{\mathcal{I}-1}]},$$
$$E[\mathcal{O}(Y_t)|Y_t \in U_{t-1}] = \frac{E[\mathcal{I}\mathcal{O} \cdot (1 - \epsilon_t)^{\mathcal{I}-1}]}{E[\mathcal{I}(1 - \epsilon_t)^{\mathcal{I}-1}]}.$$

17

Destination Node Properties -

Verification

Fig: Verification of the average in-degree of all Y_t 's and the unseen Y_t 's, respectively

Properties of the Frontier

- A crawling method's efficiency is a function of the frontier size
 - The more the size, the more the load on duplicate-elimination, prioritization algorithms
- <u>Theorem 8:</u> The following iterative relation computes the size of the frontier (let $\phi(A)=|A|$):

 $E[\phi(F_t)] \approx E[\phi(F_{t-1})] + p(t-1) - \frac{1}{E[\mathcal{O}(X_{t-1})]}$

- We consider two crawling methods to examine their frontier sizes:
 - Breads First Search (BFS)
 - Frontier RaNdomization (FRN), where any node from the frontier is picked randomly for crawling

Properties of the Frontier (2)

Theorem 9: For BFS, the out-degree of the crawled node is given by: $E[\mathcal{IO}(1-\epsilon_t)^{\mathcal{I}-1}]$ $E[\mathcal{O}(X_{t+}$

$$E[\mathcal{O}(F_t)] = \frac{E[\mathcal{O}(\mathcal{I} - \epsilon_t)]}{E[\mathcal{I}(1 - \epsilon_t)^{\mathcal{I} - 1}]}$$

while that for FRN is simply: $E[\phi(F_t)] = E[\mathcal{O}(F_t)]/E[\mathcal{O}].$

- Introduction
- Analysis of 1D Streams
 - LRU Performance
 - MapReduce Disk I/O
- Analysis of 2D Streams
 - Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Conclusion

- Presented accurate analytic models of performance based on workload characterization
- Proposed a common modeling framework for a number of apparently unrelated fields (i.e., caching, MapReduce, crawl modeling)

Thank you! Questions?