Modeling Randomized Data Streams in Caching, Data Processing, and Crawling Applications

Sarker Tanzir Ahmed and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering Texas A\&M University
April 29, 2015

Agenda

- Introduction
- Analysis of 1D Streams
- LRU Performance
- MapReduce Disk I/O
- Analysis of 2D Streams
- Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Introduction

- Key-value input pairs are common to MapReduce and many other types of applications
- Input is typically a finite length stream where the keys come off a finite set
- Experience of the processing application (e.g., RAM/disk usage, processing speed) depends largely on the properties of the stream (i.e. key frequency)
- Example: Least Recently Used (LRU) cache's hit rate is governed by popularities of items

Introduction (2)

- MapReduce applications' combined output (the result of merging duplicate keys in a window of pairs)
- Depends on the frequency properties of the keys
- Usually, the higher the frequencies of each item, the smaller the size of the combined output
- Existing literature is missing accurate model
- Common to assume linear ratio between input and output

Agenda

- Introduction
- Analysis of 1D Streams
- LRU Performance
- MapReduce Disk I/O
- Analysis of 2D Streams
- Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Analysis of 1D Streams

- Define one-dimensional (1D) streams as discrete-time processes $\left\{Y_{t}\right\}_{t \geq 1}$, where each item Y_{t} is observed at t
- Y_{t} is unique (i.e., previously unseen) with probability $p(t)$ (also called uniqueness probability), and duplicate otherwise
- Input is a stream of length T
- Keys belong to a finite set V of size n
- Each key v is repeated $\mathcal{I}(v)$ times (random variable \mathcal{I} also denotes frequency distribution of v 's)
- The seen set at t is denoted by S_{t}, and the unseen set by U_{t}
- We also assume uniform shuffle of the items across the stream
- Independent Reference Model (IRM)

Analysis of 1D Streams (2)

- Theorem 1: The probability of seeing a unique (previously unseen) key at t (using $\epsilon_{t}=t / T$) is:

$$
p(t)=\frac{1}{E[\mathcal{I}]} E\left[\mathcal{I} \cdot\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]
$$

(a) binomial \mathcal{I}

(b) $\operatorname{Zipf} \mathcal{I}(\alpha=1.2)$

Fig: Verification of $p(t)$ under $E[\mathcal{I}]=10, n=10 \mathrm{~K}$.

Analysis of 10 Streams (3)

- Theorem 2: The size of the seen set at t after using $|A|=\phi(A)$ is:

$$
E\left[\phi\left(S_{t}\right)\right]=n E\left[1-\left(1-\epsilon_{t}\right)^{\mathcal{I}}\right]
$$

(a) binomial \mathcal{I}

(b) $\operatorname{Zipf} \mathcal{I}(\alpha=1.2)$

Fig: Verification of the size of $S_{t}(E[\mathcal{I}]=10, n=10 \mathrm{~K})$.

1D Streams - Applications

- We consider two applications:
- Miss rate of LRU cache
- Disk I/O of MapReduce
- For verification, we use the following two workloads in addition to simulated input:
- IRLbot host graph (640M nodes, 6.8B edges, 55 GB)
- WebBase web graph (635M nodes, 4.2B edges, 35 GB)

LRU Cache Miss Rate

- Theorem 3: The miss rate of a LRU cache of size C is:

$$
m(t)=\frac{1}{E[\mathcal{I}]} E\left[\mathcal{I}\left(1-\epsilon_{\min (t, \tau)}\right)^{\mathcal{I}-1}\right]
$$

Here, the value τ is obtained as $f^{1}(C)$, where $f(t)=E\left[\phi\left(S_{t}\right)\right]$

(a) IRLbot host graph

(b) WebBase web graph

Fig. Verification of LRU miss rate in real graphs.

1D Streams - MapReduce Disk I/O

- Input is a stream of length T
- Entries are key-value pairs, each $K+D$ bytes
- At time step t, one pair is processed by MapReduce
- Disk I/O consists of:
- Input with T pairs (some duplicate)
- Output with n unique pairs
- Sorted runs of size L
- Total disk overhead is $W=(K+D)(T+n+2 L)$
- Our goal is to derive L
- RAM can hold m pairs in a merge-sort MapReduce
- Then, $k=\lceil T / m\rceil$ is the number of sorted runs, where each contains $E\left[\left|S_{m}\right|\right]$ pairs on average

MapReduce Disk $/ / O_{\text {(2) }}$

- Theorem 4: Disk spill L of a merge-sort MapReduce is:

$$
L=n k(K+D)\left(1-E\left[\left(1-\epsilon_{m}\right)^{\mathcal{I}}\right]\right),
$$

And, the total disk I/O is thus:

$$
W=n(K+D)\left\{E[\mathcal{I}]+1+2 k\left(1-E\left[\left(1-\epsilon_{m}\right)^{\mathcal{I}}\right]\right)\right\} .
$$

(a) IRLbot host graph

(b) WebBase web graph

Fig: Verification of Disk I/O of a merge-sort MapReduce.

Agenda

- Introduction
- Analysis of 1D Streams
- LRU Performance
- MapReduce Disk I/O
- Analysis of 2D Streams
- Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Analysis of 2D Streams

- Two-dimensional (2D) streams are mainly applicable in analyzing graph traversal algorithms
- Consider a simple directed random graph $G(V, E)$
- V and E are the set of nodes and edges, respectively. Let $|E|$ $=T$ and the in/out-deg sequences be $\{\mathcal{I}(v)\}_{v \in V}$ and $\{\mathcal{O}(v)\}_{v \in V}$
- Define the stream of edges of this graph seen by a crawler as a 2D discrete-time process $\left\{\left(X_{t}, Y_{t}\right)\right\}^{T}{ }_{t=1}$
- Here X_{t} is the crawled node and Y_{t} the destination node
- Define the crawled set as $C_{t}=\bigcup_{i=1}^{t}\left\{X_{i}\right\}$, the seen set as $S_{t}=\cup_{i=1}^{t}\left\{Y_{i}\right\}$, and the frontier as $F_{t}=S_{t} \backslash C_{t}$
- The goal is to analyze the stream of Y_{t}^{\prime} 's, and the sets S_{t} and F_{t} as they change over crawl time t

Analysis of 2D Streams (2)

(a) binomial \mathcal{I}

(b) $\operatorname{Zipf} \mathcal{I}(\alpha=1.5)$

Fig. Verification of $p(t)$ under BFS crawl on graph $(E[\mathcal{I}]=10, n=10 \mathrm{~K})$.

(a) binomial \mathcal{I}

(b) $\operatorname{Zipf} \mathcal{I}(\alpha=1.2)$

Fig. Verification of the seen set size in BFS $(E[\mathcal{I}]=10, n=10 \mathrm{~K})$.

Seen Set Properties

- Theorem 5: The average in/out-degree of the nodes in the seen set:

$$
\begin{aligned}
& \overline{\mathcal{I}}\left(S_{t}\right) \approx \frac{E\left[\mathcal{I} \cdot\left(1-\left(1-\epsilon_{t}\right)^{\mathcal{I}}\right)\right]}{1-E\left[\left(1-\epsilon_{t}\right)^{\mathcal{I}}\right]} \\
& \overline{\mathcal{O}}\left(S_{t}\right) \approx \frac{E\left[\mathcal{O} \cdot\left(1-\left(1-\epsilon_{t}\right)^{\mathcal{I}}\right)\right]}{1-E\left[\left(1-\epsilon_{t}\right)^{\mathcal{I}}\right]}
\end{aligned}
$$

Fig: Verification of the average in/out-degree of the seen set

Destination Node Properties

- Theorem 6: The in-degree distribution of the Y_{t} is :

$$
P\left(\mathcal{I}\left(Y_{t}\right)=k\right)=\frac{k P(\mathcal{I}=k)}{E[\mathcal{I}]} .
$$

- Helps obtain an unbiased estimator

$$
\frac{\sum_{t=1}^{m} \mathbf{1}_{\mathcal{I}\left(Y_{t}\right)=k}}{k \sum_{t=1}^{m} 1 / \mathcal{I}\left(Y_{t}\right)}
$$

- Theorem 7: The average in/out-degree of Y_{t} is independent of time and equals:

$$
E\left[\mathcal{I}\left(Y_{t}\right)\right]=\frac{E\left[\mathcal{I}^{2}\right]}{E[\mathcal{I}]}, \quad E\left[\mathcal{O}\left(Y_{t}\right)\right]=\frac{E[\mathcal{I} \mathcal{O}]}{E[\mathcal{I}]}
$$

while that of Y_{t}, conditioned on its being unseen is:

$$
\begin{aligned}
E\left[\mathcal{I}\left(Y_{t}\right) \mid Y_{t} \in U_{t-1}\right] & =\frac{E\left[\mathcal{I}^{2} \cdot\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]}{E\left[\mathcal{I}\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]} \\
E\left[\mathcal{O}\left(Y_{t}\right) \mid Y_{t} \in U_{t-1}\right] & =\frac{E\left[\mathcal{I} \mathcal{O} \cdot\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]}{E\left[\mathcal{I}\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]}
\end{aligned}
$$

Destination Node Properties ：
 Verification

（a）in－degree of Y_{t}（normalized）

（b）in－degree of unseen Y_{t}

Fig：Verification of the average in－degree of all Y_{t}^{\prime} s and the unseen Y_{t}＇s，respectively

Properties of the Frontier

- A crawling method's efficiency is a function of the frontier size
- The more the size, the more the load on duplicate-elimination, prioritization algorithms
- Theorem 8: The following iterative relation computes the size of the frontier (let $\phi(A)=|A|)$:

$$
E\left[\phi\left(F_{t}\right)\right] \approx E\left[\phi\left(F_{t-1}\right)\right]+p(t-1)-\frac{1}{E\left[\mathcal{O}\left(X_{t-1}\right)\right]}
$$

- We consider two crawling methods to examine their frontier sizes:
- Breads First Search (BFS)
- Frontier RaNdomization (FRN), where any node from the frontier is picked randomly for crawling

Properties of the Frontier (2)

- Theorem 9: For BFS, the out-degree of the crawled node is given by:

$$
E\left[\mathcal{O}\left(X_{t+E\left[\mathcal{O}\left(F_{t}\right)\right]}\right)\right]=\frac{E\left[\mathcal{I} \mathcal{O}\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]}{E\left[\mathcal{I}\left(1-\epsilon_{t}\right)^{\mathcal{I}-1}\right]}
$$

while that for FRN is simply: $E\left[\phi\left(F_{t}\right)\right]=E\left[\mathcal{O}\left(F_{t}\right)\right] / E[\mathcal{O}]$.

(a) BFS
(b) FRN

Fig: Verification of the frontier size with $E[\mathcal{I}]=10$ and $n=10 \mathrm{~K} .20$

Agenda

- Introduction
- Analysis of 1D Streams
- LRU Performance
- MapReduce Disk I/O
- Analysis of 2D Streams
- Properties of the Seen Set, Discovered Nodes, and the Frontier
- Conclusion

Conclusion

- Presented accurate analytic models of performance based on workload characterization
- Proposed a common modeling framework for a number of apparently unrelated fields (i.e., caching, MapReduce, crawl modeling)

Thank you! Questions?

