Towards Faster External-Memory Graph Computing on Small Neighborhoods

Di Xiao, Yi Cui, and Dmitri Loguinov

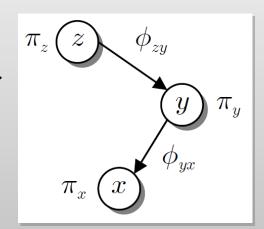
Internet Research Lab (IRL)
Department of Computer Science and Engineering
Texas A&M University, College Station, TX, USA 77843

- Introduction
- Taxonomy
- Decomposable Wedge Computing (DWC)
- Experiments

- Our focus is on applications that operate on largescale graphs
 - Datasets that do not fit in RAM and require external-memory (disk-based) algorithms
 - Used in such fields as information retrieval, data analytics, social networks, databases, recommendation systems
- Assume G = (V, E) is a graph stored on disk
 - Consists of n nodes and m edges
 - Depending on the application, the graph may be weighted

- Computation can often be abstracted as applying some function f to node/edge weights within close vicinity of each node
- Classical problems use only 1st neighborhoods
 - Information flows between directly-connected nodes
 - Can be reduced to scans over adjacency lists in G
- Examples:
 - Graph inversion and PageRank
- This can be solved efficiently by MapReduce
 - Each iteration has linear cost in the number of edges m

- More complex computation uses 2nd neighborhoods
 - Define a wedge P_{xyz} to be a simple path of length 2 that ends at x, including all relevant weights
 - Let wedge neighborhood P_x be a set of all wedges at x
 - Then, wedge computing is a process that evaluates $f(P_x)$ for all $x \in V$



- Examples
 - Supporter-based ranking: count unique nodes at distance 2 from each node along in-edges
 - Motif discovery: enumerate all triangles (3-cycles) or quandrangles (4-cycles)

- Similarity ranking, sparse matrix-matrix multiplication, etc.
- Main caveat is that P_x is not available while scanning G
 - Worse yet, P_x is orders of magnitude larger than degree of x
 - IRLbot domain out-graph: 1.8B edges and 3.1T wedges
- Classical solutions (MapReduce, graph libraries, database joins) use streaming/sequential I/O
 - In the worst case, require sorting all T_n wedges on disk, where T_n can be as high as m^2
 - Supporter count on 7-GB IRLbot graph: prior work executes between 31 and 328 TB of I/O

- Alternatively, sets P_x can be built using random access
 - This requires m seeks and loading of $m+T_n$ nodes from disk
 - For the IRLbot domain graph: 1.8B seeks, 12 TB of I/O
 - With spinning disks, this results in ~6 years spent in seeking
 - With SSDs, the seek cost is much smaller, but 12 TB of I/O is still relatively expensive

Our goals

- Examine how to solve wedge-computing problems with better asymptotic I/O cost than the existing methods
- Do not assume that seeks are fast and keep the solution general, i.e., applicable to non-SSD drives

- Introduction
- Taxonomy
- Decomposable Wedge Computing (DWC)
- Experiments

Taxonomy

- We partition wedge computing into 3 groups
 - Category I: admits 2D graph decomposition
 - Category II: allows 1D graph decomposition
 - Category III: no decomposition
- Category I (triangles)
 - Has efficient solutions already
- Category II (4-cycles, similarity, matrix multiplication)
 - Open problem that we tackle here
- Category III (4-cliques)
 - Left for future work

- Introduction
- Taxonomy
- Decomposable Wedge Computing (DWC)
- Experiments

DWC

- We create two 1D partitioning schemes that allow I/Oefficient processing of wedges
 - DWC₁ uses a baseline approach
 - DWC₂ is a more sophisticated method
- The paper provides details and models I/O
 - Assume M is RAM size
 - DWC₁ has I/O cost proportional to m^2/M
 - DWC₂ is linear if the expected product of in/out degree stays bounded as $n{\to}\infty$
- Two flavors of each method
 - DWC₁-A / DWC₂-A partition on x
 - DWC_1 -B / DWC_2 -B do the same on z

- Introduction
- Taxonomy
- Decomposable Wedge Computing (DWC)
- Experiments

Experiments

- Run supporter ranking algorithm
 - Count unique nodes at distance 2, excluding direct neighbors
 - 8-core Intel Skylake-X CPU with M = 8 GB of RAM
 - 160TB RAID-50 system with 24 magnetic drives

Name	Graph	Nodes n	Edges m	Degree	Size (GB)	Wedges $T_n = \sum_i X_i Y_i$
\mathcal{D}_1	ClueWeb-domain	30,558,375	415,167,456	13.6	1.7	4,240,567,641,185
\mathcal{D}_2	ClueWeb-host	$110,\!675,\!107$	1,064,508,293	9.6	4.5	1,404,873,157,927
\mathcal{D}_3	ClueWeb-page	$2,\!570,\!747,\!470$	49,902,497,310	19.4	199.0	2,889,895,321,002
\mathcal{D}_4	IRLbot-domain	86,534,418	1,799,516,827	20.8	7.1	3,073,393,262,407
\mathcal{D}_5	IRLbot-host	641,982,060	6,752,615,553	10.5	27.9	2,704,210,948,405
\mathcal{D}_6	IRLbot-page	4,051,690,819	238,194,440,791	58.8	916.2	79,864,490,755,128

Six web graphs

114x RAM

- From 1.7 GB (415M edges) to 916 GB (238B edges)
- Wedge count varies from 1.4T to 80T
- Main case of interest is \mathcal{D}_6

Experiments

Shaded cells = unable to finish in 3 weeks (result extrapolated)

I/O in TB:

Method	\mathcal{D}_1	\mathcal{D}_2	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5	\mathcal{D}_6
Hadoop	564	155	338	328	315	9,399
STXXL	237	75	159	170	149	4,974
GraphChi	47	17	29	31	27	808
Rstream	62	21	44	45	41	1,165
$\overline{\text{DWC}_2\text{-A}}$	0.002	0.004	2.5	0.007	0.06	28
DWC_2 -B	0.002	0.004	1.9	0.007	0.08	18

- Hadoop fails on all 6 datasets (155TB to 9.4PB)
- STXXL finishes the sparsest graph \mathcal{D}_2 using 75TB, but does not complete any of the other ones
- GraphChi/Rstream are successful in \mathcal{D}_1 - \mathcal{D}_5 with 17-62TB, but stall on \mathcal{D}_6 (808TB – 1.1PB)
- DWC₂-B works well in all cases
 - For graphs that fit in RAM, it uses > 4000x less I/O
 - On those that do not (\mathcal{D}_3 , \mathcal{D}_5 , \mathcal{D}_6), it needs 15-337x less I/O $_{14}$

Experiments

Runtime (days):

Method	\mathcal{D}_1	\mathcal{D}_2	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5	\mathcal{D}_6
Hadoop	115	34	77	83	72	2,437
STXXL	41.4	11.6	26.7	28.7	24.8	1,093
GraphChi	16.6	4.8	9.4	9.9	8.8	259
Rstream	16.5	4.9	10.2	10.8	9.5	281
DWC ₂ -A	0.20	0.17	0.24	0.28	0.20	2.2
DWC_2 -B	0.08	0.07	0.15	0.11	0.09	1.3

- Hadoop is projected to take between a month and 6.7 years
- STXXL 11 days to 3 years
- GraphChi/Rstream between 5 days and 9 months
- DWC₂-B compared to the best prior work
 - For graphs that fit in RAM (\mathcal{D}_1 , \mathcal{D}_2 , \mathcal{D}_4): 68-206x faster
 - For medium scale datasets (\mathcal{D}_3 , \mathcal{D}_5): 62-97x faster
 - For \mathcal{D}_6 , 199x faster