
Maximizing Reverse k-Nearest Neighbors
for Trajectories

Tamjid Al Rahat, Arif Arman, and Mohammed Eunus Ali

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

{tamjid, arman}@cse.uiu.ac.bd, eunus@cse.buet.ac.bd

Abstract. In this paper, we address a popular query involving trajec-
tories, namely, the Maximizing Reverse k-Nearest Neighbors for Trajec-
tories (MaxRkNNT) query. Given a set of existing facility trajectories
(e.g., bus routes), a set of user trajectories (e.g., daily commuting routes
of users) and a set of query facility trajectories (e.g., proposed new bus
routes), the MaxRkNNT query finds the proposed facility trajectory that
maximizes the cardinality of reverse k-Nearest Neighbors (NNs) set for
the query trajectories. A major challenge in solving this problem is to
deal with complex computation of nearest neighbors (or similarities) with
respect to multi-point queries and data objects. To address this problem,
we first introduce a generic similarity measure between a query object
and a data object that helps us to define the nearest neighbors accord-
ing to user requirements. Then, we propose some pruning strategies that
can quickly compute k-NNs (or top-k) facility trajectories for a given
user trajectory. Finally, we propose a filter and refinement technique to
compute the MaxRkNNT. Our experimental results show that our pro-
posed approach significantly outperforms the baseline for both real and
synthetic datasets.

1 Introduction

With the widespread use of GPS enabled mobile devices, we have witnessed an
unprecedented growth of real trajectory data (e.g., taxi or uber trajectories)
capturing the daily movements of people. Such availability has enabled us to
address many real life problems by developing a new range of applications based
on the trajectory data. For example, let us consider a scenario where a trajectory
database consists of user’s daily commuting routes with their private vehicles or
taxis. To improve the traffic condition and to encourage more people to use public
transports, the city authority may want to introduce new facilities (e.g., bus
routes) so that they can attract the maximum number of users currently using
private vehicles for their regular commute. Similarly, a tourist operator may
want to design its routes based on the popularity of users’ visiting preferences
to different points of interest (POIs). In all these applications, a user may want
to avail the proposed bus service if a proposed bus route is one of k nearest bus
routes (or top-k bus routes) from user trajectory. To find the best k routes for

a user trajectory, we need to define an appropriate scoring function that ranks
facility trajectories with respect to the user trajectories. Moreover, this scoring
function may vary across applications. Thus we first devise scoring functions
that can handle a wide range of practical applications (See Section 3).

In each of the above scenarios the goal is to find a new facility trajectory that
best suits for the maximum number of user trajectories. In this case, a facility
trajectory is suitable for a user if the trajectory is one of the k-NN (or top-k)
facilities with respect to the user trajectory. This problem can be mapped to a
reverse query problem on a trajectory database since the underlying problem is
to find the facility trajectory which is among the k-nearest neighbors (k-NN) of
maximum user trajectories 1. Therefore, in this paper we first explore the RkNN
query on trajectories, which we refer to as RkNNT. Formally, we can define the
RkNNT query as follows. Given a set of user trajectories DU and another set
of existing facility trajectories DF , an RkNNT query returns all users that take
q ∈ Q as one of their k-nearest neighbors, where Q is the set of query facility
trajectories.

Fig. 1 illustrates an example of the RkNNT query with two query facilities
Q1 and Q2, five user trajectories U1,U2 . . .U5 ∈ DU , two existing facilities, F1

and F2 ∈ DF and k=1. Facility F2 is the 1-NN (or top-1) for users U2,U3,U4,U5
and F1 is the NN for U1. When a new facility Q2 arrives, Q2 becomes the NN for
U3, U4, U5. Thus, R1NNT(Q2) = {U3,U4,U5}. Similarly, R1NNT(Q1) = {U1}.

Fig. 1: An example of the RkNNT query, with Q = {Q1,Q2} , U =
{U1,U2 . . .U5} and F = {F1,F2}.

The RkNNT query has been introduced in [13] recently. Though this work
made an important contribution towards trajectory based reverse query pro-
cessing, it has the following major limitations: (i) They have assumed that user
trajectories (i.e. passenger transitions) contain only source and destination loca-
tions of the user, and provided a point-based solution where a user trajectory is
considered as two separate points, (ii) They have used a simple distance function
to measure the nearest neighbor from a source (or a destination) location to the

1 In this paper we use the terms k-NN trajectories and top-k facilities interchangeably
as we use different types of distances or weighted distances as a scoring function to
find the best k facilities

facility trajectory. Thus, their approach is not applicable for applications that
require handling other optimizations such as travel distance, priorities, etc. in
the distance measure between two multi-point trajectories (user and facility).

In this paper, we first propose a class of similarity scoring functions between
a multi-point user trajectory and multi-point facility trajectory that cover a
wide range of practical applications. Then we propose several optimizations to
compute the k nearest (top-k) facility trajectory for a given user trajectory.
After that, we propose an efficient pruning technique to compute the RkNNT
for all given facility queries, and return the facility that results in the maximum
cardinality of RkNNT result set as the answer to the MaxRkNNT query.

In summary, the contributions of this paper are as follows.

– We define a new class of scoring functions to measure the proximity (simi-
larity) between a user and a facility trajectory according to user preference.

– We introduce a robust algorithm to compute top-k facilities for multi-point
user trajectories.

– We proposed a pruning technique to efficiently compute RkNNT, which
forms the basis to answer the MaxRkNNT query.

– We conduct detailed experimental study on real datasets to show the effi-
ciency and efficacy of the proposed solution.

2 Related Works

In this section we review some of the previous works of trajectory search and
classic RkNN search.

Trajectory Search. There are several studies on single-point based query
which looks for the nearest trajectories for only one static [4] or continuously
moving location point [10]. Frentzos et al. [5] solved Nearest Neighbor Search
query over the trajectories of moving object from a stationary query point. Chen
et al. [3] proposed k Best-Connected Trajectory(k-BCT) query which searches
nearest trajectory from multiple location. The similarity function used in k-BCT
query does not solve our problem, because exponential function assigns larger
contribution to the closer matched query point and trajectories. Shang et al. [9]
proposed a Reverse Path Nearest Neighbor (R-PNN) query which finds nearest
point of a given moving object dataset. There are also some studies on trajectory
search for point based optimal route finding [8] and region based travel path
finding [7].

The initial step in Trajectory Search studies is to define similarity/distance
function between trajectory points. Several kinds of distance function have been
defined in considerable amount of related works of trajectory search. Dynamic
Time Warping (DTW) [15], Longest Common Subsequence (LCSS) [12], Edit
Distance with Real Penalty (ERP) [1] and Edit Distance on Real Sequences
(EDR) [2] are some of the typical distance function studied in previous works of
trajectory search. However, none of these distance functions can be extended to
solve our problem scenarios, where user preference is also considered along with
spatial distance.

Reverse kNN. Most of existing MaxRkNN search are based on static loca-
tion points that apply various pruning-refinement frameworks to avoid scanning
the entire dataset. Wong et al. [14] introduced the MaxOverlap algorithm to
solve MaxRkNN problem for spatial points. The algorithm iteratively finds the
intersection point of the Nearest Location Circles (NLCs) that are covered by
the largest number of NLCs. However, the scalability of MaxOverlap is an issue
and the computation of the intersection points is also expensive. Some other ex-
isting works like MaxFirst algorithm by Zhou et al. [16], MaxSegment algorithm
by Liu et al. [6] overcome the limitations of MaxOverlap. They use a variant
of plane sweep to find the optimal interval. These works solely focus on static
point based intersection of geometric shapes, space partitioning or sweep line
techniques, and thus cannot be applied or extended to find MaxRkNN query for
multi-point trajectories of variable length.

3 Problem Formulation

Formally, we define the Maximizing Reverse k-Nearest Neighbors for Trajectories
(MaxRkNNT) as follows.

Definition 1 (MaxRkNNT). Let D be a trajectory dataset, where DU is a set
of user trajectories, and DF is a set of existing facility trajectories. QF is a set
of query trajectories on a shared data space. Each trajectory T ∈ D and QF is
a sequence of locations T = {t1, t2, ..., tn}; n ≥ 2. Each U ∈ DU represents a
user’s travel route and each F ∈ DF represents stoppage locations of a facility
trajectory. The RkNNT(T) finds a subset of DU that take T as one of their
top-k (k nearest) trajectories. A MaxRkNNT query finds a Q ∈ QF for which
|RkNNT(Q)| ≥ |RkNNT(Q′)|, ∀ Q′ ∈ QF \ Q.

In the context of Fig. 1 MaxRkNNT would output Q2 since it has the
maximal RkNNT set cardinality. To find the top-k facility trajectories for a user
trajectory, we need to first define a scoring function (or a distance function)
that gives a ranking score between a user trajectory and facility trajectory. To
define the distance function dt(U ,F) between a user trajectory U and a facility
trajectory F , we consider three separate factors that affects the scoring: (i)
the distance between U and the nearest pick-up (or drop-off) point of F , (ii)
the travel length of user trajectory U through facility trajectory F (iii) user’s
preference (or weights w) for each point ui ∈ U .

Definition 2 (Distance Function). Let Us and Ue be the start and end lo-
cations of a user trajectory U . Function η(p,F) returns the nearest pick-up or
drop-off point of facility trajectory F from a location point p of user trajectory
U , lt(U ,F) returns the travel length of a user through trajectory F , and de(a, b)
is the euclidean distance between any two location points a and b.

(i) When a user is only interested about her distance from source (destina-
tion) to pick-up (drop-off) point, then we can define the distance between a user
trajectory U and facility trajectory F as follows.

dt(U ,F) = de(Us, η(Us,F)) + de(Ue, η(Ue,F)) (1)

(ii) A user may also consider the travel length with the facility. For such as a
case, we define the distance function as a combination of travel distance with the
facility and the travel distance from source (destination) to pick-up (drop-off)
point:

dt(U ,F) = de(Us, η(Us,F)) + de(Ue, η(Ue,F)) + lt(U ,F)) (2)

(iii) A user may have different priorities for different locations on her travel
route. Let us assume, each location ui ∈ U has an associated ui.w. Then we can
define the distance function for this case as follows.

dt(U ,F) =

n∑
i=1

de(ui, η(ui,F)) ∗ ui.w (3)

Since trajectories U and F may not have the same number points, we nor-
malize it in the above equation .

Table 1: Notation

Symbol Description

DU The set of user trajectories
DF The set of facility trajectories
QF The set of query trajectories
dt(U ,F) Distance of a facility trajectory from user trajectory
lt(U ,F) Travel length of user through facility F
de(p, q) Eulclidean distance between two points p and q
dmin(p,N) Min distance of Quad-tree node N from point p
mine(u,S) Min euclidean distance between ui and set of points S
η(p,F) nearest point of F from a location point p ∈ U

4 Processing of Top-k (k-NN)

In this section we describe methodologies to determine the top-k nearest facilities
of a user trajectory. We first adopt the best-first approach from Tang et al. [11]
to incrementally find the next nearest facility w.r.t. a user trajectory. We index
all facility points of facility trajectory dataset using a hierarchical index (e.g.,
Quad-tree/R-tree). Then we incrementally retrieve nearest facility trajectories
from a given user trajectory until we find the top-k trajectories for the user. A
major challenge in this process is to derive an early termination strategy that
avoids the computation of similarities between the user and a large number of
trajectories. We propose a lower bound distance, lbd, based on the knowledge of
the already explored data space and propose an early termination of search based
on the computed lbd, which reduces the computation overhead significantly.

Lower Bound Distance. The lower bound distance, lbd, can be expressed as
follows: Let U = {u1, u2, · · · , u|U|} be a user trajectory. For each ui, let fmaxi
be the farthest retrieved facility point. Thus an unknown facility trajectory will

have at least
∑|U|
i de(ui, fmaxi) distance from U . Then,

∑|U|
i de(ui, fmaxi) will

be the lower bound distance, lbd. Based on this lower bound distance, we can
describe the top-k processing steps as follows.

First, for a given user trajectory U , we incrementally fetch the nearest facility
points with respect to every point ui ∈ U . This facility point set FP contains |U|
number of facility points each representing the NN for each ui ∈ U . Now, from
the fetched facility point set FP, we retrieve all the facility trajectories FS ′
that contain a facility point f ∈ FP. Let |FS ′| = n′ be the number of facilities
retrieved in the first phase. We compute the distance, between U and each facility
F ∈ FS ′. We continue the above process by retrieving more facility points, i.e.,
2nd NN, 3rd NN, until we find k distinct facility trajectories. Then, we update
the best known distance, λk to the kth facility trajectories in terms of distance
rank according to our distance function. At this stage, we compute the lower
bound distance, lbd as described above. If the lbd is greater than the distance,
λk, to kth facility trajectory the search terminates. Otherwise, we repeat the
above steps of retrieving more facilities w.r.t. user trajectories.

Delayed Retrieval. A major drawback of the above approach is that the
algorithm processes a facility trajectory immediately after fetching any of its
facility point w.r.t. any point location ui ∈ U . As a result, it may process many
unnecessary facility trajectories which cannot be part of the result. Thus, we
propose a delayed retrieval approach. In this approach, we process a facility if
at least τ location points are fetched during the search process.

Similar to the above approach, we search for next nearest facility location
point fi from each user location point ui ∈ U , and add the corresponding facility
in a candidate set C. Now, candidates in C can be divided into two sets. First set
Cτ contains the candidates for which at least τ points have been found during
the process and second set Cτ ′ contains the candidates of C \ Cτ . We process the
candidate c ∈ Cτ by computing corresponding distance dt(U , c). We also update
the top-k result list R and λk accordingly. On the other hand, we compute
expected distance for the candidates in Cτ ′, for which less than τ process have
been found. Algorithm terminates when λk is less than lbd or the minimum
expected distance of the potential candidates in Cτ ′.
Expected Distance. Suppose that at some point during the search process
for a user trajectory U = {u1, u2, · · · , un}, Fc is a potential candidate for which
less than τ points have been retrieved (i.e., Fc ∈ Cτ ′). For each ui, if pi ∈
Fc be the nearest retrieved point, then de(ui, pi) contributes to the expected
distance. Otherwise, de(ui, fmaxi) contributes to the expected distance value,
where fmaxi is the farthest retrieved point from ui. Finally, we normalize the
distance. We notice that expected distance value must be less than the actual
distance between U and Fc. Fig. 1 illustrates the computation of Expected
Distance for user trajectory U2 and potential facility candidate F2 during the top-
k facility search for U2, where each circle represents the distance de(ui, fmaxi).

5 Computing RkNNT

In this section, we describe our algorithm to find the RkNNT set for a query
trajectory based on the precomputed k-NN (or top-k) facilities for each user
trajectory.

5.1 Algorithm

For a given set of query trajectories QF , a straightforward approach requires
to compute the distance dt(U ,Q) of each Q ∈ QF from each user trajectory
U ∈ DU . If the distance dt(U ,Q) is less than the distance of kth facility of user
U , U is included as one of the RkNNT of Q.

Baseline Approach. Let Λk be the maximum value among the distances of
kth facility (λk) for all user trajectory U ∈ DU . Also assume that MBR(U) and
MBR(Q) are minimum bounding rectangles containing user trajectory U and
query trajectory Q ∈ QF , respectively. Now for each Q, we search for the user
trajectories U ∈ DU for which the minimum distance between MBR(U) and
MBR(Q) is less than Λk. If dt(U ,Q) is less than U .λk, we include U as one of
the results of RkNNT for Q.

An R*-Tree Based Approach. As a part of the pre-processing step, we
maintain the distance of kth facility (λk) of each user trajectory U . Now, to find
the result of the RkNNT for a given set of query trajectories QF , we construct
MBRs containing the points of each U and we denote the MBR as UMBR.
However, a query cannot be considered as a k-NN of a user trajectory if it doesn’t
contain any point within the λk distance of the corresponding user trajectory
points. Hence, we extend each UMBR by U .λk on each side and denote the
extended MBR as E-UMBR. Finally, we build an R*-Tree using the E-UMBR
for each user trajectory.

For each query trajectory Q ∈ QF , we construct MBRs (QMBR) using the
points of each Q. If E-UMBR of a user U does not intersect with the QMBR of
a query trajectory Q, then no point of Q is located within the λk distance of the
points of user trajectory U . Thus, we can exclude U from the RkNNT candidate
set of Q. On the other hand, If QMBR of a query trajectory Q intersects E-
UMBR of user trajectory U , we consider U as a potential candidate of RkNNT
ofQ. If dt(U ,Q) is less than U .λk, we include U as one of the results of RkNNT for
Q. Finally we output the Q with maximum cardinality of RkNNT set to answer
MaxRkNNT query. Fig. 2 illustrates the RkNNT candidate selection strategy
for a query trajectory Q1. QMBR of Q1 does not intersect the E-UMBR for user
trajectory U2, which excludes U2 from the candidate set for RkNNT of Q1. On
the other hand, QMBR of Q1 intersects E-UMBR of U1 and thus, included as a
candidate of for RkNNT of Q1.

5.2 Updates

Candidate trajectory selection depends on precomputed data i.e. on top-k pro-
cessing of each user trajectory. A major drawback of using precomputed data is

Fig. 2: Candidate trajectory selection using MBR of top-k results of users

that any update in dataset may invalidate the data and trigger a complete re-
computation. However, the algorithms presented in this paper are designed such
that any update in dataset are handled without repeating the precomputation
step. We may wish to add new user and/or facility trajectories to the existing
dataset and run MaxRkNNT query. We may also want to change the value of k
at some point. While we make these changes we do not want to recompute for
the whole dataset, allowing a user the flexibility to tune parameters and get the
query results in run-time. In this section we discuss how the algorithm handles
these updates.

Update k. If k is increased to k′, k′ − k facility trajectories must be added
to top-k list of each user trajectory. Since at this point we have λk of each U
and any further facility must be at a distance ≥ λk, we only need to consider
next nearest facility locations that is at least λk distance away from a user point.
While traversing the quad tree for next nearest neighbor, nodes at distance < λk
can be safely pruned. No computation is required if k is decreased.

Add/Remove Facility Trajectory. Addition of facility trajectory F to DF
may update top-k list of one or more user trajectories U . We use R*-Tree Based
algorithm RkNNT query to efficiently find the set of user trajectories that now
takes F as one of their top-k nearest facilities. If some F is removed from dataset,
we search RkNNT of F . It is then removed from top-k facilities of these user
trajectories. This creates an empty slot in top-k and a next nearest facility
trajectory is added using the process of updating k described above.

Add/Remove User Trajectory. Adding a user trajectory U to DU requires
finding top-k nearest facilities. We use Delayed Retrieval based top-k search
algorithm for this since top-k search for U is independent of searches for U ′ ∈
DU \U . Removing U would not have any effect on the precomputed data of other
user trajectories.

6 Experimental Evaluation

In this section, we describe the experimental evaluation of the algorithms for
processing the query with both real and synthetic datasets and compare them
with the baseline approach.

User Trajectory Dataset (DU). We use T-Drive dataset2 for real user trajec-
tories. The dataset contains one-week trajectories of 10, 357 taxis from Beijing.
Total number of points in the dataset is about 15 million and total distance
covered by the trajectories is 9 million kilometers. For our experiments, we do
periodic sampling for larger trajectories so that no user trajectory contains more
than 10 points. Thus, our final dataset contains 165, 736 user trajectories.

Facility Trajectory Dataset (DF). We download the OpenStreetMap3 data
within the same latitude and longitude range (Beijing city) of T-drive dataset.
Then, we parse the location points of the nodes under the <way> tags to con-
struct the facility trajectories. We ignore the tags that contain less than 10
points. After final processing, our dataset contains 27, 876 facility trajectories.

Query Trajectory Dataset (QF). We prepared our query dataset by ran-
domly generating trajectory locations within the same region as users and fa-
cilities. We randomly chose points located within the region and appended new
points one by one with a limited rotation angle and step size.

Synthetic Dataset. We also evaluate our algorithm on synthetic dataset where
trajectories are generated randomly within a specified area. We randomly select
the start point for each trajectory and append new points one by one, while
selecting the rotation angle randomly within 90◦ to avoid zigzag trajectories.

All experiments were performed on an Intel Core i5-6200U CPU with 8GB
RAM running Ubuntu 16.04 LTS, implemented in python 2.7. Table 2 shows the
parameter setting used in the experimental evaluation.

Parameter Range Default

Number of Query, (|QF |) 10, 20, 30, 40, 50, 60, 70 20

Number of Facility Point 10, 20, 30, 40, 50, 60 30

Retrieval Threshold, (τ) 1, 3, 5, 7, 9, 11, 13, 15, 17 9

k 5, 10, 15, 20, 25 5

Table 2: Parameter Setting

6.1 Top-k Processing

We compare delayed retrieval approach for top-k processing with baseline ap-
proach since the brute-force approach is not scalable. Delayed retrieval clearly
outperforms the baseline approach by 25-30% as expected since it reduces unnec-
essary trajectory distance computations. Table 3 shows the time in seconds (s)
for both approaches for default values of parameters. It takes 5.1 hours to per-
form Top-k processing for the entire T-drive dataset and 6.5 hours for synthetic

2 https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-
sample/

3 http://www.openstreetmap.org

DU Delayed Retrieval Baseline DF Delayed Retrieval Baseline

20,000 3,043s 4,126s 500 1,365s 1,784s

40,000 7,801s 9,872s 1,000 1,820s 2,324s

60,000 16,203s 21,147s 1,500 2,231s 3,031s

k= 5, DF = 5,500 k= 5, DU = 20,000

Table 3: Top-k Processing Time in seconds (s) for both Delayed Retrieval and
Baseline approach using Beijing Dataset.

(a) (b)

Fig. 3: (a) Effect on top-k processing time with the increase of retrieval threshold
τ (b) Effect on MaxRkNNT query processing time with the increasing number
of queries |QF |

Fig. 4: Update time with the increasing number of new User and Facility Tra-
jectories for Beijing dataset and Synthetic dataset.

dataset. We vary several parameters for better insights of the top-k processing
approaches. For the following experiments of top-k processing we use a subset
of DU and DF to focus more on the graph trend than dataset size.

Varying τ . Fig. 3a shows the effect of varying τ , the threshold amount of
points for delayed retrieval in top-k processing time. For both datasets, the run-
time starts to decrease with increasing value of τ and starts increasing after a
certain point. This is because with a small τ , distance to a facility trajectory F
is computed as soon as a small amount of points of F are found. This results
in a large number of distance computation for trajectories that finally may not
be in top-k. For a large τ , the algorithm has to delay computation until a large
number of points of F are found.

Varying No. of Facility Trajectory Points. We compute the top-k pro-
cessing time by changing the number of facility points from 10 points to 60
points. To alter the facility point, we drop extra points while reading the tra-
jectory from dataset file. Even though increasing the number of facility points
yields increased amount of time during trajectory distance computation, it does
not have significant effect on overall top-k processing time, as our algorithm
reduces the number of unnecessary distance computation. For each dataset, de-
layed retrieval approach gives 25-30% improvement over the computation time
for baseline approach.

6.2 MaxRkNNT Processing

We evaluate our proposed algorithm to answer MaxRkNNT, and compare the
performance with baseline approach.

Varying Number of Queries |QF |. Fig. 3b illustrates the effect of changing
query size |QF | in the query answering time. For both datasets R*-Tree ap-
proach outperforms the baseline. With the change of |QF |, our algorithm causes
very small-scaled changes in query time. Baseline approach on the other hand,
requires significant amount of CPU time to answer respective queries. Since our
algorithm significantly reduces the search space for the queries, it takes very
small CPU time in answering even a larger query set.

6.3 Update Processing

Updating Trajectories. Fig. 4 illustrates the computation time required for
updating new user and facility trajectories. To update new user trajectories,
we only compute top-k for each new trajectory. Since baseline approach re-
quires computing larger number of trajectory distance than Delayed Retrieval
approach, it takes increased amount of CPU time to update new user trajectory.
On the other hand, brute-force approach computes distance from the new user
trajectories to all existing facilities, it gives poor performance during update.
When new facility arrives, we need to find whether those facilities belong to the
top-k facilities of any of the existing users. We use RkNNT query to find the
users who has the new facility trajectories as one of their k-nearest neighbors
trajectories. Finally, we update the top-k facilities of the corresponding users.

Updating k. When the value of k is increased, we avoid recomputing top-k
facilities for each user by storing the state of the previous search for old value of
k. We restore the priority queues of each users to resume the search to find the
further top-k facilities.

7 Conclusion

In this paper, we have proposed efficient solution for Maximizing Reverse k-
Nearest Neighbors for Trajectories (MaxRkNNT) query. We first introduced a
generic similarity measure between a multi-point query trajectory and a multi-
point facility trajectory that helps us to define the nearest neighbors according to

user requirements. Then, we have proposed pruning strategies that can quickly
compute k-NNs (or top-k) facility trajectories for a given user trajectory. Finally,
we have developed a filter and refinement technique to compute the MaxRkNNT.
Our experimental results show that our proposed approach significantly outper-
forms the baseline for both real and synthetic datasets.

References

1. Lei Chen and Raymond T. Ng. On the marriage of lp-norms and edit distance. In
VLDB, pages 792–803, 2004.

2. Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity search
for moving object trajectories. In ACM SIGMOD, pages 491–502, 2005.

3. Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie. Searching
trajectories by locations: an efficiency study. In ACM SIGMOD, pages 255–266,
2010.

4. King Lum Cheung and Ada Wai-Chee Fu. Enhanced nearest neighbour search on
the r-tree. SIGMOD Record, 27(3):16–21, 1998.

5. Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis. Algo-
rithms for nearest neighbor search on moving object trajectories. GeoInformatica,
11(2):159–193, 2007.

6. Yubao Liu, Raymond Chi-Wing Wong, Ke Wang, Zhijie Li, Cheng Chen, and
Zitong Chen. A new approach for maximizing bichromatic reverse nearest neighbor
search. Knowl. Inf. Syst., 36(1):23–58, 2013.

7. Radi Muhammad Reza, Mohammed Eunus Ali, and Muhammad Aamir Cheema.
The optimal route and stops for a group of users in a road network. In SIGSPA-
TIAL/GIS, pages 4:1–4:10. ACM, 2017.

8. Samia Shafique and Mohammed Eunus Ali. Recommending most popular travel
path within a region of interest from historical trajectory data. In MobiGIS, pages
2–11. ACM, 2016.

9. Shuo Shang, Bo Yuan, Ke Deng, Kexin Xie, and Xiaofang Zhou. Finding the most
accessible locations: reverse path nearest neighbor query in road networks. In GIS,
pages 181–190. ACM, 2011.

10. Zhexuan Song and Nick Roussopoulos. K-nearest neighbor search for moving query
point. In SSTD, pages 79–96, 2001.

11. Lu An Tang, Yu Zheng, Xing Xie, Jing Yuan, Xiao Yu, and Jiawei Han. Retrieving
k-nearest neighboring trajectories by a set of point locations. In SSTD, pages 223–
241, 2011.

12. Michail Vlachos, Dimitrios Gunopulos, and George Kollios. Discovering similar
multidimensional trajectories. In ICDE, pages 673–684, 2002.

13. Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Timos K. Sellis, and Gao Cong.
Reverse k nearest neighbor search over trajectories. CoRR, abs/1704.03978, 2017.

14. Raymond Chi-Wing Wong, M. Tamer Özsu, Philip S. Yu, Ada Wai-Chee Fu, and
Lian Liu. Efficient method for maximizing bichromatic reverse nearest neighbor.
PVLDB, 2(1):1126–1137, 2009.

15. Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. Efficient retrieval of
similar time sequences under time warping. In ICDE, pages 201–208, 1998.

16. Zenan Zhou, Wei Wu, Xiaohui Li, Mong-Li Lee, and Wynne Hsu. Maxfirst for
maxbrknn. In ICDE, pages 828–839. IEEE Computer Society, 2011.

View publication statsView publication stats

https://www.researchgate.net/publication/325213490

