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Chapter 3: Transport LayerChapter 3: Transport LayerChapter 3: Transport Layer

Our goals:
•

 
Understand principles behind 
transport layer services:
━

 

Multiplexing/demultiplexing
━

 

Reliable data transfer
━

 

Flow control
━

 

Congestion control
•

 
Learn about transport layer 
protocols in the Internet:
━

 

UDP: connectionless transport
━

 

TCP: connection-oriented transport

Application (5)Application (5)
Transport (4)Transport (4)
Network (3)Network (3)
Data-link (2)Data-link (2)
Physical (1)Physical (1)
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Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
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Transport Services and ProtocolsTransport Services and ProtocolsTransport Services and Protocols

•
 

Transport layer: logical 
communication 
between processes

 
on 

different hosts
━

 

Relies on and enhances 
network-layer services

•
 

Network layer: logical 
communication 
between hosts
━

 

Consists of one 
protocol –

 
IP

application
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physical
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Internet Transport-layer ProtocolsInternet TransportInternet Transport--layer Protocolslayer Protocols

•
 

Reliable, in-order 
delivery: TCP
━

 

Congestion control 
━

 

Flow control
━

 

Connection setup
•

 
Unreliable, unordered 
delivery: UDP
━

 

No-frills extension of “best-
 effort”

 
IP

•
 

Services not available: 
━

 

Delay or loss guarantees
━

 

Bandwidth guarantees
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Multiplexing/DemultiplexingMultiplexing/DemultiplexingMultiplexing/Demultiplexing

= process= socket

Delivering received segments
to correct socket

Demultiplexing at receiver host:
Gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at sender host:
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How Demultiplexing WorksHow Demultiplexing WorksHow Demultiplexing Works

•
 

Host receives IP datagrams
━

 

Each datagram has source
 

IP 
address and destination

 
IP 

address
•

 
Each datagram carries one 
transport-layer header
━

 

Transport header starts with 
source and destination port 
numbers

•
 

Kernel uses port numbers to 
direct packets to appropriate 
socket or reject the message
━

 

Each port # is a 16-bit 
unsigned integer (1-65535)

source port # dest port #

application
data 

(message)

TCP/UDP segment format

IP header

Transport header

source IP dest IP
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Connectionless DemultiplexingConnectionless DemultiplexingConnectionless Demultiplexing

•
 

Create a SOCK_DGRAM 
socket

•
 

Bind
 

the socket
━

 

Server: specify a well-known 
port (e.g., 53 for DNS)

━

 

Client: bind to port 0 (OS 
assigns next available #)

•
 

Use sendto(), recvfrom()
•

 
Target UDP socket is 
identified by a 2-tuple: 
(dest IP address, dest port 
number)

•
 

When host receives UDP 
segment:
━

 

OS checks destination 
port/IP in segment

━

 

Directs segment to the 
socket with a matching 
combination if socket is 
open; rejects otherwise

•
 

IP datagrams with 
different source IP 
addresses and/or source 
port numbers may be 
directed to the same

 socket!
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Connectionless Demultiplexing (Cont)Connectionless Demultiplexing (Cont)Connectionless Demultiplexing (Cont)

client
IP: B

P1

client
IP: A

P1P2P3

server
IP: C

SP provides “return address”

SP = source port, DP = destination port

9157 6428 5775

SP: 9157
DP: 6428

AC

SP: 5775
DP: 6428

BC

SP: 6428
DP: 9157

CA

SP: 6428
DP: 5775

CB
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Connection-Oriented DemultiplexingConnectionConnection--Oriented DemultiplexingOriented Demultiplexing

•
 

TCP socket identified 
by a 4-tuple: 
━

 

Source IP address
━

 

Source port number
━

 

Destination IP address
━

 

Destination port number
•

 
Receiver host uses all 
four values to find 
appropriate socket

•
 

Clients: each socket 
must have unique port

•
 

Servers: possible to have 
multiple TCP sockets with 
same port number:
━

 

Each socket identified by its 
own 4-tuple

•
 

Web servers have 
different sockets for each 
connecting client
━

 

All are on port 80
━

 

Non-persistent HTTP may 
have different socket for 
each request
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Connection-Oriented Demultiplexing (Cont)ConnectionConnection--Oriented Demultiplexing (Cont)Oriented Demultiplexing (Cont)

client
IP: B

P1

client
IP: A

P1P2P4

server
IP: C

P5 P6 P3

SP: 5775
DP: 80
S-IP: A
D-IP:C

SP = source port, DP = destination port; 
S-IP = source IP, D-IP = destination IP

5775

5775 9153

Web server spawns a new process per connection
port 80

SP: 9153
DP: 80

D-IP:C
S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP:B
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Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 5775
DP: 80

SP: 9153
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

port 80

Connection-Oriented Demultiplexing (Cont)ConnectionConnection--Oriented Demultiplexing (Cont)Oriented Demultiplexing (Cont)

Web server spawns a new thread per connection

SP = source port, DP = destination port; 
S-IP = source IP, D-IP = destination IP

5775

5775 9153
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Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
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UDP: User Datagram Protocol [RFC 768]UDP: User Datagram Protocol [RFC 768]UDP: User Datagram Protocol [RFC 768]

•
 

Standardized in 1980
━

 

Hasn’t changed since
•

 
Best-effort

 
service

•
 

UDP segments may be:
━

 

Lost or corrupted
━

 

Delivered out of order to 
the application

•
 

Connectionless:
━

 

No handshaking between 
UDP sender and receiver

━

 

Each UDP segment 
handled independently of 
others

Why is there a UDP?
•

 
Low overhead: no 
connection establishment 
or retransmission

•
 

Simplicity: no connection 
state at sender/receiver

•
 

Small segment header
•

 
No congestion control
━

 

For short transfers, this is 
completely unnecessary

━

 

In other cases, desirable 
to control rate directly from 
application
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UDP: MoreUDP: MoreUDP: More

•
 

Often used for 
streaming multimedia 
or online gaming
━

 

Loss tolerant
━

 

Rate/delay sensitive
•

 
Other UDP uses
━

 

DNS
━

 

SNMP
━

 

NFSv2 (1989)
•

 
Reliable transfer over 
UDP: add reliability at 
application layer
━

 

Application-specific 
error recovery

source port #

32 bits

Application
data 

(message)

UDP segment format

length
dest port #
checksum

Length (in bytes) of 
UDP segment, 

including header
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UDP ChecksumUDP ChecksumUDP Checksum

Sender (simplified):
•

 
Set checksum = 0 in hdr

•
 

Treat packet contents 
as a sequence of 16-bit 
integers (padded with 0s 
to 2-byte boundary)

•
 

Checksum: add all 
integers, then XOR with 
0xffff

•
 

Sender puts checksum 
value into UDP 
checksum field

Receiver:
•

 
Sum all 16-bit words in entire 
received segment (including the 
checksum field in the header)

•
 

Check if result = 0xffff
━

 

NO -
 

error detected
━

 

YES -
 

no error detected
•

 
Idea: (x XOR 0xffff) + x = 0xffff

•
 

Are undetected errors possible 
nonetheless?

Goal:
 

detect “errors”
 

(e.g., flipped bits) in transmitted 
segment (packet)
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UDP Checksum ExampleUDP Checksum ExampleUDP Checksum Example

•
 

Note on 1’s complement addition:
━

 

When adding numbers, a carryout from the most significant 
bit needs to be added to the result

•
 

Example: add two 16-bit integers

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum
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UDP Checksum (Cont)UDP Checksum (Cont)UDP Checksum (Cont)

•
 

How many corrupted bits does UDP detect?
•

 
Example of undetected single-bit corruption?
━

 

Not possible
•

 
Example of undetected 2-bit corruption?
━

 

Two words (0, 5) result in sum = 5
━

 

Suppose 0 is corrupted to become 1 and 5 is corrupted to 
become 4, then the checksum is the same

•
 

Example of undetected 3-bit corruption w/two words?
━

 

Two words (1, 1)  (0, 2) 
•

 
What if the transmitted words are 0 and 12?
━

 

Can two-bit corruption produce the same checksum?
━

 

If yes, how many ways can (0,12) be affected by 2-bit 
corruption so as to avoid detection?
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Wrap-upWrapWrap--upup

•
 

Is there a pair of integers (x,y) that allow the UDP 
checksum to detect any

 
2-bit corruption?

•
 

Data-link and physical layers are often assumed to 
have their own checksums and error correction
━

 

Why is transport-level checksum important then?
•

 
Reasons:

1) Lower layers do not always run error checking
━

 

Even then, implementation bugs may affect the result
2) Corruption may occur in router RAM or faulty 

hardware, outside the control of data-link protocols
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