
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2025

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2025Spring 2025

Transport LayerTransport Layer
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

February 20, 2025February 20, 2025

2

Chapter 3: Transport LayerChapter 3: Transport LayerChapter 3: Transport Layer

Our goals:
•

Understand principles behind
transport layer services:
━

Multiplexing/demultiplexing
━

Reliable data transfer
━

Flow control
━

Congestion control
•

Learn about transport layer
protocols in the Internet:
━

UDP: connectionless transport
━

TCP: connection-oriented transport

Application (5)Application (5)
Transport (4)Transport (4)
Network (3)Network (3)
Data-link (2)Data-link (2)
Physical (1)Physical (1)

3

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

4

Transport Services and ProtocolsTransport Services and ProtocolsTransport Services and Protocols

•

Transport layer: logical
communication
between processes

on

different hosts
━

Relies on and enhances
network-layer services

•

Network layer: logical
communication
between hosts
━

Consists of one
protocol –

IP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

5

Internet Transport-layer ProtocolsInternet TransportInternet Transport--layer Protocolslayer Protocols

•

Reliable, in-order
delivery: TCP
━

Congestion control
━

Flow control
━

Connection setup
•

Unreliable, unordered
delivery: UDP
━

No-frills extension of “best-
 effort”

IP

•

Services not available:
━

Delay or loss guarantees
━

Bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

6

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

7

application

transport

network

link

physical

P3

host 1

application

transport

network

link

physical

P4

host 3

P1application

transport

network

link

physical

P2P1

host 2

Multiplexing/DemultiplexingMultiplexing/DemultiplexingMultiplexing/Demultiplexing

= process= socket

Delivering received segments
to correct socket

Demultiplexing at receiver host:
Gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at sender host:

8

How Demultiplexing WorksHow Demultiplexing WorksHow Demultiplexing Works

•

Host receives IP datagrams
━

Each datagram has source

IP
address and destination

IP

address
•

Each datagram carries one
transport-layer header
━

Transport header starts with
source and destination port
numbers

•

Kernel uses port numbers to
direct packets to appropriate
socket or reject the message
━

Each port # is a 16-bit
unsigned integer (1-65535)

source port # dest port #

application
data

(message)

TCP/UDP segment format

IP header

Transport header

source IP dest IP

9

Connectionless DemultiplexingConnectionless DemultiplexingConnectionless Demultiplexing

•

Create a SOCK_DGRAM
socket

•

Bind

the socket
━

Server: specify a well-known
port (e.g., 53 for DNS)

━

Client: bind to port 0 (OS
assigns next available #)

•

Use sendto(), recvfrom()
•

Target UDP socket is
identified by a 2-tuple:
(dest IP address, dest port
number)

•

When host receives UDP
segment:
━

OS checks destination
port/IP in segment

━

Directs segment to the
socket with a matching
combination if socket is
open; rejects otherwise

•

IP datagrams with
different source IP
addresses and/or source
port numbers may be
directed to the same

 socket!

10

Connectionless Demultiplexing (Cont)Connectionless Demultiplexing (Cont)Connectionless Demultiplexing (Cont)

client
IP: B

P1

client
IP: A

P1P2P3

server
IP: C

SP provides “return address”

SP = source port, DP = destination port

9157 6428 5775

SP: 9157
DP: 6428

AC

SP: 5775
DP: 6428

BC

SP: 6428
DP: 9157

CA

SP: 6428
DP: 5775

CB

11

Connection-Oriented DemultiplexingConnectionConnection--Oriented DemultiplexingOriented Demultiplexing

•

TCP socket identified
by a 4-tuple:
━

Source IP address
━

Source port number
━

Destination IP address
━

Destination port number
•

Receiver host uses all
four values to find
appropriate socket

•

Clients: each socket
must have unique port

•

Servers: possible to have
multiple TCP sockets with
same port number:
━

Each socket identified by its
own 4-tuple

•

Web servers have
different sockets for each
connecting client
━

All are on port 80
━

Non-persistent HTTP may
have different socket for
each request

12

Connection-Oriented Demultiplexing (Cont)ConnectionConnection--Oriented Demultiplexing (Cont)Oriented Demultiplexing (Cont)

client
IP: B

P1

client
IP: A

P1P2P4

server
IP: C

P5 P6 P3

SP: 5775
DP: 80
S-IP: A
D-IP:C

SP = source port, DP = destination port;
S-IP = source IP, D-IP = destination IP

5775

5775 9153

Web server spawns a new process per connection
port 80

SP: 9153
DP: 80

D-IP:C
S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP:B

13

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 5775
DP: 80

SP: 9153
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

port 80

Connection-Oriented Demultiplexing (Cont)ConnectionConnection--Oriented Demultiplexing (Cont)Oriented Demultiplexing (Cont)

Web server spawns a new thread per connection

SP = source port, DP = destination port;
S-IP = source IP, D-IP = destination IP

5775

5775 9153

14

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

15

UDP: User Datagram Protocol [RFC 768]UDP: User Datagram Protocol [RFC 768]UDP: User Datagram Protocol [RFC 768]

•

Standardized in 1980
━

Hasn’t changed since
•

Best-effort

service

•

UDP segments may be:
━

Lost or corrupted
━

Delivered out of order to
the application

•

Connectionless:
━

No handshaking between
UDP sender and receiver

━

Each UDP segment
handled independently of
others

Why is there a UDP?
•

Low overhead: no
connection establishment
or retransmission

•

Simplicity: no connection
state at sender/receiver

•

Small segment header
•

No congestion control
━

For short transfers, this is
completely unnecessary

━

In other cases, desirable
to control rate directly from
application

16

UDP: MoreUDP: MoreUDP: More

•

Often used for
streaming multimedia
or online gaming
━

Loss tolerant
━

Rate/delay sensitive
•

Other UDP uses
━

DNS
━

SNMP
━

NFSv2 (1989)
•

Reliable transfer over
UDP: add reliability at
application layer
━

Application-specific
error recovery

source port #

32 bits

Application
data

(message)

UDP segment format

length
dest port #
checksum

Length (in bytes) of
UDP segment,

including header

17

UDP ChecksumUDP ChecksumUDP Checksum

Sender (simplified):
•

Set checksum = 0 in hdr

•

Treat packet contents
as a sequence of 16-bit
integers (padded with 0s
to 2-byte boundary)

•

Checksum: add all
integers, then XOR with
0xffff

•

Sender puts checksum
value into UDP
checksum field

Receiver:
•

Sum all 16-bit words in entire
received segment (including the
checksum field in the header)

•

Check if result = 0xffff
━

NO -

error detected
━

YES -

no error detected
•

Idea: (x XOR 0xffff) + x = 0xffff

•

Are undetected errors possible
nonetheless?

Goal:

detect “errors”

(e.g., flipped bits) in transmitted
segment (packet)

18

UDP Checksum ExampleUDP Checksum ExampleUDP Checksum Example

•

Note on 1’s complement addition:
━

When adding numbers, a carryout from the most significant
bit needs to be added to the result

•

Example: add two 16-bit integers

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

19

UDP Checksum (Cont)UDP Checksum (Cont)UDP Checksum (Cont)

•

How many corrupted bits does UDP detect?
•

Example of undetected single-bit corruption?
━

Not possible
•

Example of undetected 2-bit corruption?
━

Two words (0, 5) result in sum = 5
━

Suppose 0 is corrupted to become 1 and 5 is corrupted to
become 4, then the checksum is the same

•

Example of undetected 3-bit corruption w/two words?
━

Two words (1, 1) (0, 2)
•

What if the transmitted words are 0 and 12?
━

Can two-bit corruption produce the same checksum?
━

If yes, how many ways can (0,12) be affected by 2-bit
corruption so as to avoid detection?

20

Wrap-upWrapWrap--upup

•

Is there a pair of integers (x,y) that allow the UDP
checksum to detect any

2-bit corruption?

•

Data-link and physical layers are often assumed to
have their own checksums and error correction
━

Why is transport-level checksum important then?
•

Reasons:

1) Lower layers do not always run error checking
━

Even then, implementation bugs may affect the result
2) Corruption may occur in router RAM or faulty

hardware, outside the control of data-link protocols

	CSCE 463/612�Networks and Distributed Processing�Spring 2025
	Chapter 3: Transport Layer
	Chapter 3: Roadmap
	Transport Services and Protocols
	Internet Transport-layer Protocols
	Chapter 3: Roadmap
	Multiplexing/Demultiplexing
	How Demultiplexing Works
	Connectionless Demultiplexing
	Connectionless Demultiplexing (Cont)
	Connection-Oriented Demultiplexing
	Connection-Oriented Demultiplexing (Cont)
	Connection-Oriented Demultiplexing (Cont)
	Chapter 3: Roadmap
	UDP: User Datagram Protocol [RFC 768]
	UDP: More
	UDP Checksum
	UDP Checksum Example
	UDP Checksum (Cont)
	Wrap-up

