CSCE 313-200

Introduction to Computer Systems
Spring 2025

Synchronization IV

Dmitri Loguinov
Texas A&M University

February 20, 2025

Homework #2

Previous version of search was slow
- CPU utilization 14%, clearly system can handle more, but..
- Lots of time spent on context switches, not domg useful work

* Delays in the CC are per
command, not per room

- Improvement #1: batching
(multiple rooms per request)

* Next problem: STL set is a
major bottleneck
- Improvement #2: write a non-STL hash table

* Next problem: out of RAM on STL queue

- Improvement #3: write a non-STL queue with batching
» (Goal: caves w/4 billion rooms @ 10M rooms per sec *

Homework #2

« Suggestion: develop incrementally from hw #1

2a: Introduce CC 2.0 batching (push/pop up to 10K rooms,
send them in one message), but keep the rest

Confirm correctness; run benchmarks for report question 2
2b: Replace D with bit hash table; confirm result matches 2a

2¢: Replace U with custom queue (single push/pop); confirm
result matches 2a-2b

2d: Introduce batch-mode push/pop; confirm result
2e: Optimize synchronization; confirm result

« Make sure to print commas In large numbers

--—- Switching to level 11 with 421,068,639 nodes
--—- Switching to level 12 with 471,263,881 nodes
*** Thread [1080]: found exit room 1C63A9F, distance 12, steps 619,225,089

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

Bounded Producer-Consumer

 Now assume the buffer has some fixed size B
- Often the queue is a circular array of this size

« Classical version ——
Mutex m;
- PC 20 Semaphore semaFullSlots = {0, B};
Semaphore semaEmptySlots = {B, B};
Consumer() {
Queue Q; while (true) {
Mutex m; semaFullSlots.Wait ();
Semaphore semaFullSlots = {0, B}; m.Lock();
Semaphore semaEmptySlots = {B, B}; // no need to check Q.size
Producer() { X = Q-popQ);
while (true) { m.Unlock();
// make item X semaEmptySlots.Release(1);
semaEmptySlots.Wait(); // consume X outside
m.Lock(); // the critical section
Q.add (X); by
m.Unlock(); }
semaFul ISlots.Release(1);
by
} « What if bursty consumer

or producer?

Bounded Producer-Consumer

 PC 2.0 requires two waits before item can be
consumed or produced, potentially inefficient?

- PC 2.1

Queue Q;
Mutex m;
Semaphore semaFullSlots = {0, B};
Semaphore semaEmptySlots = {B, B};
Producer() {
while (true) {
// make 1tem X
WaitAll (semaEmptySlots, m);
Q.add (X);:
m.Unlock();
semaFulISlots.Release(1);

Queue Q;

Mutex m;

Semaphore semaFullSlots = {0, B};

Semaphore semaEmptySlots = {B, B};

Consumer() {

while (true) {

WaitAll (semaFullSlots,m);
// no need to check Q.size
X = Q.popQ);
m.Unlock();
semaEmptySlots.Release(1l);
// consume X outside
// the critical section

 Drawback: does not work with eventQuit
- Need a timeout in WaitAll to check for termination events

Bounded Producer-Consumer

« MSDN says STL objects can never be safely modified
from multiple threads
- Always need a mutex

e Can producer-consumer be implemented completely
without synchronization?
- Suppose we’re allowed to write our own circular queue

* Yes, but only if one thread of each type
- Producer modifies only Q.tail, while consumer only Q.head

void Q::push (ltem x){ Item Q::pop (void){
newTail = (tail + 1) % B; do {
do { if (tail '= head) // not empty
1T (newTail = head) // not full break;
break; Sleep (SOME_DELAY);
Sleep (SOME_DELAY); } while (true);
} while (true); tmp = buf [head];
buf [tail] = x; head = (head + 1) % B;
tail = newTail; return tmp;
by by

Bounded Producer-Consumer

 More complex designs are possible

- One internal mutex for K producers (modifying Q.tail) and
another for M consumers (modifying Q.head)

« What if the buffer gets reallocated periodically?

- Then, whoever is allocating the new buffer needs to obtain
both mutexes simultaneously

void Q::push (ltem x) { Item Q::pop (void){
producerMutex.Lock(); consumerMutex.Lock();
iIT (buffer too small) iIT (buffer too large)
consumerMutex.Lock(); producerMutex.Lock();
// change buffer to be bigger // change buffer to be smaller
consumerMutex.Unlock(); producerMutex.Unlock();
deposit x, modify tail remove x, modify head
producerMutex.Unllock(); consumerMutex.Unlock();
by by

— potential for a deadlock ——

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

class monitor MyClass {
private:

Monitors b, // some variables

F1Q); F2Q); ... // some functions

j

 The concept, invented in 1974, is now used in certain
programming languages
- Concurrent Pascal, Modula-2/3, Java, Ada, Ruby

« Definition: monitor is a class with two properties

- No external access to internal objects (all data is private)

- Each member function is protected by compiler to ensure
that only one thread can execute inside

« Compiler locks some hidden class-specific mutex on

entry and unlocks it on exit WyClass::F () mutex.Lock(): {

» Mutex is not accessible }_mutex.UnlockO);
directly in the code, so a wait for another event inside
the monitor may deadlock the whole program

10

Monitors

« Example: producer-consumer queue as a monitor

- How about this:

pcQueue: :push (Item x) mutex.Lock (); {
semaEmptySlots.Wait ();
Q.add (X);
semaFulISlots.Release (1);

} mutex.Unlock();

pcQueue: :push(ltem x) mutex.Lock (); {
mutex.Unlock();

WaitAll (semaEmptySlots, mutex);

Q.add (X);
semaFulISlots.Release (1);
} mutex.Unlock();

r__J

deadlock!

* Obviously a problem

r_J

we want this, but can’t have it
because the mutex is invisible
to the programmer

* To fix this, a new type of synchronization primitive
was invented that is similar to an event

- When blocked waiting on this primitive, the compiler secretly
unlocks the mutex and when the event is signaled, the
compiler secretely locks it again

11

class Condvar {

i I -
Monitors ont it

j

« Definition: condition variable is a class with two ops:

- Sleep: unlocks the secret mutex of the monitor and blocks on
the event; when the event is signaled, acquires the mutex

- Wake: signals the event if threads are sleeping; otherwise,
does nothing

CondVvar::Wake () {

Condvar::Sleep () { iIT (threads are blocked
UnlockWaitLock (mutex, waitEvent); It (waitEvent Signal(g'
3 // if nobody is blocked,

// the wake-up i1s lost

}

* Function UnlockWaitLock():
- Unlocks compiler mutex and blocks on event
- Once event is signaled, it blocks on mutex

 Wake is guaranteed to unblock one thread
12

Monitors

 Producer-consumer wit
- PC 3.0

private:

public:

j

class monitor pcQueue {

queue<ltem> Q;
CondVar cvNotEmpty, cvNotFull;

push (Item x); Item pop ;

N monitors

pcQueue: :push (Item x) mutex.Lock (); {
while (Q.isFull O)
cvNotFull.Sleep);
Q.add (xX);
cvNotEmpty .-Wake ();
} mutex.Unlock();

Item pcQueue::pop () mutex.Lock (); {

while (Q.isEmpty O)
cvNotEmpty.Sleep);

X = Q.remove ();

cvNotFull .Wake (); return Xx;

} mutex.Unlock();

* When pop() finishes, producers compete for mutex

- New threads wanting to enter push() and those asleep

* Why is there a while loop around Q.isFull()?

- |n certain monitor implementations, Sleep() allows new
threads to enter the monitor and steal a wake-up

- Thus, awakened thread must check if the queue is still not full
before attempting to add to it

13

Back to Semaphores

* Version 3.0 with auto events / binary semaphores

- PC 3.1

// all events are AUTO (binary semaphore)
pcQueue: :push (ltem x) {
mutex.Lock();
while (Q.isrFull(Q)
mutex.Unlock();
eventNotFull _Wait();
mutex.Lock();
Q.add (x);
if C 1Q.isFull(Q))
eventNotFull _Signal();
eventNotEmpty.Signal();
mutex.Unlock();

// all events are AUTO (binary semaphore)
Item pcQueue::pop O {
mutex.Lock();
while (Q.1sEmpty())
mutex.Unlock();
eventNotEmpty.Wait();
mutex.Lock();
X = Q.remove();
it (10.1sEmpty())
eventNotEmpty.Signal();
eventNotFull _Signal();
mutex.Unlock(); return Xx;

by

* |ncrements past max, stolen wake-ups are possible

« What if events were manual in the above?

- Major performance hit: all threads wake up and
busy spin on their while loops "

Back to Semaphores

 |f WaitAll is available, work “theft’” can be avoided

- PC3.2

// all events are AUTO (binary semaphore)
pcQueue: zpush (ltem x) {
WaitAll (eventNotFull, mutex);
Q.add (xX);
it C 1Q.isFull O)
eventNotFull _Signal();
eventNotEmpty.Signal();
mutex.Unlock();

// both events are AUTO (binary semaphore)
Item pcQueue::pop O {
WaitAll (eventNotEmpty, mutex);
X = Q.remove ();
it (1Q0.1sEmpty())
eventNotEmpty.Signal();
eventNotFull _Signal();
mutex.Unlock(); return Xx;

by

« Now the same with manua

- PC3.3

-reset events

// all events are MANUAL

pcQueue: zpush (Item x) {
WaitAll (eventNotFull, mutex);
Q.add (xX);
it (Q.iskFull O)

eventNotFull _.Reset();

eventNotEmpty.Signal();
mutex.Unlock();

// both events are MANUAL

Item pcQueue::pop O {
WaitAll (eventNotEmpty, mutex);
X = Q.remove ();
it (Q.isEmpty())

eventNotEmpty.Reset();

eventNotFull _Signal();
mutex.Unlock(); return Xx;

Back to Semaphores

* One more version to consider:

- PC34

pcQueue: :push (ltem x) {
mutex.Lock();
while (Q-isFull())

mutex.Unlock();

Sleep(DELAY);
mutex.Lock();

Q.add (xX);

mutex.Unlock();

Item Queue::pop O {

}

mutex.Lock();

while (Q.isEmpty())
mutex.Unlock();

Sleep(DELAY);
mutex.Lock();

x = Q.pop QO;

mutex.Unlock();
return Xx;

* Probably the simplest approach
- Arguably inefficient due to sleep-looping
- May cause starvation for certain threads

16

Summary

All methods need at least a mutex, but additionally:

« PC 2.0 requires a counting semaphore
- |deal textbook solution since it's elegant and simple
- Does not handle bursty push/pop

 PC 2.1 similar to 2.0, but further requires WaitAll

- Even more elegant, but same drawbacks as 2.0
- Does not work with eventQuit

 PC 3.0 requires monitors and condition variables
- Possible in C++, but not optimal speed

 PC 3.1 requires just a binary semaphore
- Allows stolen wake-ups, but can handle bursty data easily

17

Wrap-up

PC 3.2 requires binary semaphore and WaitAll

- Handles bursty data well, but more elegant than 3.1 and
prevents stolen wake-ups

- Signals unnecessarily if queue is rarely full or empty

PC 3.3 requires manual events and WaitAll
- Similar to 3.2, but less signaling when there is work to do

PC 3.4 requires nothing beyond a mutex

- Most flexible as threads can perform useful checks (e.g., the
quit flag) while being awake

- Sleep-spinning is seemingly bad, or ... is it?
Ultimately, performance is what really matters

- We’'ll consider a few benchmarks next time
18

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Homework #2
	Homework #2
	Chapter 5: Roadmap
	Bounded Producer-Consumer
	Bounded Producer-Consumer
	Bounded Producer-Consumer
	Bounded Producer-Consumer
	Chapter 5: Roadmap
	Monitors
	Monitors
	Monitors
	Monitors
	Back to Semaphores
	Back to Semaphores
	Back to Semaphores
	Summary
	Wrap-up

