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Abstract—Previous analytical work [15], [16] on the resilience
of P2P networks has been restricted to disconnection arising
from simultaneous failure of all neighbors in routing tables
of participating users. In this paper, we focus on a different
technique for maintaining consistent graphs – Chord’s successor
sets and periodic stabilizations – under both static and dynamic
node failure. We derive closed-form models for the probability
that Chord remains connected under both types of node failure
and show the effect of using different stabilization interval lengths
(i.e., exponential, uniform, and constant) on the probability of
partitioning in Chord.

I. INTRODUCTION

Peer-to-peer (P2P) networks have received tremendous in-
terest in recent years among both Internet users and computer
networking professionals. One of fundamental problems in the
study of these systems is the ability of the network to stay
connected under node failure [1], [3], [7], [9], [10], [14], [15],
[19], [21], [23], [25]. While previous analytical work [15], [16]
on disconnection of P2P networks has focused on neighbor
tables and partitioning arising from failure of entire routing
tables, structured P2P networks usually maintain auxiliary
sets called successor lists [24], [25], whose sole purpose is
to recover the system from inconsistent states and provide
resilience [25]. In this paper, we focus on partitioning of one
particular Distributed Hash Table (DHT) called Chord [25]
and note that similar results can be obtained for other types
of successor/leaf sets.

Recall that each node v in Chord maintains a list consisting
of its r = Θ(log n) successors and a routing table containing
k = Θ(log n) neighbor pointers, where n is the system size.
Note that routing tables are used to reduce lookup latency,
while successors ensure resilience during churn. Even if all
routing tables are in the failed state, Chord is still able to
function by forwarding queries, repairing failures, and finding
new neighbors via successor lists. When all r successors of
any node fail simultaneously, the system becomes partitioned
and is potentially unable to recover without a bootstrap.1 We
generally call the event of a user losing all of its successors
node isolation and note that it determines the likelihood of
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1Although neighbors in some routing tables may still be alive, there is no
guarantee that the system can return to a consistent state after partitioning.

graph partitioning:

P (graph disconnects) = P (X > 0), (1)

where X is the number of users that are isolated in the
system. Due to the strong dependency among successor lists
of consecutive users along the circle and entirely different
stabilization strategies studied in this paper, previous neighbor
churn models [15] cannot be applied to obtain the probability
in (1). We perform this task below for both static and dynamic
node failure.

A. Static Failure

Many prior studies have been interested in the resilience of
structured P2P networks against static node failure [9], [10],
[25], i.e., when each node independently fails with a certain
probability p. We apply the Erd̈os-Rényi theorem to show that
under p-fraction node failure, the probability that Chord with
size n →∞ remains connected is asymptotically:

lim
n→∞

P (X = 0)
e−n(1−p)pr = 1, (2)

where r = Θ(log n) is the number of immediate successors
a user monitors. It is rather surprising to find from (2) that
although the dependency among successor lists of consecutive
users is very strong, Chord enjoys the same level of static
resilience as networks where connectivity is determined using
routing tables consisting of largely independent neighbors
[16]. Setting r = c log2 n, where c > 0 is a constant, (2)
shows that as n → ∞ the probability that Chord remains
connected approaches 1 if p < 2−1/c and 0 if p > 2−1/c.

B. Dynamic Failure

As observed in deployed structured P2P file-sharing systems
[22], [26], users join and fail at a high rate of churn. The
second part of this paper focuses on the connectivity of Chord
under dynamic node failure. We assume that each joining
user v obtains r clockwise closest peers as its successor list
and then stays in the system for L time units, where L is
drawn from some user lifetime distribution F (x). User v then
stabilizes its successor list every S time units, where S can
be random or constant, and brings the number of successors
back to r after each stabilization. For a particular stabilization
to be successful, at least one user among r successors must
stay alive for the entire interval S.



Assuming exponential user lifetimes L and exponential
intervals S, we show that probability φ that node v is isolated
due to simultaneous failure of its r successors within v’s
lifetime is upper bounded by:

φ ≤ ρρ!r!
(ρ + r)!

, (3)

where ρ = E[L]/E[S]. Furthermore, we prove that as ρ →∞,
the above upper bound becomes exact.

We then examine how individual node isolation affect
partitioning of the system as nodes continuously join and
leave. Using the Chen-Stein method [2], we establish that
when r →∞ the probability that Chord stays connected after
experiencing N user joins is asymptotically:

lim
N→∞

P (X = 0)
(1− φ)N

= 1, (4)

where φ is the node isolation probability given in (3). This
result shows that isolations of individual users in Chord can
be treated as independent when system size and successor lists
become large. While a similar phenomenon has been observed
in [16] without proof for independent neighbor behavior in
routing tables, our result in (4) is again for dependent node
isolations and is formally proven.

As (4) indicates that the task of studying global connectivity
can be reduced to that of local connectivity, we next focus on
isolation probability φ under different stabilization strategies.
We derive closed-form models of φ for uniform and constant
S, both of which have been suggested for use in Chord [25].
Our results show that both stabilization strategies are much
better than the exponential S suggested in [13], often reducing
φ by several orders of magnitude. We further show that
constant stabilization delays S are optimal and keep Chord’s
isolation probability as E[S] → 0 approximately equal to:

φ ≈ ρρ!
(ρ + r)!

, (5)

where ρ = E[L]/E[S]. The amount of improvement over the
exponential version (3) of this metric is by a factor of r!, which
is significant in most cases.

We finish the paper by studying non-exponential lifetimes
observed in real P2P graphs [28]. Even though models of φ for
heavy-tailed user lifetimes are currently intractable, we show
that φ in such systems is upper bounded by the exponential
metric (3). We confirm this effect and demonstrate the distance
to the upper bound in simulations.

The rest of the paper is organized as follows. Section (II)
provides the basics of Chord and related work on static and
dynamic node failure. In Section III, we derive closed-form re-
sults on static resilience of Chord. In Section IV, we formalize
the successor list model and derive node isolation probability
and graph disconnection probability in Chord under dynamic
node failure. Section V deals with node isolation probability
under different stabilization strategies and finds the optimal
method to keep Chord connected with highest probability. In
Section VI we show simulation results on isolation probability
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Fig. 1. User v’s successors and neighbors in Chord.

for heavy-tailed user lifetimes. Section VII concludes this
paper.

II. BACKGROUND

A. Chord Basics

Chord [25] maps each node and key using a uniform hashing
function into the identifier (ID) space {0, 1, . . . , 2m−1}, where
m is some sufficiently large number that can accommodate all
nodes without conflict. Each key is assigned to the successor
node, i.e., the first peer whose identifier is larger than the
key in the clockwise direction along the ring. As illustrated
in Fig. 1, each user v in Chord builds a successor list and
a finger table. Assuming n users in the system, the former
set contains r = Θ(log n) peers immediately following user
v along the ring and the latter set consists of k = Θ(log n)
neighbor pointers where the i-th neighbor is the owner of the
key id(v) + 2i.

Finger tables are used during key lookup where the originat-
ing node performs jumps of exponentially decreasing length
until it finds the node responsible for the key or encounters an
inconsistent state (e.g., stale pointer, dead successor) at one of
the intermediate nodes. Inconsistent states in finger tables and
successor lists are periodically repaired using a stabilization
technique, which allows Chord to fix links broken during
user departure, detect new peer arrival, and ensure lookup
success during churn. When any node v leaves the system,
its predecessor u notices v’s departure during its periodic
stabilization. Peer u then replaces v with the next alive user
along the circle and adjusts its successor list accordingly. This
process tolerates multiple nodes failing simultaneously and
only requires that no successor list sustain a failure of all
r nodes within a given stabilization interval. Similarly, node
v learns of new arrivals during its stabilization process and
properly adjusts its successor list to include the new peers.

Successor lists are generally used in routing only during the
last step of a lookup or when all finger pointers corresponding
to desired jump lengths have failed. As long as each node
has at least one alive peer in its successor list, the system
is able to correct (after some delay) all stale finger pointers
and re-populate each successor list with r correct entries, thus
ensuring consistency and efficiency of subsequent lookups.
However, when the entire successor list of any user v fails,
that user is considered isolated and Chord becomes partitioned
[25]. Recovery from such disconnection is not guaranteed in
the general case.
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B. Resilience under Node Failure

Performance of DHTs under p-fraction node failure [9],
[10], [25] and churn [6], [13], [17], [18], [19], [20], [23] have
received significant attention since the advent of structured
P2P networks. While the problem of connectivity under failure
for general graphs remains NP-complete [8], [11], [27], recent
work [16] shows that several types of deterministic and
random networks remain connected if and only if they do
not develop isolated nodes after the failure. Despite its impor-
tance, the methodology in [16] only considers the resilience
of neighbor tables rather than that of successors and does
not model stabilization. The issues studied in this paper are
analytically different due to the much stronger dependency
between successor lists of neighboring nodes than between
their finger tables and the fact that stabilization requires an
entirely different model than the one in [16].

Another modeling work by Krishnamurthy et al. [13] studies
the probability of finding a neighbor or successor in one of
its three states (alive, failed or incorrect) and uses this model
to predict lookup consistency and latency for exponential user
lifetimes and exponential stabilization intervals.

III. STATIC NODE FAILURE

In this section, we tackle resilience of Chord under static
node failure, which means that the system sustains a one-time
simultaneous failure event where each user becomes dead with
an independent probability p. This analysis introduces a new
model of handling dependent random events in Chord and can
be applied to systems of non-human entities (e.g., file systems)
where failures can in fact be synchronized. The next section
covers the more typical case of user churn observed in human-
based P2P systems.

A. Basic Asymptotic Model

Suppose that Chord is in a consistent state such that each
node correctly links to its r closest successors. Under static
node failure, p fraction of nodes in the system fail simul-
taneously, where 0 ≤ p ≤ 1 is a given number [9], [10],
[16], [25]. Define a Bernoulli random variable Xi indicating
whether node i is isolated due to the fact that its r successors
all fail while i survives:

Xi =

{
1 user i is alive and its r successors failed
0 otherwise

. (6)

Note that unlike [16], our definition does not involve finger
tables since we are only interested in disconnection/isolation
arising from disrupted successor lists. Then, the number of
isolated nodes X in the system is the sum of a large number
of dependent random variables Xi:

X =
n∑

i=1

Xi, (7)

where n is the number of nodes in Chord. It is then clear from
(1) that the probability that Chord remains connected (i.e.,
is not partitioned) is equal to P (X = 0). The next theorem

provides an asymptotic closed-form expression of P (X = 0);
however, we should note that this result is very different from
similar analysis in [16] for two reasons: 1) the model in [16]
only considers variables Xi with diminishing dependency as
r →∞, which is not the case here; 2) the final result on the
behavior of X is given in [16] without a formal proof due to
a much wider variety of neighbor sets covered by [16].

Theorem 1: The probability that each user in Chord remains
connected to at least one successor under p-fraction node
failure is asymptotically:

lim
n→∞

P (X = 0)
e−n(1−p)pr = 1, (8)

where r is the number of successors at each node.
Proof: Denote by a Bernoulli random variable Yi the

event that node i has failed. Then, we have:

p = P (Yi = 1) = 1− P (Yi = 0). (9)

Define Ln to be the length of the longest consecutive run
of 1s in sequence {Y1, . . . , Yn}:

Ln = max
1≤i≤n−k+1

{k : Yi = Yi+1 = · · · = Yi+k−1 = 1}.
(10)

Now notice that computing P (X = 0) can be reduced to
finding the distribution of Ln and ensuring that no run longer
than r − 1 peers exists:

P (X = 0) = P (Ln < r). (11)

Given that r = Θ(log n) so that r → ∞ as n → ∞, the
distribution of Ln converges to the following based on the
Erdös and Rényi law [4]:

P (Ln < r)
e−n(1−p)pr → 1, (12)

as n →∞, which immediately leads to (8).
The asymptotic result in (8) allows us to utilize a very

accurate approximation:

P (Chord is connected) = P (X = 0) ≈ e−n(1−p)pr

, (13)

which we verify next in finite-size graphs. Simulation results
of P (X = 0) in Chord under static node failure are presented
in Table I. In simulations, each node selects its node ID
according to a uniform hashing function and connects to its r
successors. After p fraction of users are uniformly randomly
chosen and removed, the graph is checked to see how many
users X are isolated. Notice from the first three columns
in Table I that simulation results with r = d2 log2 ne and
p = 2−1/2 = 0.993 show that as n increases from 1, 000 to
10, 000, the discrepancy between model (13) and simulation
results reduces fast. The rest of the table shows additional
examples of model’s accuracy for several choices of p and r.
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TABLE I
COMPARISON OF SIMULATION RESULTS OF P (X = 0) UNDER STATIC NODE FAILURE TO MODEL (13) IN CHORD

p = .933, r = d2 log2 ne n = 50, 000, r = d2 log2 ne n = 50, 000, r = d10 log2 ne n = 50, 000, r = d√ne
n Simulations (13) p Simulations (13) p Simulations (13) p Simulations (13)

1, 000 .9417 .9369 .5 1.0000 1.0000 .89 .9999 .9999 .92 1.0000 1.0000

5, 000 .9373 .9360 .55 .9999 .9999 .9 .9997 .9997 .93 .9997 .9997

10, 000 .9367 .9360 .6 .9983 .9984 .91 .9983 .9983 .94 .9971 .9971

20, 000 .9365 .9360 .65 .9821 .9821 .92 .9919 .9918 .95 .9747 .9747

30, 000 .9368 .9367 .70 .8472 .8473 .93 .9614 .9613 .96 .8077 .8076

40, 000 .9363 .9361 .71 .7771 .7771 .94 .8344 .8343 .97 .1950 .1954

50, 000 .9393 .9393 .75 .2850 .2849 .95 .4514 .4514 .98 .0000 .0000

100, 000 .9395 .9394 .79 .0038 .0038 .96 .0368 .0371 .99 .0000 .0000

B. Discussion

We next relate our results in Theorem 1 to those in [16,
Proposition 3]. Recall that [16] defines isolation as an event of
a user losing all of its neighbors in Fig. 1(b). Their results show
that all users have at least one alive neighbor with probability:

P (X = 0) ≈ e−n(1−p)pk

, (14)

where n is the system size, p is the independent node failure
probability, and k is the number of neighbors in each node’s
table. Note that we have obtained an almost identical result
(13) for successor lists in Chord, which is rather surprising
since the dependency among isolation of nodes in Chord is
much more significant than assumed in [16] (e.g., node i and
node i + 1 in Chord share r − 1 common successors).

In fact, observe that the probability that node i is isolated
due to the failures of its r successors is simply:

φ = P (Xi = 1) = (1− p)pr, 1 ≤ i ≤ n (15)

where Xi is the Bernoulli variable defined in (6). Note that
given that r →∞ as n →∞, it is readily seen from (15) that
φ → 0 as n →∞. Using (15), the approximation in (13) can
be transformed into:

P (X = 0) ≈ e−nφ ≈ (1− φ)n, (16)

where Taylor expansion e−x = 1− x holds for small enough
x as n →∞. Thus, (16) indicates that

P (X = 0) = P
( n⋂

i=1

[Xi = 0]
)
≈

n∏

i=1

P (Xi = 0) (17)

as n →∞, which shows that variables Xi in Chord behave as
if they are completely independent. Note that when r → ∞
as n →∞, node isolations become rare events. Then (17) can
be explained by the Chen-Stein theorem [2], which proves
that the number of occurrences of dependent rare events Xi is
approximately a Poisson random variable under certain con-
ditions (this method will be explicitly used in the next section
when we discuss these conditions). Therefore, as n → ∞,
Chord asymptotically exhibits the same static resilience using
its successor lists composed of largely dependent users as other
P2P networks using mostly independent peers in their neighbor
sets [16]. However, the rate of convergence of P (X = 0) in
(13) and (14) is different.

IV. DYNAMIC NODE FAILURE: GENERAL RESULTS

Recent measurements of P2P networks [5], [22], [26] show
that peers continuously join and depart the system, which is
often called churn. Thus, unlike static node failures which
happen simultaneously, node failures in human-based P2P
networks often occur dynamically as the system evolves over
time. In this section, we first introduce the successor list model
under churn, examine probability φ that all successors of node
v’s fail within its lifetime, and then derive the probability
that Chord remains connected when stabilization intervals
are exponentially distributed. We leave derivations for non-
exponential intervals for the next section.

A. Successor List Model

When each user v joins the system, it acquires a successor
list with r nearest nodes and then maintains it through periodic
stabilizations (i.e., checks for consistency and dead users). We
assume that v does not attempt to track failure of individual
users as soon as they occur, but rather performs stabilization
every S time units on the entire successor list (i.e., as done in
Chord). At each stabilization interval, v corrects its successor
list by skipping over failed nodes and appropriately adding
to the list new arrivals (if any) [19], which always brings the
number of successors at the end of stabilization back to r as
long as the system has not been disconnected at some earlier
time. For stabilization to be successful, at least one user among
r successors must survive the entire stabilization interval. The
interval S between two successive stabilizations reflects the
duration needed to complete network-related activity to detect
failure, exchange neighbor information, and any stabilization
rate-limiting applied by the nodes.

Fig. 2 illustrates the evolution of user v’s successor list in
our simple model. As shown in this figure, the number of
successors is r in the beginning of each stabilization interval
of size S. This number then monotonically decreases over time
until the next interval starts. If all r successors fail within
any interval S before v departs, v is isolated and Chord is
disconnected.

In general, as users continuously join and leave the system,
the evolution of a node’s successor list is rather complicated.
It involves not only newly arriving users that replace existing
successors, but remaining lifetimes of existing successors at
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Fig. 2. Evolution of a node’s successor list over time.

the start of each stabilization interval. For exponential user
lifetimes, however, user disconnection under this successor-
list model becomes tractable as we show next.

Before we proceed with derivations, we introduce the rules
for running simulations that verify our theoretical results. In
simulations, user arrivals occur according to a Poisson process
derived in [29] for the heterogenous churn model proposed
therein. The rate of this arrival process is given by E[N ]/E[L],
where E[N ] is the mean system size in equilibrium and E[L]
is the mean user lifetime. When a new user joins the system, it
is assigned a uniformly random ID in the set {0, 1, . . . , 232−1}
and given r immediate successors. Each user then monitors
its r successors, stabilizes them every S-interval, and departs
from the system after L time units, where L is drawn from
some user lifetime distribution F (x).

B. Node Isolation

Denote by Z(t) the number of successors of node v at time
t, where t = 0 is the time when v joins the system. Note that
Z(0) = r and Z(t) ≤ r at any age t. In the following, we show
that {Z(t)} is a Markov chain for exponential user lifetimes
and exponential stabilization intervals, which is followed by
the derivation of the exact model of node isolation probability
φ. This exact model is necessary for verifying the accuracy of
our later closed-form bounds on φ.

Observe from Fig. 2 that state transitions of process {Z(t)}
are triggered by either failure of existing successors or sta-
bilizations that occur at rate of θ = 1/E[S]. Due to the
memoryless property of exponential lifetime distributions, the
failure rate of each existing successor (no matter old or new) is
µ = 1/E[L], which is the key reason that makes the successor
list tractable for exponential L. This leads to the following
lemma.

Lemma 1: For exponential lifetimes L ∼ exp(µ) and
exponential stabilization intervals S ∼ exp(θ), the process
{Z(t)} is a continuous-time Markov chain with the state space
{0, 1, . . . , r} and transition rate matrix Q = (Qjj′):

Qjj′ =





θ j 6= r, j′ = r

jµ 1 ≤ j ≤ r, j′ = j − 1
−θ − jµ j′ = j < r

−jµ j = j′ = r

0 otherwise

, (18)
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Fig. 3. Markov chain {Z(t)} modeling a node’s successor list.
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Fig. 4. Comparison of model (21) to simulation results on node isolation
probability φ for exponential lifetimes with E[L] = 0.5 hours and exponential
stabilization intervals with E[S] = E[L]/ρ.

where θ = 1/E[S] and µ = 1/E[L].
The state diagram and transition rates of process {Z(t)}

are illustrated in Fig. 3, where each state models the number
of alive successors and absorbing state 0 corresponds to user
isolation. We usually write matrix Q in (18) in the canonical
form:

Q =

(
0 0
r Q0

)
, (19)

where r = (qj0)T for j 6= 0 is a column vector representing
the transition rates to the absorbing state 0 and Q0 is the
rate matrix obtained by removing the rows and columns
corresponding to state 0 from Q.

Define the first-hitting time T onto state 0 as:

T = inf(t > 0 : Z(t) = 0|Z(0) = r}. (20)

Then, the isolation probability φ = P (T < L) can be reduced
to [29, Theorem 11]:

φ = π(0)V BV −1r, (21)

where π(0) = (0, . . . , 1)1×r is the initial state distribution, V
is a matrix of eigenvectors of Q0, B = diag(bj) is a diagonal
matrix with:

bj = 1/(µ− ξj), (22)

µ = 1/E[L], ξj ≤ 0 is the j-th eigenvalue of Q0, and Q0 and
r are in (19).

Simulation results of isolation probability φ are shown
in Fig. 4. Notice from this figure that model (21) is very
accurate compared to simulations. Also observe that as ρ or r
increase, node isolation probability sharply decreases. While
(21) allows easy numerical computation, it provides little
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TABLE II
COMPARISON OF THE ASYMPTOTIC MODEL (24) TO THE EXACT MODEL

(21) OF NODE ISOLATION PROBABILITY φ WITH E[L] = 0.5 HOURS,
ρ = E[L]/E[S], AND r = 8

ρ E[S] s (21) (24) Relative Error
10 180 1.46× 10−4 2.29× 10−4 57.05%

50 36 2.30× 10−8 2.61× 10−8 13.41%

100 18 2.66× 10−10 2.84× 10−10 6.85%

200 9 2.55× 10−12 2.64× 10−12 3.46%

500 3.6 4.74× 10−15 4.80× 10−15 1.29%

1, 000 1.8 3.86× 10−17 3.89× 10−17 0.69%

qualitative information about how φ behaves as a function of ρ
and r. It is further difficult to compare the various stabilization
strategies (studied later in the paper) if an explicit model of φ
is not derived. We perform this task next.

C. Closed-Form Bounds on φ

Note from Fig. 2 that the sequence of stabilization intervals
forms a renewal process with cycle length S. It then follows
that isolation probability φ is equal to the probability that r
successors simultaneously fail in any interval S before user v’s
lifetime expires. Note that the probability that all r successors
fail in a particular interval S is given by:

f = P (max{L1, . . . , Lr} < S), (23)

where Li ∼ exp(µ) is the remaining lifetime of the i-th
successor at the beginning of a particular interval. Then, from
Jensen’s inequality [12, page 118], it is not hard to obtain
the following closed-form upper bound on φ and prove that it
becomes exact as the ratio E[L]/E[S] →∞.

Theorem 2: For L ∼ exp(µ) and S ∼ exp(θ), isolation
probability φ is upper-bounded by:

φ < ρf, (24)

where f = ρ!r!/(ρ + r)! and ρ = E[L]/E[S] = θ/µ.
Moreover, the bound becomes tight as stabilization intervals
become negligible compared to user lifetimes:

lim
ρ→∞

φ

ρf
= 1. (25)

The result in (25) indicates that for ρ → ∞, probability φ
for any user v to become isolated within its lifetime L can
be approximated as the summation of probabilities that v is
isolated in each individual interval. Indeed, an average user has
approximately ρ = E[L]/E[S] intervals in its lifetime and it
gets isolated in any interval with probability f . Thus, since
φ is asymptotically equal to ρf , isolation events in different
intervals behave as if they were independent.

Table II illustrates the relative distance between the upper
bound in (24) and the exact result (21) for E[L] = 0.5 hours
and r = 8. It is clear from the table that as ρ increases, the two
models converge and that the upper bound is never violated.
Also note that other comparisons for different values of E[L]
and r exhibit similar results and are omitted for brevity.

We finish this section by examining how individual node
isolations affect the connectivity of Chord as users continu-
ously join and depart the system.

D. Graph Disconnection
Notice that Bernoulli variable Xi in (6) can be used to

indicate whether user i is isolated due to the failure of
its successor list under churn as well. Then node isolation
probability can be expressed as:

φ = P (Xi = 1) = 1− P (Xi = 0), (26)

where φ is given by (21) or approximated by the upper bound
in (24). If user i is isolated during its lifetime, we consider the
system disconnected during that user’s presence in the system;
otherwise, the network is said to survive the join of peer i.

Supposing that N users have joined the system, we have
that:

XN =
N∑

i=1

Xi, (27)

is the number of isolations among N join events. In the follow-
ing, we use the Chen-Stein method [2] to study the probability
that Chord survives N user joins without disconnection, i.e.,
P (XN = 0). Note that again this result is stronger than that in
[16] since it applies to successor lists that exhibit much higher
dependency during failure than neighbor lists studied in prior
work and relies on more rigorous derivations.

Theorem 3: Given that Nφr → 0 as N → ∞, the proba-
bility that Chord survives N user joins without disconnection
approaches:

lim
N→∞

P (XN = 0)
(1− φ)N

= 1, (28)

where XN is defined in (27) and φ is given in (21).
Proof: The basic idea of the Chen-Stein method is that

the distance between the distribution of XN , i.e., a sum of N
dependent Bernoulli variables, and that of a Poisson random
variable of the same mean can be upper-bounded by [2]:

|P (XN = 0)− P (VN = 0)| ≤ α(b1 + b2 + b3), (29)

where VN is a Poisson random variable with mean E[VN ] =
E[XN ] = Nφ, α = min(1, 1/E[XN ]), and constants b1,
b2 and b3 are defined in [2]. Convergence to the Poisson
distribution happens when all of b1 − b3 tend to zero as
N → ∞. Our main task is to compute these metrics and
observe under what condition they become negligibly small.

Define Bi to be a set of users who share at least one
successor of user i in Chord:

Bi = {i− r + 1, . . . , i, . . . , i + r − 1} (30)

with i ∈ Bi and size |Bi| = 2r − 1. It follows that b3 = 0
since Bernoulli variable Xi is independent of Xj for j 6∈ Bi.
To calculate b1, note that:

b1 =
N∑

i=1

∑

j∈Bi

P (Xi = 1)P (Xj = 1) =
N∑

i=1

∑

j∈Bi

φ2

= N(2r − 1)φ2. (31)
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TABLE III
COMPARISON OF MODEL (35) OF P (X = 0) TO SIMULATION RESULTS FOR

r = 8, MEAN SYSTEM SIZE 2, 500, EXPONENTIAL L WITH E[L] = 0.5
HOURS, AND EXPONENTIAL S WITH E[S] = E[L]/ρ.

ρ = 40 (E[S] = 45 s) N = 50, 000

N Simul. (35) ρ E[S] s Simul. (35)
1, 000 1.000 .9999 16 112.5 .4831 .4557

5, 000 .9996 .9995 24 75.0 .9176 .9139

8, 000 .9993 .9993 32 56.3 .9833 .9829

10, 000 .9992 .9991 40 45.0 .9954 .9955

50, 000 .9954 .9955 48 37.5 .9985 .9985

100, 000 .9910 .9910 56 32.1 .9995 .9994

500, 000 .9555 .9556 64 28.1 .9998 .9998

1, 000, 000 .9129 .9131 80 25.7 1.000 .9999

Likewise, we obtain:

b2 =
N∑

i=1

∑

j 6=i,j∈Bi

P (Xi = Xj = 1)

=
N∑

i=1

φ
∑

j 6=i,j∈Bi

P (Xj = 1|Xi = 1)

≤ Nφ(2r − 2). (32)

The last step is to observe that b1 = Nφ2(2r− 1) → 0 and
b2 ≤ Nφ(2r − 2) → 0 as N →∞. Finally, given b1 + b2 →
0, it is shown in (29) that X approaches a Poisson random
variable with mean E[XN ]. This directly leads to:

lim
N→∞

P (XN = 0)
e−E[XN ]

= lim
N→∞

P (XN = 0)
e−Nφ

= 1. (33)

Recalling that φ → 0 as N → ∞ given the assumption
of this theorem and using Taylor expansion e−φ = 1− φ for
φ → 0, (33) yields:

lim
N→∞

P (XN = 0)
(1− φ)N

= 1, (34)

which establishes the desired result.
Theorem 3 indicates that as long as φ is sufficiently small,

probability P (XN = 0) that Chord accommodates N joining
users without partitioning simply converges to the product of
probabilities that individual nodes remain non-isolated. Note
that (28) holds under a wider set of conditions on φ that
do not necessarily require Nφr → 0, but derivations in
those cases are more tedious. Also note that a typical way of
accomplishing Nφr → 0 is to scale r with N so as to converge
φ to zero faster than product Nr converges to infinity.

Armed with (28), we propose the following approximation
to P (XN = 0) for finite N :

P (XN = 0) ≈ (1− φ)N , (35)

where the exact model of φ is given by (21) and its asymptotic
approximation is shown in (24).

Comparison of simulation results of P (XN = 0) to (35)
is presented in Table III where model φ is computed based
on (21). Notice from the first three columns in this table
that simulation results are very close to (35) from N = 103

TABLE IV
CONVERGENCE OF SIMULATION RESULTS TO MODEL φu/φ = .0127 FROM

(37) FOR E[L] = 0.5 HOURS, r = 6, AND ρ = E[L]/E[S]

ρ E[S] s Simulations of φu Simulations of φ φu/φ

20 90 2.15× 10−6 7.10× 10−5 .0303

40 45 7.59× 10−8 3.86× 10−6 .0197

60 30 9.98× 10−9 6.10× 10−7 .0164

80 22.5 2.28× 10−9 1.62× 10−7 .0141

100 18 7.18× 10−10 5.59× 10−8 .0128

to 106 for ρ = 40. The rest of this table shows that as ρ
increases (i.e., φ gets closer to zero), the model becomes
more accurate as expected. Simulations for different r show
similar results that are omitted for brevity. As an example
of applying (35), assume that Chord has a mean size 5, 000
users, r = dlog2 5000e = 13 successors, E[L] = 0.5 hours
and E[S] = 21 seconds. We then obtain from (35) that the
probability that Chord survives N = 1 billion user joins
without disconnection is 0.999987. If we assume that each
user joins and departs the network once per hour, this duration
corresponds to 228 years. Furthermore, the system survives
for N = 100 billion joins (i.e., 22, 831 years) with probability
0.998558.

V. DYNAMIC NODE FAILURE: EFFECT OF STABILIZATION
INTERVALS

Results in the previous section only apply to exponential
intervals S between two consecutive stabilizations. Though
many modeling studies assume exponential stabilization inter-
vals [13], [15] to obtain Markovian models, Chord by default
uses uniform intervals [25]. In this section, we study isolation
probability φ for uniform S, deal with φ for constant S, and
then find the optimal method for stabilizing successors.

A. Uniform Stabilization Delays

Denote by fu the probability that all r successors of node
v fail within interval S where S is uniformly distributed in
[0, 2E[S]]. Based on the renewal process with cycle length
S, it is not hard to show that for uniform S, node isolation
probability φu converges to:

φu

ρfu
→ 1, (36)

as E[S] → 0, which is similar to the result shown in (25).
Then, the ratio of isolation probability φu for uniform S to φ
for exponential S is φu/φ = fu/f , where f is given in (24).
Deriving fu, we obtain the next theorem.

Theorem 4: For fixed r and E[L], and uniform S ∈
[0, 2E[S]], the ratio of isolation probability φu for uniform
S to φ for exponential S converges to the following constant:

lim
E[S]→0

φu

φ
=

2r

(r + 1)!
. (37)

Simulation results of φu for uniform S are shown in Table
IV. Notice from this table that the ratio φu/φ indeed ap-
proaches that given by our model (37) as E[S] becomes small.
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TABLE V
CONVERGENCE OF SIMULATION RESULTS TO MODEL φc/φ = .0014 FROM

(38) FOR E[L] = 0.5 HOURS, r = 6, AND ρ = E[L]/E[S]

ρ E[S] s Simulations of φc Simulations of φ φc/φ

20 90 2.72× 10−7 7.10× 10−5 .0038

40 45 8.51× 10−9 3.86× 10−6 .0022

60 30 9.82× 10−10 6.10× 10−7 .0016

80 22.5 2.35× 10−10 1.62× 10−7 .0015

100 18 7.61× 10−11 5.59× 10−8 .0014

Since φu ≤ φ for all r, the above result demonstrates that
using uniform S is a better strategy than using exponential S
and that the amount of improvement becomes more significant
when r increases, e.g., φu/φ = 7.055 × 10−4 for r = 8 and
φu/φ = 6.578× 10−7 for r = 12.

B. Constant Stabilization Delays

Next, following the derivations of φu/φ in Theorem 4, we
easily obtain isolation probability φc for constant S.

Theorem 5: For fixed r and E[L], and constant S, the ratio
of isolation probability φc to φ approaches:

lim
E[S]→0

φc

φ
=

1
r!

. (38)

Table V presents simulation results on φc when stabilization
intervals are constant. Notice that ratio φc/φ obtained from
simulations is very close to that predicted by model (38)
even for ρ = 60 and that it converges to (38) as ρ increases
further. Model (38) indicates that simply stabilizing successors
at constant intervals can reduce isolation probability φc by a
factor of r! compared to φ as E[S] → 0. To show the exact im-
provement over exponential S, we have φc/φ = 2.480×10−5

for r = 8 and 2.088× 10−9 for r = 12. In addition, it is easy
to notice from (37) and (38) that φc ≤ φu and the ratio φc/φu

approaches (r + 1)/2r ≤ 1 as E[S] → 0. This ratio is 0.035
for r = 8 and 0.003 for r = 12.

C. Optimal Strategy

The above analysis shows that for exponential lifetimes, the
ratio of φc under constant S to φo under any other S can be
transformed into:

lim
E[S]→0

φc

φo
=

P (max{L1, . . . , Lr} < E[S])
P (max{L1, . . . , Lr} < S)

, (39)

where Li ∼ exp(µ) is the residual lifetime of the i-th succes-
sor of node v at the beginning of a particular interval. While
we already established that the above ratio is asymptotically
less than 1 for both exponential and uniform S, the next
theorem indicates that the same result holds for all other
distributions as well.

Theorem 6: For exponential user lifetimes with fixed
E[L] > 0 and the same mean stabilization interval E[S] → 0,
node isolation probability φc under constant S is no greater
than that under any random S.

Proof: For exponential user lifetimes with mean E[L] =
1/µ, recall that the probability that all r successors of node v
fail within a particular interval S is:

P (max{L1, . . . , Lr} < S) =
∫ ∞

0

G(x)fS(x)ds, (40)

where G(x) = P (max{L1, . . . , Lr} < x) = (1−e−µx)r. The
second derivative of G(x) is thus:

G′′(x) = rµ2e−µx(1− e−µx)r−2(re−µx − 1), (41)

for r ≥ 3. Then, it is easy to see that for r ≥ 3:
{

G′′(x) > 0 x < E[L] ln r

G′′(x) ≤ 0 otherwise
, (42)

which indicates that G(x) is a convex function for x <
E[L] ln r and concave for x > E[L] ln r.

For E[S] → 0, notice that S ≤ E[L] ln r holds with
probability approaching 1. This immediately transforms (40)
into:

P (max{L1, . . . , Lr} < S) =
∫ E[L] ln r

0

G(x)fS(x)ds, (43)

showing that the convex part of G(x) determines the above
metric. Then, for E[S] → 0 we obtain from Jensen’s inequality
[12] that:

P (max{L1, . . . , Lr} < S) ≥ P (max{L1, . . . , Lr} < E[S]),

since G(x) is strictly convex for x < E[L] ln r. This directly
leads to:

lim
E[S]→0

φc

φo
=

P (max{L1, . . . , Lr} < E[S])
P (max{L1, . . . , Lr} < S)

≤ 1, (44)

for any random S, which completes the proof.
Theorem 6 shows that using constant S is not only a simple

but optimal method to stabilize successors in Chord.

VI. HEAVY-TAILED LIFETIMES

Without the memoryless property on lifetime L, derivation
of probability f that all r successors fail within interval
S is simply intractable. However, for systems with heavy-
tailed lifetimes [5], [28] where old users are more likely to
remain alive for a longer time in the system, a mixture of
old and new users within a given successor list leads to a
smaller f compared to that for exponential lifetimes. Thus,
the probability of node isolation due to failure of the entire
successor list in Chord is smaller when the distribution of
user lifetimes is heavy-tailed compared to the exponential
case studied earlier in this paper, which we next confirm in
simulations.

We examine four different distributions of interval S,
including exponential with rate 1/E[S], Pareto with CDF
F (x) = 1− (1+x/β)−α where α = 3 and β = (α− 1)E[S],
uniform in [0, 2E[S]], and constant equal to E[S]. Simulation
results of isolation probability φ for exponential and Pareto
lifetimes under the four stabilization strategies are plotted in
Fig. 5. Notice in the figure that S with the highest variance
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Fig. 5. Comparison of simulation results on node isolation probability φ under different stabilization strategies for exponential and Pareto lifetimes with
α = 3 and E[L] = 0.5 hours, mean system size 2, 500, and r = 8 in Chord.

(i.e., Pareto S) performs the worst, followed by exponential
and uniform cases, while constant S is the best. Further
observe that φ for Pareto lifetimes is smaller than that for
exponential lifetimes under all four stabilization strategies and
that the difference becomes smaller as E[S] decreases. In fact,
the model is a very close match to the Pareto case in Fig. 5(c)-
(d). These observations confirm that our exponential model
of φ provides an upper bound for systems with heavy-tailed
lifetimes over a wide range of stabilization delays S.

VII. CONCLUSION

This paper tackled the problem of deriving formulas for
the resilience of Chord’s successor list under both static
and dynamic node failure. We found that under static node
failure, Chord exhibited the same resilience through the suc-
cessor list as that many other DHTs and unstructured P2P
networks [16] through their randomized neighbor tables. We
also demonstrated that when Chord experienced continuous
node joins/departures, stabilization with constant intervals was
optimal and kept Chord connected with the highest probability.
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[13] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi, “A Statistical

Theory of Chord under Churn,” in Proc. IPTPS, Feb. 2005, pp. 93–103.
[14] S. S. Lam and H. Liu, “Failure Recovery for Structured P2P Networks:

Protocol Design and Performance Evaluation,” in Proc. ACM SIGMET-
RICS, Jun. 2004, pp. 199–210.

[15] D. Leonard, V. Rai, and D. Loguinov, “On Lifetime-Based Node Failure
and Stochastic Resilience of Decentralized Peer-to-Peer Networks,” in
Proc. ACM SIGMETRICS, Jun. 2005, pp. 26–37.

[16] D. Leonard, Z. Yao, X. Wang, and D. Loguinov, “On Static and Dynamic
Partitioning Behavior of Large-Scale Networks,” in Proc. IEEE ICNP,
Nov. 2005, pp. 345–357.

[17] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Comparing
the Performance of Distributed Hash Tables under Churn,” in Proc.
IPTPS, Feb. 2004, pp. 87–99.

[18] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
Performance vs. Cost Framework for Evaluating DHT Design Tradeoffs
under Churn,” in Proc. IEEE INFOCOM, Mar. 2005, pp. 225–236.

[19] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
Evolution of the Peer-to-Peer Systems,” in Proc. ACM PODC, Jul. 2002,
pp. 233–242.

[20] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Proc. IPTPS, Mar. 2002, pp.
53–65.

[21] G. Pandurangan, P. Raghavan, and E. Upfal, “Building Low-Diameter
Peer-to-Peer Networks,” IEEE J. Sel. Areas Commun., vol. 21, no. 6,
pp. 995–1002, Aug. 2003.

[22] L. Plissonneau, J.-L. Costeux, and P. Brown, “Analysis of Peer-to-Peer
Traffic on ADSL,” in Proc. PAM, Mar. 2005, pp. 69–82.

[23] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in
a DHT,” in Proc. USENIX Ann. Tech. Conf., Jun. 2004, pp. 127–140.

[24] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” in Proc.
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), Nov. 2001, pp. 329–350.

[25] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, Feb. 2003.

[26] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” in Proc. ACM IMC, Oct. 2006, pp. 189–202.

[27] K. Sutner, A. Satyanarayana, and C. Suffel, “The Complexity of the
Residual Node Connectedness Reliability Problem,” SIAM J. Comput.,
vol. 20, pp. 149–155, 1991.

[28] X. Wang, Z. Yao, and D. Loguinov, “Residual-Based Measurement
of Peer and Link Lifetimes in Gnutella Networks,” in Proc. IEEE
INFOCOM, May 2007, pp. 391–399.

[29] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling Heteroge-
neous User Churn and Local Resilience of Unstructured P2P Networks,”
in Proc. IEEE ICNP, Nov. 2006, pp. 32–41.

9


