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ABSTRACT
Maintaining and updating signature databases is a tedious
task that normally requires a large amount of user effort.
The problem becomes harder when features can be distorted
by observation noise, which we call volatility. To address this
issue, we propose algorithms and models to automatically
generate signatures in the presence of noise, with a focus on
stack fingerprinting, which is a research area that aims to
discover the operating system (OS) of remote hosts using
TCP/IP packets. Armed with this framework, we construct
a database with 420 network stacks, label the signatures,
develop a robust classifier for this database, and fingerprint
66M visible webservers on the Internet.
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1. INTRODUCTION
With the immense growth of the Internet, classification of

large networking datasets has become an important topic [1],
[6], [9], [11], [14], [16], [19], [20], [26], [34], [35]. For classifiers
to work, there must be a process that establishes signatures
for known types of behavior and builds a database that con-
tains all sufficiently different specimens found in the wild.
To keep results up-to-date, new signatures must be periodi-
cally acquired and merged into the existing database. This is
often a manual process that suffers from human error, poor
repeatability, heuristic decisions, and database compositions
incompatible across different classification methods.
To overcome these problems, we investigate algorithms

and models for automated creation of clusters among the
available samples, elimination of duplicates, and assignment
of labels to the resulting signatures. We next explain the
issues involved and our results.
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1.1 Motivation and Contributions
Performance of each classifier depends on not only its in-

ternal algorithms, but also database D and types of volatil-
ity experienced during measurement. This makes compar-
ison between different approaches (e.g., Nmap [21], Snack-
time [3], Hershel [25], p0f [33]) fairly complicated, especially
if they utilize incompatible sets of features, databases, or
assumptions on feature determinism. For example, consider
method M1 with n signatures and M2 with m≪ n. It may
appear that M1 is more powerful because its D is bigger;
however, its classification accuracy may be lower due to the
larger number of options to choose from and/or less reliable
decision-making. Additionally, the specific model of distor-
tion X (i.e., noise in certain features) applied during the
experiment may have a dramatic impact on the result. In
such cases, it is possible that M1 resorts to random guessing
and makes inferior choices to those of M2.

To capture these aspects, our first contribution is to pro-
pose that each classification method be characterized by the
number of signatures d(1 − ϵ,X ), which we call the dimen-
sion, between which it can differentiate with probability at
least 1− ϵ under a given X . We also argue that database D
should be customized to each pair (ϵ,X ) to contain exactly
d(1 − ϵ,X )-separable signatures. To determine the dimen-
sion and the corresponding D, our second contribution is to
propose an algorithm we call Plata1, which disturbs each
candidate signature in D using X and verifies that it can be
matched to itself with probability at least 1−ϵ. Samples that
fail to meet this criterion are eliminated and classification
decisions among other signatures are redistributed in an it-
erative procedure that stops when all remaining candidates
are (1− ϵ,X )-separable. Assuming availability of labels for
a subset of initial candidates, we explain how Plata auto-
matically assigns them to the d generated clusters.

We apply these concepts to Hershel [25], which is a classi-
fier that, unlike all previous tools in stack fingerprinting, al-
lows random OS behavior and provides probabilities, rather
than heuristic weights, for the match across any pair of
samples. We focus on its temporal network features (i.e.,
delay jitter) since they are highly volatile and fairly well-
understood, but difficult to separate using manual analysis.
This leads to our third contribution that consists of build-
ing a Plata database using 9.7K webservers discovered in
our campus network and passing all HTTP headers through
simhash [16] to label the elements ofD. Using only delay fea-
tures, we show that Hershel achieves 80%-separation under

1The city of La Plata in Argentina pioneered fingerprint
databases in 1892.
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500-ms random distortion on 117 signatures. Adding deter-
ministic header values, this number jumps to d(0.8,X ) =
398, which is 3.4 times larger than the biggest database in
prior work [25].
While Plata works well, its Monte Carlo simulations re-

quire a large amount of CPU time to compute the Hershel
probabilities (i.e., over 24 hours using 16 cores). Therefore,
our fourth contribution is to build a closed-form model for
the matrix produced by Plata. This leads to an interest-
ing discovery that Hershel’s iid (independent and identically
distributed) jitter assumption [25] is violated in practice,
making the model disagree with simulations. We therefore
create a novel classifier for temporal features that relies on
one-way delay instead of jitter. We call the resulting method
Hershel+ and show that it is not only more accurate, but
also faster than Hershel after an appropriate expansion of
integrals. It also admits a closed-form representation of the
entire Plata matrix, which reduces the separation time to
just 12 minutes and boosts our database dimension to 420
separable signatures. All of this forms our fifth contribution.
We finish the paper by scanning the Internet on port 80

and applying Hershel+ to the result. Among Internet-wide
studies, this is the largest population to be fingerprinted
(i.e., 66M IPs), using the most extensive database (i.e., 420
signatures), and the first such attempt with an automati-
cally generated D. Compared to the scan six years ago [25],
we find that the number of Linux and embedded devices has
almost doubled, while that of Windows has remained sta-
ble. We compare some of our results with those of Nmap
and discover a major flaw in the operation of the latter
that surfaces in scenarios with non-ideal network conditions
(e.g., firewalls). More importantly, however, we conclude
that stochastic network effects do not impede the use of
temporal features, but they require a more careful database
construction process. Our proposed framework of Plata and
Hershel+ is a step in the direction of automated, repeatable,
and streamlined classification of massive datasets.

2. BACKGROUND

2.1 Remote OS Classification
Stack fingerprinting is often used in market-share anal-

ysis [19], [20], Internet characterization [11], [14], research
measurements [4], [8], [15], and security, where administra-
tors aim to discover vulnerable devices and/or stealth in-
truders in the network [1], [17], [26]. We split the work
across two main categories in Figure 1. In the first tier are
classifiers that rely only on deterministic features, usually se-
lected from the headers of various protocols (i.e., TCP, IP,
UDP, ICMP). Among these, Nmap [21] is the most promi-
nent tool with rules to identify over 4K network stacks. With
hundreds of transmitted probes, several protocols that must
pass remote firewalls, and complaints from network admin-
istrators during fingerprinting of their networks, Nmap is
not generally considered suitable for Internet-scale use. Ad-
ditional classifiers in this category include p0f [33], Xprobe
[32], and several others [2], [18], [28]. They have a smaller
presence and significantly fewer signatures, but most of their
ideas have been ported to Nmap.
The second direction in Figure 1 handles random features,

usually in the form of delays produced by the OS. One op-
tion is use the clock drift in the kernel, which can be derived
from observing the timestamp option in streams of reply
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Figure 1: Taxonomy of previous work.

packets [13] or variation in timer frequency [6]. Another op-
tion is to monitor retransmission timeouts (RTOs) of SYN-
ACKs for half-open connections, where the methods include
Snacktime [3], RING [30], IRLsnack [14], and Hershel [25].
The last classifier uses a stochastic model that takes into
account packet loss, delay jitter, and random header-field
modifications by end-users, some of which we review below.

2.2 Database Creation
The majority of efforts in stack fingerprinting [2], [3],

[6], [13], [18], [21], [25], [28], [30], [33] concentrate on in-
troducing new features and designs to further distinguish
between the OSes, thus improving the classification step;
however, they universally rely on manual effort to construct
databases. Since all of them rely only on deterministic fea-
tures, database creation is fairly uncomplicated.

The closest related problem to ours is automatic discov-
ery of features that can be used to differentiate one OS from
another. For example, [5] proposes a set of rules built from
sending out a large number of probes (i.e., 300K) to con-
trolled hosts and randomly varying header fields to detect
patterns that produce OS-specific responses. The authors
show that this method can reliably differentiate between
three stacks (i.e., Windows XP, Linux 2.6, and Solaris 9)
in a LAN environment.

In [23], this idea is explored at a larger scale by increasing
the number of network stacks and applying a wider range of
machine-learning algorithms from the Weka tool [10]. How-
ever, their results from scaling this approach to more sig-
natures are quite pessimistic – the authors conclude that
over-fitting to non-deterministic header fields, training bias
towards certain implementations, and lacking semantics lead
to confusion for the learning algorithms.

3. OVERVIEW
We start by defining the type of decisions we are facing

and the inherent challenges. While later sections use exam-
ples from stack fingerprinting, the same concepts are appli-
cable to broader families of problems.

3.1 Terminology
Classifiers rely on vectors of distinctive features that iden-

tify each specimen, either uniquely or with some reasonably
high probability. The former case arises when the features
are deterministic, meaning all inspections of a given system
produce the same result (e.g., the order of TCP options).
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Figure 2: Classifier features.

The latter case occurs when the features are inherently ran-
dom due to some non-deterministic processes running within
the specimen (e.g., SYN-ACK retransmission delays). Fea-
tures of either type may undergo additional modification due
to influence of system owners or as byproduct of the mea-
surement process, in which case we call them volatile (e.g.,
users tuning the TCP window size, queuing delays affecting
packet spacing). All four types are illustrated in Figure 2(a).
Note that volatility and randomness are not the same –

the former arises due to forces external to the object being
classified, while the latter due to internal. This distinction is
important when internal disturbances exhibit substantially
larger variance than external, or produce patterns that can-
not be accounted for in the volatility model alone. With
this in mind, we call classifiers simple if they operate us-
ing only non-volatile deterministic features (i.e., type-1 in
Figure 2(a)) and complex otherwise (i.e., types 2-4).
Consider an automaton that performs classification deci-

sions for measurements x using some database D. We call
the matching process membership if it returns the proba-
bility that x ∈ D, where determination of the most-likely
match is not important. One example is intrusion detection
that aims to decide whether payload x is malicious or benign
against a database of known exploits. We call the process
identification if the result must produce the one signature
y ∈ D with the highest similarity to x. Stack fingerprinting
falls into this category. In either case, the accuracy of the
method is assessed by the percentage of correctly classified
values under a particular model of volatility.

3.2 Challenges
We are now ready to describe the problem of creating

D. Assume a measurement of several, possibly duplicate,
specimens. Membership classifiers are not overly concerned
with high-precision duplicate elimination as these have no
effect on accuracy, only on speed and memory consumption.
Simple identification classifiers can construct D by retain-
ing the observations with unique combinations of features,
which makes the problem trivial. However, complex iden-
tification classifiers must instead ensure separability among
the signatures, keeping only those that can be reliably dis-
tinguished from each other under various types of distortion
X . Inseparable specimens in D drop classification accuracy
and increase overhead, while offering no tangible benefit.
To visualize this better, Figure 2(b) plots random features

of four hypothetical systems – circles, squares, diamonds,
and triangles – where each point is a random observation
of the corresponding system. Assuming uniformly random
noise centered at each sample, distortion X1 keeps circles
and diamonds separable, but not necessarily triangles and
squares. Dropping either of the last two leads to a separable

3-signature database. For larger radius of noise (e.g., X2 in
the figure) the database may consist of only two separable
signatures – diamonds and one of circles/squares/triangles.

Our goal in this paper is to study separation algorithms for
volatile and/or random features, with application to inter-
packet delays in wide-scale stack fingerprinting. This prob-
lem arises in single-packet techniques [3], [25], [30] whose
classifier must heavily rely on temporal features. The gen-
eral appeal of these methods includes low bandwidth con-
sumption (i.e., no extra packets beyond those sent by the
scanner), a reduced probability of tripping IDS, no require-
ment that the target respond on closed ports or multiple
protocols, and good scalability in Internet-wide classifica-
tion. However, unlike traditional tools [21] that rely on
deterministic features, single-packet classifiers require pro-
hibitively expensive manual effort to construct databases of
non-trivial size. Since this problem has not been studied
before, we address it below.

4. DATABASE CREATION USING PLATA
This section describes our technique for ensuring separa-

bility between observations with volatile/random features
and building a database on top of such measurements.

4.1 Preliminaries
Traditional manual construction of D isolates each unique

system and lets the classifier analyze it separately. In con-
trast, our framework assumes a one-step measurement pro-
cess that remotely probes production systems S1, . . . , Sn and
builds the entire database without knowing which ones are
duplicates of each other. We allow these specimens to ex-
hibit feature randomness and aim to construct D that is
(1− ϵ)-separable under a known volatility model X .

To capture random behavior, each specimen Si must be
observed several times to establish a distribution of its be-
havior. Let ∆i be the corresponding random feature vector
whose probability mass function (PMF)

pi(δ) := P (∆i = δ) (1)

is built from observation. Note that δ = (δ1, δ2, . . .) is a
deterministic feature vector that consists of multiple scalar
values. Using a pair of initial RTOs (SYN-ACK retrans-
mission timeouts), Figure 3(a) shows the distribution of ∆i

for two Xerox printers in our dataset. Depending on the
target jitter model X , these two hosts may very well be
(1 − ϵ)-separable; however, doing so manually for hundreds
of thousands of points is close to impossible. To compound
the issue, the majority of systems use random vectors with
at least 3 dimensions and some with over 20.

Classifiers that deal with random features must provide a
function p(δ|δ′,X ) that produces a similarity score for each
pair of deterministic vectors (δ, δ′) under a given volatility
model X . This metric estimates the likelihood that δ′ has
been distorted to δ during remote measurement. Then, sim-
ilarity between two observed systems (Si, Sj) is given by the
following expectation

p(∆i|∆j ,X ) =
∑
δ

∑
δ′

p(δ|δ′,X )pi(δ)pj(δ
′). (2)

For a given i, classifiers are typically concerned with find-
ing j that produces the largest value in (2). However, we are
facing a different problem that requires normalization. Let
πi(X ) :=

∑n
j=1 p(∆i|∆j ,X ) be the total similarity weight
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Figure 3: Randomness of RTO features and elimi-
nation of duplicates in Plata.

of system Si across all available options j. Depending on
the classifier, πi may not always be 1. To handle such cases,
define

q(∆i|∆j ,X ) =
p(∆i|∆j ,X )

πi(X )
(3)

to be the probability that Si gets classified as Sj . Now sup-
pose systems S1, . . . , Sn are deployed in a production envi-
ronment (e.g., wide-area Internet) and measured using re-
mote probing. Therefore, instead of seeing ∆i, the observer
now samples ∆i+θ, where random vector θ is driven by the
same distortion model X . We are thus interested in identi-
fying the largest subset of S1, . . . , Sn in which each system
can be matched back to itself with probability at least 1− ϵ
under noise X , i.e., E[q(∆i + θ|∆i,X )] ≥ 1− ϵ.

4.2 Matrix Construction
We next describe our database-construction framework,

which we call Plata. It starts by building a confusion matrix
M = (Mij), where each cell Mij = E[q(∆i + θ|∆j ,X )] and
the expectation is taken over θ. In general, classification
decisions and vectors θ may be available only as output of
some algorithm. For example, the former might be a C4.5
decision tree and the latter may require simulations of a
specific queuing discipline. In such cases, the only solution is
to run Monte-Carlo simulations that repeatedly distort ∆i,
classify the resulting observations, and average the result to
obtain an approximation to Mij .
To this end, suppose we generate r vectors θ1, . . . , θr by

simulating X . Using the PMF in (1), we obtain the same
number of instances from random variable ∆i, which we call
δ1i , . . . , δ

r
i . Then, the approximate matrix is given by

M̃ij =
1

r

r∑
m=1

q(δmi + θm|∆j ,X ). (4)

Since this expands to

M̃ij =
1

r

r∑
m=1

∑
δ′

q(δmi + θm|δ′,X )pj(δ
′), (5)

the overhead of constructing M̃ is determined by the prod-
uct of r, matrix size n2, the number of unique values δ′,
and complexity of computing p(δ|δ′,X ), which typically is a
linear function of the combined vector length |δ|+ |δ′|.

4.3 Separation
Once complete, the diagonal of M̃ contains the probability

of self-classification under X . The next task is to iteratively

eliminate specimens that disperse a significant fraction of
classification decisions to non-diagonal cells until the tar-
get (1 − ϵ)-separability is achieved, i.e., all M̃ii ≥ 1 − ϵ.
At each step, Plata removes row k with the smallest diag-
onal value and redistributes its probability weights to the
remaining systems. The naive approach is to re-run Monte-
Carlo simulations and build a new matrix with dimension
(n − 1) × (n − 1); however, this is extremely expensive, es-
pecially when r is orders of magnitude larger than n.

The second option is to infer the new weights using a
model and build a sequence of approximations that produce
a final matrix similar to that in the naive method. Consider
row i that needs to partition M̃ik, i.e., the probability to
classify i as k, among the other columns. If we assume that
in the absence of system k, classification decisions follow the
remaining probabilities in row i, the likelihood to classify
δmi + θm as j ̸= k now becomes M̃ij/(1− M̃ik). Multiplying
this by the weight being removed and adding to the current
M̃ij , we get the following transformation that keeps row
sums invariant

M̃ij = M̃ij +
M̃ij

1− M̃ik

M̃ik. (6)

Note that if none of i’s classifications went to system k,
i.e., M̃ik = 0, row i does not change. This process contin-
ues until all diagonal values are above 1− ϵ. The remaining
systems at that stage are added to the database and their
number establishes the (1− ϵ,X )-dimension of the classifier.
An example of this reduction process is shown in Figure 3(b),

where the rows are sorted in ascending order of M̃ii for con-
venience of presentation. Setting ϵ = 0.2, there are three
rows that violate separability constraints. Since (S1, S2) are
both similar to S3, but none of them resembles S4, intu-
ition suggests the initial measurement may contain only two
separable specimens. After removal of the first row, all di-
agonals receive a boost, but (S2, S3) are still inseparable.
Another iteration produces the expected two vectors that
match themselves with probability 0.95 or better.

Note that 1 − ϵ can be used as a tuning parameter –
larger values reduce the number of eventual vectors in the
database, while smaller values preserve more, but at the risk
of having more duplicates and poor classification accuracy.
Although only M̃ii is compared against 1 − ϵ, the entire
matrix needs to be recomputed after each iteration. This
is necessary in order to properly distribute the weights of
eliminated systems using (6). Thus, the complexity of each
step is n2, repeated n − d times, where d := |D| is the size
of the final database.

4.4 Labeling
Once database D is created, Plata needs to assign system-

identifying labels to the available signatures. Assume a
process that collects mappings from each Si to the corre-
sponding label li using some type of download (e.g., port-80
HTTP requests), oracle input, or other means, but possibly
for a subset of the known specimens. Incomplete labeling
may occur due to bandwidth constraints, obfuscation of cer-
tain systems by their administrators, and generic software
names (e.g., apache) that fail to identify the underlying sys-
tem. Since labels might be available for hosts that have been
discarded during the matrix-separation step, we must again
consider the entire set S1, . . . , Sn. To this end, we classify
each known specimen using D and produce a set of clus-
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Figure 4: Applying labels to database clusters.

ters C1, . . . , Cd, where d is the (1 − ϵ,X )-dimension of the
database/classifier obtained earlier by Plata.
To eliminate duplicate labels, a separate procedure clus-

ters them into multiple categories L1, L2, . . . using some type
of string-similarity matching. As shown in Figure 4, there
is a directed edge between clusters Lk and Cj if there exists
a system Si ∈ Cj such that its label li ∈ Lk. Note that
this forms a bipartite graph in which Lk may point to mul-
tiple clusters Cj . Plata leaves the specifics of choosing the
right label for each Cj to the application. One option is to
combine the labels of all in-neighbors, as done in Figure 4.
Another option is to assign weights to edges (e.g., equal to
the number of corresponding Si’s) and enforce some mini-
mum frequency before a label is considered valid. This can
be further extended to allow for majority voting. For exam-
ple, 100 hosts with label “Linux 2.4”and two with“Windows
7” mapping to Cj probably indicate the former is more ap-
propriate than the latter.

5. OS FINGERPRINTING DATABASE
Plata is quite general and does not assume much beyond

existence of similarity function p, algorithms to produce dis-
tortion θ, and ability to observe remote systems. We now
apply this framework to one specific problem – OS stack
fingerprinting under random/volatile features.

5.1 Classifier
As discussed earlier, the majority of stack fingerprint-

ing tools treat all features as deterministic, in which case
database construction is rather straightforward. The only
exceptions are clock-skew methods [6], [13] and single-packet
classifiers [3], [14], [25], [30]. The former direction has seri-
ous bandwidth overhead and suffers from inability to scale
the database beyond a handful of hosts. The latter cate-
gory, which is our focus, sends a single SYN packet to the
target and observes a stream of SYN-ACKs, as illustrated
in Figure 5. The vector of retransmission timeouts (RTOs)
observed by the client forms the network features of the clas-
sifier. Combining unique RTO patterns with various fixed
TCP/IP header fields, these algorithms can produce pretty
robust OS identification.
The database for single-packet tools has evolved from 25

signatures in [3] to 98 in [14], eventually reaching 116 in [25],
but the corresponding (1− ϵ,X )-dimensions of the underly-
ing classifiers remain unknown. So far, manual construc-
tion of D in these tools has relied on separation only across
deterministic features (e.g., window size, TTL, RST bit)
and never examined how to determine whether two hosts
with the same fixed header values have sufficiently distinct
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Figure 5: RTOs of half-open connections.

RTO vectors. To address this issue, we next apply Plata
to temporal features of single-packet classifiers and build
the first OS-fingerprinting database that is separable across
random/volatile features.

5.2 Data Collection
We scan our campus network (three /16 blocks) on port

80 to obtain observations ∆1, . . . ,∆n from responsive hosts
S1, . . . , Sn. Since each ∆i may be random due to kernel-
scheduling peculiarities, as in Figure 3(a), we persist in gath-
ering w = 50 RTO vectors from each host, which is typically
enough to capture whatever variation ∆i may exhibit. Ad-
ditionally, to exclude lossy vectors from being included in
the database, the scanner continues until it receives w sam-
ples of the maximum length seen so far. Since packet loss in
our network is low, quick convergence follows – the average
number of SYN probes per responsive IP was 50.14.

As each Si is a public server, care needs to be exercised
to not overload the target with w back-to-back requests
and cause unnecessary side-effects (e.g., rejected connec-
tions, CPU overload). However, as it turned out, even con-
servative 1-second inter-SYNs delays were too small. One
such problem surfaced with certain printers, whose SYN-
backlog queue [35] was smaller than w. When the queue was
full, the printers terminated the oldest ongoing sequence of
SYN-ACKs and started a new one. This caused the cor-
responding ∆i to exhibit random truncation and presented
difficulties in obtaining w loss-free observations. We even-
tually settled on delaying SYN probes by 240 seconds, i.e.,
double the TCP MSL (maximum segment life), which solved
the problem.

The final caveat relates to OS kernel timing of RTOs.
As speculated in [25], some hosts use a global timer that is
independent of the SYN arrival time to generate SYN-ACKs
for half-open connections. This causes the first RTO (and
sometimes the remaining ones) to be randomized in some
default range. In such cases, it is important to capture these
effects in the database. We thus add random variable U to
240 seconds to avoid SYNs synchronization with any global
clocks. Our U is uniform in [0, 3] seconds, but other options
are possible as well.

Along with the scan, a separate process opens a connec-
tion to each responsive host and attempts to download its
root page over HTTP. This is known as banner grabbing
– a general technique for discovering host type using some
text-based protocol (e.g., telnet, finger, HTTP, FTP, and
SMTP). This was used for OS fingerprinting in the 1990s,
when Unix-based servers would readily volunteer their OS
name and version. It has since fallen out of favor because
these identification strings may be replaced by OS-oblivious
names (e.g., Apache) or altogether removed, which makes
the technique less reliable. However, banner grabbing works
for our purpose since admins have no incentive to obfuscate
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Grouping RING Snacktime IRLsnack Hershel
Deterministic only 28 209 209 344
Random only 23 52 50 117
Both 39 260 257 398

Table 1: Database dimensions.

OS names behind our campus firewall, and Plata only needs
a subset of S1, . . . , Sn to be labeled. This provides a fast,
repeatable process that requires no manual intervention.
We receive SYN-ACKs from 9,879 IPs, assemble w loss-

free RTO vectors from n = 9,701 hosts, and successfully
complete a banner download from 9,594 of them.

5.3 Separating Features
Single-packet OS-fingerprinting tools use both determin-

istic and random features. For each Si, we move the former
into vector ui and the latter into ∆i. In general, Hershel
treats ui as volatile, which means it allows users to change
TCP/IP header values without making the OS fundamen-
tally different. However, there is no even remotely accurate
model for distortion X applied by users to these features.
We therefore limit our efforts to the better-understood net-
work delay jitter and its volatility. If a realistic noise model
X becomes available for ui, Plata can be used to compact
duplicate hosts even further.
The simplest way to achieve separation on the determinis-

tic features is to combine ui with the size of RTO vector ∆i.
Splitting the available hosts S1, . . . , Sn into clusters based
on the deterministic pair (ui, |∆i|) produces the first row of
Table 1, with 28 signatures for RING [30], 209 for Snack-
time [3] and IRLsnack [14], and 344 for Hershel [25]. Note
that hosts within each cluster have same-length RTO vectors
and our next goal is to further subdivide them into smaller
groups that are (1− ϵ,X )-separable.
To decide on X , assume the objective is to achieve suffi-

cient accuracy during Internet-wide scanning, where each ∆i

is disturbed by random queueing delays along the path from
the server back to the scanner. Due to constant SYN-ACK
packet size, fixed transmission/propagation delays cancel
out during RTO computation [25]. It is thus sufficient to
use a FIFO-queue simulator that adds random delay jit-
ter θ to each measurement, ensuring that no packets are
reordered. As Hershel is fairly insensitive to the assumed
model of jitter [25], we use exponentially distributed queue-
ing delays with mean 500 ms, which results in θ being zero-
mean Laplace. If better knowledge of network conditions is
acquired, θ can be modified accordingly.
We generate r = 1K random noise vectors θ1, ..., θr and

add them to each observation of ∆i, resulting in wr = 50K
disturbed samples per host Si. We run Plata for each candi-
date classifier using their similarity function p and compute
(5), in which pj(δ

′) = 1/w. This creates one matrix M̃ for
each unique combination of deterministic features, which is
fed to Plata’s separation algorithm with 1 − ϵ = 0.8. Af-
ter all matrices are compacted, we combine the surviving
specimens into the final database D.
Going back to Table 1, the second row shows that RTO

features alone allow single-packet tools to differentiate be-
tween 23−117 stacks under this combination (ϵ,X ). Hershel
more than doubles the dimension of its nearest competitor,
which stems from its more sophisticated model for p(δ|δ′).
Combining both deterministic and random features, Hershel
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Figure 6: Plata example.

ends up with 398 signatures, which is quite significant given
the limited scope of the initial scan. Due to its higher ac-
curacy and better separation ability, the rest of this paper
stays with Hershel as the underlying classifier for Plata.

To demonstrate how matrix reduction works in practice,
consider five actual Windows hosts in Figure 6(a) with |∆i| =
2. While all of these OS kernels produce noisy RTOs, there
are two distinct patterns. Figure 6(b) shows the result of
Plata separation, which successfully extracts both patterns
(Windows Server 2003 with two different service packs) out
of the group and represents them using hosts (S3, S5).

5.4 Label Clustering
Note that Plata does not specify how to assign labels to

clusters {Lj}. Besides ground-truth obtained from device
owners, which may be infeasible for large decentralized net-
works, some of this information can be collected automati-
cally. Our approach is to proceed along this route. Recall
that HTTP headers contain the “Server:” string that some-
times identifies the version of the web server and uniquely
ties it to a particular OS (e.g., Windows IIS). However, in
other cases, the operating system can be inferred only from
the HTML content of the page, as is the case with certain
embedded devices (e.g., printers, cameras). We thus com-
bine the “Server:” field with the entire HTML page and per-
form clustering using simhash [16], which is a well-known
technique for detecting similar webpages. This creates 515
clusters L1, L2, . . ., which we match to d = 398 Hershel sig-
natures C1, . . . , Cd using the procedure in Figure 4.

The final step is to perform manual verification of label
sanity, determine which tags in the HTML to use (e.g., head,
title), and convert low-level software versions to the corre-
sponding OS name (e.g., IIS 7.5 to Windows Server 2008
R2). With enough coding effort to account for the various
formats, most of this can be automated [29], but we found
it easier to just show each page to a human and let them
decide which of the found labels is appropriate. Plata does
this by sequentially rendering one page from each Lk and
recording the user’s response. Even for n→ ∞, the number
of unique clusters should remain reasonably small.

Results reveal that our label clustering works quite well –
326 out of 398 signatures (82%) receive a meaningful descrip-
tion. They are responsible for 98% of n = 9,701 measured
hosts. Table 2 shows the top five most-popular signatures
on our campus, where Plata successfully shrinks the most
common Windows RTO pattern from 3,803 hosts down to
1. Heavy usage of Windows (43% of all servers) and Linux
(12%) is no surprise, but we also find a large amount of HP
LaserJet printers in fifth place. The 398 − 326 = 72 unla-
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Banner Hosts Deterministic features Mean RTOs
Win TTL DF TCP options MSS RST

Windows Vista / 7 / 8 / 2008 / 2012 3,803 8,192 128 1 MNWST 1,460 1, 0, 0, 1 3, 6, 12
Ubuntu / Debian / CentOS / Sci. Linux 822 5,792 64 1 MSTNW 1,460 0, 0 ,0, 0 4.3, 6, 12, 24.1, 48.2
Windows 2008 R2 / 2012 394 8,192 128 1 MNWST 1,460 0, 0, 0, 0 3, 6
Ubuntu / Redhat / CentOS / SUSE 366 14,480 64 1 MSTNW 1,460 0, 0, 0, 0 1.1, 2, 4, 8, 16
HP LaserJet Series 310 11,680 64 1 MNWNNT 1,460 0, 0, 0, 0 3, 6, 12

Table 2: Top 5 database signatures gathered from our campus scan (Win = window size, TTL = time to live,
DF = do not fragment, MSS = max segment size, RST = reset packet features).

beled cases belong to network elements that either fail to
provide a banner or supply one that contains no clue about
the underlying OS. The latter case often happens with ex-
tremely rare devices for which we have only one banner to
analyze. If Plata is exposed to additional data collection
and user input (i.e., outside of our network), these gaps can
be eliminated. The main benefit of our framework is that
only a small fraction of n (i.e., 72/9701 = 0.7%) requires
further attention.
Note that using automated banners for labeling does limit

our ability to distinguish between OS versions. For example,
the two Linux signatures in Table 2 are likely from different
kernel versions. However, if the application requires more
fine-granular labeling, additional effort – installing each OS
in a test environment or contacting the owner – is needed in
conjunction with Plata.

6. OPTIMIZING PLATA
While Plata works well, it bottlenecks on generating θm

and recomputing p(δmi + θm|δ′,X ) for each of the r random
noise samples. This becomes especially noticeable in large
groups, such as Windows with 3.8K hosts. Using 16 AMD
Opteron cores @ 2.8 GHz and 64 GB of RAM, a parallelized
C++ implementation requires over 24 hours to compute M̃ .
Although database creation is a one-time process, it is still
desirable to have faster and more scalable algorithms that
can tackle larger input. We address this next.
Analyzing (5), there are two obvious ways to reduce com-

plexity – lowering r and making function p(.) faster. How-
ever, for Hershel, we can attempt to do even better – replace
Monte-Carlo simulations with a directly evaluated model
that produces the expected probability that Si gets clas-
sified as Sj under random noise θ. The rest of the section
treats θ = (θ1, θ2, . . .) as a vector consisting of scalar random
variables, with respect to which all expectations are taken.
Since Mij := E[p(∆i + θ|∆j ,X )] can be written as∑

δ

∑
δ′

E[p(δ + θ|δ′,X )]pi(δ)pj(δ
′), (7)

construction of M in Plata requires only knowing E[p(δ +
θ|δ′,X )] for two deterministic, same-length vectors δ, δ′.

6.1 Closed-Form Plata-Hershel Matrix
To understand the results that follow, we briefly review

how Hershel deals with delay jitter. Assuming f(x) is the
distribution (density or PMF) of one-way jitter and em =
δm − δ′m is the error term in the m-th RTO, the similarity
between two deterministic vectors is [25]

p(δ|δ′,X ) =

|δ|∏
m=1

f(em). (8)

Note that (8) treats error values (e1, e2, . . .) as iid random
observations. For the default model of X , Hershel uses ex-
ponential one-way delay [25]. This produces Laplace jitter

with density f(x) = (λ/2)e−λ|x|, where parameter λ should
conservatively reflect the amount of jitter anticipated in the
network during actual measurement (i.e., 1/λ should upper-
bound the real mean). With this in mind, our goal is to
derive the following expectation

E[p(δ + θ|δ′,X )] = E
[ |δ|∏
m=1

f(em + θm)
]
, (9)

where each θm is a random variable.
Given vectors δ and δ′, we are interested in how similar

Hershel considers them after the former undergoes random
modification by the network. Suppose variables (θ1, θ2, . . .)
are iid Laplace with rate µ. Note that µ may not equal
λ if separation is performed for purposes other than future
scanning of the Internet. In that case, µmay be set to match
the environment in which S1, . . . , Sn are probed (e.g., 5-ms

average jitter for a campus network). Define bm = e−|em|

and consider the next result.

Theorem 1. For the Hershel classifier, the expected sim-
ilarity between δ + θ and δ′ is

E[p(δ + θ|δ′,X )] =
(λµ

4

)|δ| |δ|∏
m=1

{
gm λ ̸= µ

hm λ = µ
, (10)

where

gm =
2(λbµm − µbλm)

λ2 − µ2
, hm = bλm

(
|em|+ 1

λ

)
. (11)

The next logical step is to investigate whether matrix M
built using (10) matches the Monte-Carlo version M̃ . We
consider a simple scenario with |δ| = 2, δ = δ′, and λ = µ =
10. This represents some diagonal cell Mii, i.e., similarity
score of Si to itself, for a deterministic ∆i. Setting em = 0
for all m, (10) produces 6.25, while Monte-Carlo simulations

yield M̃ii = 6.7. The error increases with RTO vector length
and is more difficult to predict for off-diagonal values Mij .

Further analysis uncovers that the source of this bias lies
in Hershel’s assumption on delay jitter. To illustrate this
point, consider distorting a two-RTO vector δ using θ =
(θ1, θ2). From the queuing model of [25], consecutive Laplace
jitter values can be expressed using three iid exponential
one-way delays X,Y, Z, i.e., θ1 = Y − X and θ2 = Z − Y .
While [25] is reasonable in arguing that X,Y, Z are indepen-
dent due to the large gaps between SYN-ACKs, the same
logic unfortunately does not apply to jitter because θ1 and
θ2 share a common variable Y . For em = 0 and |δ| = 2,
the correct expectation of (9) is E[f(θ1)f(θ2)]. On the
other hand, Theorem 1 uses Hershel to deduce the result
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as E[f(θ1)]E[f(θ2)] = λ2/16. We next expand the former
term and show that it deviates from the latter for all λ.

Theorem 2. For µ = λ and em = 0, the expected Hershel
similarity under dependent two-RTO jitter (θ1, θ2) is

E[f(θ1)f(θ2)] =
29λ2

432
. (12)

Using λ = 10 in (12) produces 6.7 observed in simulations.
While we succeeded in correctly modelingMii for two RTOs,
doing the same for i ̸= j and longer vectors δ is very tedious.

6.2 Hershel+
We now show how the classification problem can be solved

using only one-way delay (OWD). This requires a new model
for p(δ|δ′,X ) and additional constraints during creation of
D. For host Si, define Ai to be a random vector of SYN-
ACK transmission timestamps relative to the departure time
of the first reply. Then, assuming that network delays are
negligible, the distribution of elements inside Ai can be ac-
curately obtained at the measurement client by subtracting
the RTT of the first SYN-ACK from all observed values.
Now suppose that the scanner finds a remote host on

the Internet and obtains a vector of SYN-ACK arrival in-
stances as A, which are relative to the transmission time of
the SYN. The main caveat here is that the forward SYN
delay and server think time, which we collectively call T ,
are not just unknown in the public Internet, but also likely
non-negligible. Consequently, the classifier must consider all
options for T in its decision whether the observed A could
have been produced by some known vector Ai. Delay ran-
domness is handled similar to (7), which means that it is
again sufficient to consider only deterministic pairs of delay
vectors, i.e., by conditioning on A = a = (a1, a2, . . .) and
Ai = a′ = (a′1, a

′
2, . . .). This is illustrated in Figure 7. Sup-

posing that Qm is the m-th OWD from the server to the
client, we have am = T + a′m +Qm.
With the new model, redefine the error as em = am − a′m

and let s = minm{em} be the largest possible value of T
when a system equipped with a′ is responsible for observa-
tion a. Then, the similarity function becomes

p(a|a′,X ) = E
[ |a|∏
m=1

fQ(em − T )
]
, (13)

Distribution of OWD Features used Hershel Hershel+
Pareto (mean = 0.5) RTO only 22.1% 24.2%
Pareto (mean = 0.1) RTO only 33.1% 33.3%
Uniform (mean = 0.5) RTO only 21.7% 22.1%
Uniform (mean = 0.5) All 99.9% 99.9%

Table 3: Accuracy on the Hershel database.

Distribution of T Loss Hershel Hershel+
Exponential (mean = 0.1) – 96.9% 97.6%
Pareto (mean = 0.1) – 96.9% 97.4%
Pareto (mean = 0.1) 3.8% 95.2% 95.8%
Pareto (mean = 0.1) 10% 92.3% 92.9%

Table 4: Accuracy on the Plata database.

where fQ(x) is the density of OWD from model X . Assum-
ing fT (x) is the PDF of T , this leads to

p(a|a′,X ) =

∫ s

0

[ |a|∏
m=1

fQ(em − x)
]
fT (x)dx. (14)

We apply Hershel’s exponential OWDwith fQ(x) = λe−λx

and additionally represent T as a sum of two exponential
variables (i.e., forward SYN delay and server think time),
which leads to fT (x) = ν2xe−νx, i.e., Erlang(2) distribution
with some rate ν and mean 2/ν. The OWD classifier (14)
is more complex than Hershel’s as it requires numerical in-
tegration of a computationally expensive product of shifted
density functions. Our next result shows that this can be
avoided through additional derivations.

Theorem 3. The closed form for (14) is

p(a|a′,X ) = 1s≥0ν
2λ|a|ψ

|a|∏
m=1

e−λem , (15)

where 1 is an indicator variable and

ψ =


1−e−(ν−λ|a|)s(1+(ν−λ|a|)s)

(ν−λ|a|)2 |a| ̸= ν
λ

s2

2
|a| = ν

λ

. (16)

Replacing Hershel’s p(δ|δ′,X ) with (15) and keeping the
rest of the method unchanged gives rise to a technique we
call Hershel+. Our next step is to verify that its accuracy
is no worse than that of Hershel even when the assumed
Erlang model for T , which uses ν = 4 in all computation
below, does not match the true distribution. To this end,
we use the simulation setup from [25], where the only new
parameter is T . In the first scenario, we keep T uniform in
[0, 1] seconds, maintain zero packet loss, and run both meth-
ods over Hershel’s original database with 116 stacks. The
result is shown in Table 3. As the new model only changes
the RTO classifier, the most important comparison involves
the first three rows of the table, which confirm superiority
of Hershel+. In the second scenario, we fix the OWD to be
uniform in [0, 1] and use the larger Plata database. Table
4 shows that Hershel+ again edges out Hershel, despite its
higher uncertainty related to T .

6.3 Closed-Form Plata-Hershel+ Matrix
Armed with the new classifier, we revisit the issue of ob-

taining a Plata matrix without Monte-Carlo simulations. To
model X , we disturb each Ai using a random OWD vector
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V = (V1, V2, . . .), where all Vi are iid exponential with rate
λ. We additionally apply noise to the forward SYN delay
and server think time, which are collectively given by an Er-
lang(2) random variable W with rate ν. Note that we use λ
and ν from Hershel+, although other options are possible.
Define matrix H = (Hij) to consist of all pairwise Her-

shel+ similarities between the signatures in the database
under distortion V +W . This requires computing

ζ(a, a′) := E[p(a+ V +W |a′,X )] (17)

and setting Hij = E[ζ(Ai, Aj)], where the second expecta-
tion is taken over random variables (Ai, Aj).

Theorem 4. Define v = (λ/2)|a|ν/4. Then,

ζ(a, a′) = v

∫ ∞

−∞
e−λ

∑
m |em+z|(1 + ν|z|)e−ν|z|dz. (18)

Note that (18) can be computed by splitting the integral
into |a|+2 regions such that |z| and |em+z| are conclusively
resolved as being either positive or negative. Each of these
smaller integrals expands in closed-form; however, due to the
large number of terms involved and lacking structure, this
result is difficult to represent symbolically. Algorithmically,
however, this is simple to code using a bit-vector of size |a|+1
that keeps track of which of the terms (z, e1 + z, e2 + z, . . .)
is positive. Moving from one interval to the next flips one
bit from 0 to 1 and switches to the corresponding integral.
After verifying that (18) and its |a|+ 2 sub-integrals pro-

duce correct results, we run Plata separation over H instead
of M̃ and obtain 420 signatures, out of which 79 come out
unlabeled. Recalling Table 1, notice that Hershel+ increases
the dimension of its predecessor by 22 entries, indicating a
more powerful classifier. Performance improvement is re-
markable as well – the runtime reduces from over 24 hours
to just 12 minutes. Added benefits include higher accuracy
of Hershel+ decisions and alleviation of uncertainty if r is
large enough to keep Monte-Carlo results convergent.

7. INTERNET SCAN
We now use Hershel+ to classify every visible webserver

on the Internet against the previously constructed Plata
database.

7.1 Classification Results
In July 2015, we sent 2.7B SYN probes on port 80 to

every IP address advertised in BGP and obtained SYN-ACK
responses from 66.4M hosts. This is almost double the 37M
IPs used in the Hershel study [25]. The scan lasted 6 hours
and operated at 125K packets per second.
Table 5 shows the Hershel+ output on the Internet data.

We break down the result by OS category, showing the 5
most-popular signatures in each. Not surprisingly, Linux
still dominates the webserver market. Although its top-
5 signatures are separable at the feature level, limitations
of our banner-based labeling do not allow identification of
the specific version of these OSes. In second place, there
is a large number of embedded devices, mostly routers and
printers. This finding agrees with those in previous mea-
surements at this scale [11], [25]. In third place, we combine
hosts that map to a signature without a useful banner and
those with a zero probability of matching to anything in D.
The former category is responsible for 94% of these cases,
where 79 “mystery” signatures in D catch almost 12% of

Category OS / Device Hosts

Linux

Ubuntu / Redhat / CentOS 14,551,706
Ubuntu / Redhat / SUSE 2,620,566
Ubuntu / Debian / Redhat 2,381,733
Ubuntu / CentOS / SUSE 1,831,519
Ubuntu / Redhat / Sci. Linux 1,413,660

Total in category 25,679,480

Embedded

3Com Routers 2,661,835
Dell Laser / Xerox Printers 1,985,840
Embedded Linux 1,869,053
Cisco Embedded 1,699,418
Citrix Netscaler 1,118,748

Total in category 24,447,390

Unknown
No label in database 7,936,268
Zero probability of match 474,585

Total in category 8,410,853

Windows

Windows 7 / 8 / 2008 / 2012 2,186,229
Windows XP / 2003 822,130
Windows XP / 2000 / 2003 791,298
Windows 2008 R2 / 2012 701,204
Windows 2008 R2 / 2012 427,401

Total in category 7,124,444

Other

FreeBSD 480,789
FreeBSD 107,635
Novell Netware 37,981
Mac OSX Server 35,613
Solaris 9 / Solaris 10 35,375

Total in category 752,602

Table 5: OS classification of the Internet dataset.

all Internet classification, despite being rare on our campus.
Future work will attempt to uncover their OS.

Next, there is Windows in fourth place with 7M hosts. Un-
like the previous categories, we can identify the specific type
of Windows from its IIS version in the HTTP header. While
it is by far the most popular desktop OS [19], its penetra-
tion of the webserver domain has been lagging behind Linux.
This is in contrast to our campus scan, which was domi-
nated by Windows. One explanation for Unix prevalence
is migration of online services to enterprise clouds, which
have traditionally favored Linux installations. Another is
the possibility that Linux distributions more commonly en-
able a webserver in their default configurations or alias more
IPs to the same physical server. And yet another is a higher
percentage of Unix computers not being protected by a fire-
wall (either corporate or host-level).

The table ends with 752K devices (1.1% of the total) in
the “other” category that includes BSD, Mac, Novell, and
Solaris. Compared to the previous large-scale fingerprinting
effort [25] that used scans from July 2010, the table shows
that Linux and embedded have doubled their numbers (i.e.,
from 13-14M to 25-26M), Windows remained pretty much
unchanged (i.e., a slight drop from 7.5M to 7.1M), and the
remaining group lost 68% of its membership (i.e., from 2.3M
to 752K). In summary, 99.3% of all IPs are successfully clas-
sified and 87.3% have a label.

7.2 OS Popularity and Confidence
To better understand device deployment at different scales,

we next examine the distribution of cluster size W for each
of the 420 signatures in our database. Figure 8(a) shows the
CCDF P (W > x) using the initial campus scan. This plot
is a close match to Pareto tail (x/β)−α, where α = 0.8 and
β = 1. Interestingly, the bottom 40% of the signatures map
to a single host each. In contrast to the well-known stacks
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Figure 9: Hershel+ classification confidence.

in Table 2, these clusters enjoy more esoteric items such as
security cameras, room-temperature controllers, UPS (unin-
terruptable power supplies), tape backup, humidity sensors,
and even discontinued oscilloscopes. Figure 8(b) plots the
same tail for the Internet scan, which is a good match to
the Weibull distribution exp(−(x/λ)k), where k = 0.4 and
λ = 45K. Each of the top-14 signatures accounts for at least
1M hosts and the top-17 are responsible for 60% of IPs. The
bottom 204 signatures match a combined 1% of the servers
(i.e., 664K).
Another interesting issue is the amount of confidence with

which Hershel+ selects the best OS during classification. As-
suming a is a measurement from some IP, (14)-(15) can be
used to obtain similarity score p(a|Aj ,X ) for each OS j, the
highest of which is selected as the match after normaliza-
tion. Figure 9(a) plots the distribution of this probability
across all 66.4M IPs. Observe that almost no classifications
occur with less than 20% likelihood and over half the hosts
fit some signature with probability at least 65%. The far end
of the CDF shows 7% of the IPs with a 100% match, which
are devices with truly unique combinations of features. In
the same vein, to determine if the second-best match fol-
lows closely the top signature and how often the classifier
might be “guessing,” Figure 9(b) shows the CDF for the ra-
tio of the two highest probabilities. In 17% of the cases, the
second-best match is pretty close, i.e., within a factor of 1.2.
Afterwards, the curve sharply rises and yields over 68% of
IPs with a decisive winner (i.e., ratio 2:1 or better).

8. COMPARISON WITH NMAP
Since ground-truth for millions of Internet hosts is diffi-

cult to obtain, we next perform comparison against Nmap
v6.49 [21]. During the scan, we randomly selected 1% of
responsive hosts and invoked Nmap to fingerprint them as
soon as the first SYN-ACK was received. Real-time exe-

Category Category match String match Total
Linux 301 (98.6%) 25 (8.1%) 305
Embedded 158 (75.5%) 34 (16.2%) 209
Windows 82 (95.3%) 82 (95.3%) 86
Other 3 (100%) 3 (100%) 3
Total 544 (90.2%) 144 (23.8%) 603

Table 6: Internet subsample classification.

cution was needed to minimize the possibility they left the
network and other hosts appeared in their place (e.g., due
to DHCP). We used Nmap’s least-verbose mode to limit the
traffic and complaints from target networks; however, this
still resulted in 80 sent and 60 received packets per IP, as
well as several notifications to campus network administra-
tors about intrusive activity coming from our subnet. The
complaints identified Nmap by name, which raises questions
how often IDS tools not just detect, but drop its traffic.

Out of 664K IPs, Nmap was successful for only 481K (i.e.,
72%). To rule out host departure, we verified that an over-
whelming majority (99.8%) of the attempted IPs returned
at least one reply to Nmap probes. The failed cases include
responses unknown to the database and firewall obstruction
of non-SYN packets. We uniformly subsampled these 481K
IPs, excluded roughly 12% for which Hershel+ returned“un-
known,” and ended up with 603 cross-labeled samples for
further manual analysis.

8.1 Agreement
We first investigate how well Nmap and Hershel+ agree on

the classification of the selected subset of hosts. Comparison
with Nmap is far from straightforward since its stack names
are human-created and rather fine-granular. The most de-
tailed category in our Plata database is Windows, while the
majority of other hosts are marked with just the name of the
OS and/or device. Thus, it makes sense to separately con-
sider whether Hershel+ matches the exact signature string
of Nmap or just the category.

Table 6 shows the result of this process, where we group
hosts based on Hershel+ classification. In the category match,
we achieve over 98% agreement in Linux, 95% in Windows,
and 100% in “other.” With embedded systems, Nmap often
claims the host is running Linux, whereas we have a spe-
cific (non-Linux) device name from the banner. Without
tedious manual effort, it is difficult to know if Nmap has
been exposed to these devices and whether it can reliably
identify them. With that said, we still mark these cases as
a mismatch, which drops the agreement rate to 75%.

As for OS strings, lower numbers were expected due to
the difference in how the databases are labeled. The biggest
drop occurs in Linux, where our D consists of just distri-
bution names (e.g., Ubuntu, Redhat, SUSE), while Nmap
provides both major and minor kernel versions (e.g., Linux
2.6.18-22). Nevertheless, there are 25 matching signatures
for which both methods can identify only the Linux family.
For embedded systems, Nmap produces a large variety of
device names, many absent from our campus. Finally, the
Windows group keeps the same 95% consensus rate since all
82 agreed-upon cases are exact string matches.

8.2 Disagreement
We now analyze the peculiar case of the four Windows

hosts from Table 6 where Nmap and Hershel+ disagree. We
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Vector Win TTL DF TCP options MSS RST SYN-ACK arrival (sec) Label
D1 8,192 128 1 MNWST 1,464 1,0,0,1 0.00, 2.99, 9.00, 21.00 Windows 7 / 2008 R2
S1 8,192 128 1 MNWST 1,464 1,0,0,1 0.22, 3.22, 9.22, 21.22
S2 8,192 64 1 MNWST 1,460 0,0,0,0 0.18, 3.17, 9.17
D2 16,384 128 0 MNWNNTNNS 1,380 0,0,0,0 0.00, 2.65, 9.21 Windows 2000 / 2003
S3 16,384 128 0 MNWNNTNNS 1,460 0,0,0,0 0.21, 2.67, 9.22
S4 16,384 128 0 MNWNNTNNS 1,370 0,0,0,0 0.21, 3.07, 9.63

Table 7: Hershel+ classification and features.

Vector R1 F11 = Win F12 = TTL F13 = DF F14 = TCP options F15 = MSS (R2, . . . , R10) Label
D1 1 ∅ ∅ ∅ ∅ ∅ 0000 111 00 iPXE 1.0.0+
D2 1 ∅ ∅ ∅ ∅ ∅ 0000 111 01 Tomato 1.28
S1 1 8,192 128 1 MNWST 1,464 0000 000 00
D3 1 ∅ 64 1 MNNSNWNNT 1,460 1000 100 11 OpenBSD 4.3
S2 1 8,192 64 1 MNWST 1,460 1000 100 11
D4 1 ∅ 64 0 ∅ ∅ 0000 111 01 D-Link DWL-624
S3 1 16,384 128 0 MNWNNTNNS 1,460 0000 000 01
S4 1 16,384 128 0 MNWNNTNNS 1,370 0000 111 01

Table 8: Nmap classification and features.

call these observations S1, . . . , S4. Table 7 shows their fea-
tures and the corresponding database signatures D1−D2 for
the Hershel+ classification. Notice that S1 is an easy classi-
fication decision because the RTT is small (i.e., ≈ 220 ms)
and D1 matches all of its features. For S2, Hershel+ prefers
the same OS, overcoming a change in TTL/MSS and a loss
of the RST packet at 21 sec. For the other two hosts, both
matching to D2, the only discrepancy is the MSS, which is
a highly volatile field that depends on the MTU [25]. Judg-
ing from the OPT and RTO features, the accuracy of these
decisions is not in doubt.
To explain the Nmap outcome for these IPs, we need

to review its classification technique. Suppose vector R =
(R1, . . . , Rl) consists of indicator variables such that Ri = 1
iff probe i elicits a response from the network stack. We split
R into several groups – a regular SYN to an open port (R1),
four TCP packets with extra flags (i.e., ECN, null, rainbow,
ACK) to an open port (R2 − R5), three TCP packets to
closed ports (R6−R8), and UDP/ICMP probes (R9−R10).
For cases with Ri = 1, suppose Fij records the j-th feature
of that packet, where Fij = ∅ indicates a missing optional
header field. A combination of vector R and corresponding
matrix F constitutes a signature Φ = (R,F ).
Suppose a match in Ri carries weight wi and that in fea-

ture Fij some other weight wij . Then, Nmap computes
similarity between an observation Φ and a signature Φ′ =
(R′, F ′) from the database using the following∑l

i=1(Yi1Ri=R′
i
wi +RiR

′
i

∑
j Zij1Fij=F ′

ij
wij)∑l

i=1(Yiwi +RiR′
i

∑
j Zijwij)

, (19)

where variable Zij = 1 iff field j in packet i is non-empty
in both the observation and database (i.e., Fij ̸= ∅, F ′

ij ̸=
∅) and Yi = Ri for i ∈ [6, 8] and 1 otherwise. The last
rule ignores closed-port tests unless Φ contains a response
to them. All signatures Φ′ with at least 0.85 similarity are
reported as likely matches.
This algorithm has no provisions for packet loss, which

makes it increasingly unreliable as more probes are blocked.
The issue is compounded by the usage of large weights wi ≫
wij , which ensure that a mismatch in a feature carries lit-
tle impact compared to that in the receipt/non-receipt of
a packet. As a result, presence of firewalls skews the score

towards signatures Φ′ that originally had fewer responses,
regardless of their Fij . Empty features cause Zij = 0 to
remove the corresponding weight wij from consideration,
gravitating the classifier towards results with more frequent
occurrence of ∅. Finally, if the target does not respond to
a given closed-port test, i.e., Yi = 0, the denominator no
longer contains the associated weight wi. This allows Nmap
to match Ri = 0 and R′

i = 1 with no penalty for 6 ≤ i ≤ 8.
Armed with this insight, consider in Table 8 the Nmap

features of S1 − S4, as well as their best matches – a net-
work boot card, modem jail-break firmware, a decade-old
OpenBSD 4.3, and an ancient D-link switch – where S1

scores over 85% with both D1 and D2. From the table,
notice that Nmap sampled the same SYN features as Her-
shel+, meaning they contacted similar network stacks. For
inexplicable reasons, the database allows ∅ for mandatory
values (e.g., Win, TTL, DF), where all four entries D1 −D4

contain at least one such case.
Based on Table 8, it is pretty clear that Nmap decisions

are heavily influenced by the R vector and empty fields.
Indeed, iPXE/Tomato have no features Fij in common with
S1, OpenBSD 4.3 matches S2 only in three fairly generic
fields TTL/DF/MSS, and D-Link agrees with S3/S4 in just
the DF bit. We thus find no evidence to suggest that Nmap
signaturesD1−D4 are statistically probable, let alone better
than the Hershel+ result in Table 7. In fact, D3 and S2 are
conclusively different stacks judging from their ordering of
non-NOP TCP options (i.e., MSWT vs MWST).

From a broader perspective, Table 9 shows the number
of hosts for which Nmap decides that D1 − D4 exceed the
85% threshold. Remarkably, Tomato appears in 21% of the
cases and OpenBSD in 13%. These results raise questions
about Nmap’s ability to provide meaningful classification,
not just in the four cases we dissected, but generally in wide-
area networks, where R is easily distorted by IDS, host-level
packet filters, and network firewalls.

9. DISCUSSION AND CONCLUSION
Network stack fingerprinting has well-known pitfalls (e.g.,

scrubbers [7], [24], [22], [27], [31], traffic intercepts by mid-
dleboxes [12], load-balancers, RST injection by IDS), but
nevertheless it is fascinating that a single SYN packet can
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Signature Subsample Total
Tomato 1.28 132 (21.8%) 105,525 (21.9%)
OpenBSD 4.3 91 (15.0%) 64,050 (13.3%)
D-Link DWL-624 12 (1.9%) 6,454 (1.3%)
iPXE 1.0.0+ 6 (0.9%) 5,723 (1.1%)

Table 9: Popularity of Nmap signatures.

elicit so much information about the target. With our algo-
rithm for automated construction of databases and robust
classification (i.e., Plata, Hershel+), single-packet tools may
eventually become a legitimate competitor to Nmap for use
over the public Internet. However, despite the recent de-
velopments in this field, there are still many open problems
and avenues for improvement, which we discuss next.
One question is whether distortion X can include packet

loss. This seems like a viable direction, which Plata can
handle transparently in the Monte-Carlo version; however,
deriving a Hershel+ matrix in closed-form requires addi-
tional research. Another avenue that is worth investigating
is whether Hershel+ can increase accuracy by abandoning
the single-packet assumption and sending multiple SYNs to
each target IP. In these cases, it should be compared to
other tools with retransmission, including their (1 − ϵ,X )-
dimension under a common model of distortion. For Nmap,
X may include blocking of ICMP/UDP packets to match the
firewall assumptions of Hershel+, loss of SYN-ACKs, censor-
ship of certain invalid flag combinations known to IDS, em-
ulation of load-balancers, and presence of fingerprint scrub-
bers [24]. All of this requires a kernel-level driver that can
intercept Nmap packets and reproduce the desired condi-
tions, which is yet another direction for future work.
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