Faulds: A Non-Parametric Iterative Classifier for Internet-Wide OS Fingerprinting

Zain Shamsi, Daren B.H. Cline, and Dmitri Loguinov
Texas A&M University, College Station, TX 77843 USA
zain@cse.tamu.edu, dcline@stat.tamu.edu, dmitri@cse.tamu.edu

ABSTRACT
Recent work in OS fingerprinting [41], [42] has focused on overcoming random distortion in network and user features during Internet-scale SYN scans. These classification techniques work under an assumption that all parameters of the profiled network are known a-priori – the likelihood of packet loss, the popularity of each OS, the distribution of network delay, and the probability of user modification to each default TCP/IP header value. However, it is currently unclear how to obtain realistic versions of these parameters for the public Internet and/or customize them to a particular network being analyzed. To address this issue, we derive a non-parametric Expectation-Maximization (EM) estimator, which we call Faulds, for the unknown distributions involved in single-probe OS fingerprinting and demonstrate its significantly higher robustness to noise compared to methods in prior work. We apply Faulds to a new scan of 67M web-servers and discuss its findings.

1 INTRODUCTION
The Internet is a fascinating conglomerate of highly heterogeneous devices, which differ in hardware capability, security awareness, software features, and daily usage. Measuring the amount, type, and behavior of these devices, as well as the networks they connect to, has become an important topic [12], [13], [15], [18], [24], [27], [33], [41], [42]. To categorize the makeup of today’s networks, research in active OS fingerprinting, which is our topic in this paper, aims to determine the stack of remote hosts using their responses to external stimuli (i.e., TCP/IP probes) [3], [4], [6], [8], [16], [22], [23], [28], [30], [36], [40], [44], [48], [49], [52], [53], [54].

There are many uses for remote stack fingerprinting. First, it helps hackers in identification of vulnerable hosts and general network reconnaissance [47], especially during cyber-attacks that target only a specific OS implementation [19]. Second, OS fingerprinting is routinely deployed in security, e.g., by administrators of large networks seeking to find unpatched hosts and rogue entities [1], [29], [45]. Third, perimeter-defense systems (e.g., IDS, firewalls) may require the OS of the target host in order to detect certain types of exploits (e.g., those involving reassembly of IP fragments). In such cases, autonomous fingerprinting of the protected network allows these installations to function at maximum effectiveness [44], [48]. Finally, researchers/organizations use these techniques to understand usage trends [34], [35], discover the spread of new technologies [7], [14], [26], [38], and expose botnets [25].

Active stack fingerprinting can be partitioned into three categories – banner-grabbing via plain-text protocols (e.g., telnet, HTTP, FTP), multi-probe tools that elicit OS-specific responses from various non-standardized combinations of flags and/or unexpected usage of protocol fields (e.g., nmap [36], xprobe [52], p0f [54]), and single-probe methods that send a regular SYN to each host (e.g., Snaketime [5], RING [50], Hershel [42], Hershel+ [41]).

At large scale, banner-grabbing has several impediments – frequent removal of OS-identifying strings by administrators, high bandwidth overhead, and common interaction with non-platform-specific software (e.g., apache, nginx). Multi-probe tools have their own challenges – heavy load on the target, massive complaints about intrusive activity, and noisy results when the destination IP is load-balanced across a server farm. More importantly, the accuracy of multi-probe tools suffers a significant degradation when firewalls block auxiliary probes and the underlying classifier is not robust against unexpected feature removal/modification. As shown in [41], OS classification with nmap over the public Internet fails in almost 30% of the cases. Furthermore, nmap sometimes produces nonsensical results and worse accuracy than the alternatives utilizing a single probe.

Before modeling and improving multi-packet classifiers, which are still poorly understood, it is important to ask whether there exists a set of algorithms for maximizing performance of single-packet tools in Internet-wide scans. Such techniques provide a maximally stealthy option and may be able to bypass firewalls/IDS when packets loaded with "tricks" cannot. As it turns out, even the most advanced model in single-probe literature, i.e., Hershel+ [41], leaves room for improvement. It has many built-in assumptions that may be violated in practice, which in turn may affect its classification accuracy and overall performance on such basic metrics as the fraction of the Internet running a particular stack. Our motivation for this paper is to understand the limitations of existing single-probe techniques and offer novel avenues for increasing both the classification accuracy and amount of information recovered from responses to a SYN packet.

2 BACKGROUND
2.1 Nmap
Perhaps the most popular and exhaustive tool for OS fingerprinting is nmap [36]. To understand its infeasibility for wide-area usage, we briefly review its outgoing traffic and response requirements, as well as the matching algorithm. By default, nmap starts with a vertical scan of the target using 1,000 well-known ports in an attempt to find two TCP ports, one of which is open and
the other is closed, as well as a closed UDP port. It then sends 16 uniquely crafted probes—six regular TCP packets to an open port, one valid and one invalid ICMP ping, one UDP packet to a closed port, four malformed packets to an open TCP port, and three TCP packets to a closed port. It retransmits all probes multiple times to neutralize the impact of packet loss, which results in over 100 packets per host in addition to the initial port scan.

Besides overhead, running nmap against the entire Internet poses a number of additional challenges. First, there is a low likelihood that a port scan, combined with probes to closed ports, gets unnoticed by the IDS. Many software packages (e.g., snort) contain explicit rules to detect and block the rather esoteric nmap traffic. Certain networks take offense at being nmapped, which results in swift action to block the entire subnet/AS of the scanner and complaints about abusive behavior. Second, the firewall may allow select ports to reach the target host (e.g., port 80 to a webserver); however, there is little incentive to pass UDP or TCP packets to other ports that do not offer any services. Third, in similar fashion, the OS firewall can be configured (e.g., using domain group policy) to silently drop incoming packets to closed ports. In fact, Windows and Mac OS X suppress outgoing ICMP port unreachables even when an explicit rule is created to allow such packets through the firewall [2], [32].

Nmap expects responses to not deviate from those specified in the database (e.g., a RST to a TCP rainbow packet, ICMP port unreachable from a closed UDP port, ICMP echo reply to a ping). Because it considers absence of a response to be a feature, it can be misled into assigning large positive weights to firewall actions, which skews the result towards network stacks that inherently respond with fewer signals. This may occur despite a complete non-match in other features, meaning that the target may share nothing in the packet header (e.g., TCP window size, TTL, options, MSS) with the signature it is matched to [41]. Other issues include the database itself, which contains signatures that are subsets of others from completely unrelated stacks and allows special null header fields that can match any value in the observation. Unless the target responds to all 16 probes exactly as expected, an obscure device with the most null fields can trump the other alternatives, including the correct signature.

Additionally, certain TCP fields are quite volatile, i.e., change from user tweaks, underlyin ang network MTU, and software setsockopt function calls. This does not inherently change the operating system, but creates an illusion of a different stack. For example, Server 2008 R2 accepts incoming connections with a kernel buffer (i.e., TCP window size) of 8,192 bytes; however, an apache webserver can reconfigure this field to an arbitrary value before listening on the socket. Furthermore, this can be done on a per-socket basis and may vary over time depending on memory usage or other considerations. When faced with this type of uncertainty, nmap uses heuristic weights and thresholds that do not have rigorous theory/verification behind them. As a result, it exhibits highly unreliable identification in certain scenarios [41].

2.2 Single-Packet Tools

For accurate OS fingerprinting at Internet scale, low-overhead methods resilient to volatility are preferred. Our focus in this paper is on single-probe techniques, which generally work by sending a TCP SYN to the target host and inducing a stream of SYN-ACK responses, possibly with a RST at the end. Since the connection is kept in the half-open state, the server continues retransmitting SYN-ACKs until its internal maximum-retry threshold is exceeded. Delays between the SYN-ACKs, known as retransmission timeouts (RTOs), as well as their count and presence of the last RST, reveal valuable information about the OS of the responding host. This is illustrated in Figure 1. Coupling the RTOs with default TCP/IP header values makes stack classification possible.

The main difference between prior work [5], [24], [41], [42], [50] lies in the features they extract from TCP/IP headers and the assumed distortion model. As of this writing, Hershel+ [41] is both the most recent effort in this direction and most robust to observation noise. We review its operation and formulas later in the paper.

3 LEARNING FROM OBSERVATION

Note that proofs and certain technical discussion have been omitted from this paper. They can be found in [43].

3.1 General Problem

Suppose the OS database consists of \(n \geq 1 \) known stacks (\(\omega_1, \ldots, \omega_n \)), each with some vector-valued fingerprint \(x_i = (x_{i1}, x_{i2}, \ldots) \). As shown in Table 1, fingerprints contain a combination of features, including default header values used for new connections and SYN-ACK retransmission timeouts (RTOs) of each OS. Further assume a set of observations \(x' = (x'_1, \ldots, x'_m) \) obtained by scanning the Internet and eliciting responses from \(m \) live servers, where \(x'_j = (x'_{j1}, x'_{j2}, \ldots) \) is a vector of sampled features from host \(j \). For the type of OS fingerprinting considered here, i.e., single-probe, this is done by dispatching a SYN to every IP address in BGP and...
collecting SYN-ACKs/RSTs from the responding servers, as previously shown in Figure 1.

The goal of the classifier is then to determine for each x'_j the most-likely fingerprint in the database. This task is complicated by the presence of distortion (also called volatility [41]) θ that randomly modifies the original features of the system before the observer gets them. This may involve a change in the temporal relationship between the packets (e.g., queuing delays), removal of some features (e.g., loss of RST packets), and rewriting of TCP headers in an effort to optimize or obscure the end-system.

Define $\alpha_i = p(\omega_i)$ to be the unknown fraction of hosts in x' with OS i and let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be the corresponding vector. Now suppose $p(y|\omega_i, \theta)$ is the probability that the fingerprint of signature i has been changed into y under θ. Similarly, assume that $p(\omega_i|y, \theta, \alpha)$ is the probability that an observed vector y was produced by a host running OS i, conditioned on distortion model θ and popularity α. Then, application of Bayes’ rule shows that the classifier must determine for each j the one database entry ω_i with the largest

$$p(\omega_i|x'_j, \theta, \alpha) = \frac{\alpha_i p(x'_j|\omega_i, \theta)}{p(x'_j|\theta, \alpha)},$$

where, for any vector of features y, the denominator is

$$p(y|\theta, \alpha) = \sum_{i=1}^{n} \alpha_i p(y|\omega_i, \theta).$$

Hershel+ [41] relies on a-priori knowledge of not only α, but also parameter θ, which consists of the probability of change in each TCP/IP feature, average packet loss, and two distributions of network delay. While the underlying model in Hershel+ is more robust to distortion than those in prior approaches [5], [50], its performance does depend on how well α and θ can be estimated ahead of time. As the Internet is highly heterogeneous and constantly evolving, even if (α, θ) could be obtained by monitoring routers and/or using end-to-end measurement between strategically positioned hosts (e.g., PlanetLab), it is unclear whether conditions observed in the past or along certain paths can yield meaningful predictions about the specific network being fingerprinted (e.g., a corporate LAN is very different from the Internet). Instead, we argue that (α, θ) should be the output of the classifier rather than the input. Doing so allows the unknown parameters to be customized to a specific observation x', i.e., reflect the OS composition of the network being analyzed and its distortion properties.

Analysis of (1) in existing work [41], [42] assumes that α is uniform (i.e., $\alpha_i = 1/n$) and θ is fixed by oracle input. Therefore, both α_i and denominator $p(x'_j|\theta, \alpha)$ are independent of i and can be removed from the optimization, leaving only $p(x'_j|\omega_i, \theta)$. In contrast, our goal here is to estimate both α and θ dynamically as the classifier is running, which should both increase its accuracy and yield interesting Internet-characterization results as byproduct of classification. Before reaching this objective, a gradual build-up of formalization is needed. This section deals with estimating α, the next one covers network distortion, and the one after that focuses on modification to fixed header features.

3.2 Fingerprint Popularity

Observation vector x' gives rise to a number of equations in the form of (2), where the left side contains the empirical (known) probability of observing each unique vector $y \in x'$ and the right side is a model that embeds the unknown parameters. Extraction of α and θ from such systems of equations commonly involves the Expectation-Maximization (EM) method, which produces a solution using fixed-point iteration [11], [17]. At every step t, it maximizes the expected log-likelihood function conditioned on the parameters obtained during the previous iteration $t-1$. As long as the number of equations exceeds the number of unknown parameters, EM works well for many problems in practice.

For now, we treat $p(x'_j|\omega_i, \theta)$ as a black-box classifier (e.g., Snacktime, Hershel, Hershel+), which does not attempt to estimate θ, and focus on determining α. This is the simplest (and only) case where (2) forms a linear system of equations. Throughout the paper, superscripts applied to parameters refer to the iteration number during which they are estimated, e.g., α'^t approximates α_t during step t. Now notice that a sensible estimate of popularity for OS i is the average probability with which observations map to this fingerprint, conditioned on the previous estimate of popularity, i.e.,

$$\alpha'^{t+1}_i = \frac{1}{m} \sum_{j=1}^{m} p(\omega_i|x'_j, \theta, \alpha'^t).$$

While the next result is fairly straightforward, its derivation methodology is needed for later parts of the paper.

Theorem 3.1. For a classifier with fixed θ, (3) represents the EM algorithm for recovering the popularity vector α.

Note that this is markedly different from deciding popularity using the fraction of classification decisions that go to each OS, which is known as hard EM and commonly used in clustering algorithms such as k-means [20]. In fact, all previous fingerprinting tools [5], [6], [36], [41], [42], [52], [54] can be viewed as performing one iteration of hard EM, i.e., outputting the fraction of classifications that belong to each OS ω_i as an estimate of its popularity α_i.

3.3 Discussion

We now address the question of whether (3) is sufficient for achieving good classification on its own and how much of the accuracy depends on knowing the exact distortion model θ. If the majority of the benefit is already obtained from recovering α, the extra computational cost and modeling effort involved in estimating θ may be unnecessary. For discussion purposes, we use a set of toy databases that allow simple demonstration of the intended effects. Note that the same conclusions apply to larger datasets, but finding the corresponding scenarios may be more time-consuming.
Simulations below apply a forward latency to the SYN packet, pass each SYN-ACK through a FIFO queue, which adds random one-way delays along the return path, and drop packets using an iid (independent and identically distributed) loss model with some fixed probability. This is similar to the context in which prior methods [41], [42] have been tested. For the scenario we call S_1, there are four different cases for the distribution of forward/reverse delays and packet-loss probability. These are shown in Table 2 and discussed in more detail next.

The first row matches exactly the assumed parameters θ in Hershel+ [41]. The second row uses Pareto delays with mean 500 ms and 50% loss, emulating highly noisy network conditions. The next row uses a shifted reverse-exponential forward latency with CDF $e^{-\lambda(2-x)}$, defined for $-\infty < x \leq 2$, which tests contrary-to-intuition examples where larger delays are more likely than smaller. We employ $\lambda = 2$ and truncate this distribution at zero, obtaining the average forward SYN delay of 1.5 sec.

Our first database D_1 contains truncated signatures of Linux 3.2 (ω_1), Windows Server 2003 (ω_2), and Novell Netware (ω_3) from Table 1. We retain the first two retransmission timeouts (RTOs), remove all fixed header features, and obtain the fingerprints in Figure 2(a). Note that these Linux and Windows signatures are pretty close to each other, albeit not identical; however, they are quite different from Novell. Distortion from case S_1 applied to this database is illustrated in subfigure b), where we show the first 200 samples and remove observations with lost packets.

Define ρ^1 to be the fraction of correct classifications for a given method during iteration t, where $t = \infty$ represents the convergence point of the underlying estimator (usually 20 – 40 iterations). If the method does not perform iteration, only ρ^1 is meaningful. We consider three techniques – Hershel+, hard EM with multiple iterations, and soft EM in (3), all using the same function $p(x'_i|\omega_1, \theta)$ and starting from uniform popularity $d^{0}_i = 1/n$.

Results of this process with $m = 2^{18}$ observations are shown in Table 3. In the first row, Hershel+ performs quite well, achieving $\rho^1 = 67%$. Since Novell Netware is an easy-to-separate signature from the other two, Hershel+ recovers α_3 pretty accurately; however, it is utterly confused about the frequency of the other two stacks. Applying hard EM increases accuracy, but full reconstruction of α still proves difficult. Application of (3) solves this issue.

Swapping (α_1, α_2), the second simulation in Table 3 shows that Hershel+ is essentially guessing between Linux and Windows, while hard EM is misled into divergence, where it drops accuracy from 48% to 6%. While (3) is immune to divergence in this case, its estimate of α suffers from non-negligible errors. The last case in the table is even more difficult. It shows that EM can be driven into inferior states when the assumed θ greatly deviates from that of the underlying network. In fact, application of (3) not only fails to obtain vectors α that resemble the true distribution, but also harms performance of the system, i.e., $\rho^\infty \ll \rho^1$.

4 NETWORK FEATURES

4.1 Distortion Model

Our goal in this section is to estimate unknown distortion parameters θ inside $p(x'_i|\omega_1, \theta)$. Let features $x_i = (d_i, u_i)$ consist of network components (i.e., delays d_i) and user-modified header values (i.e., u_i). Since classification [41], [42] usually assumes that distortion is applied to each subvector independently, it follows that

$$p(x'_i|\omega_1, \theta) = p(d'_i|\omega_1, \theta_d)p(u'_i|\omega_1, \theta_u),$$

where θ_d, θ_u are the network/user distortion models, respectively. Each of them contains multiple PMFs (probability mass functions) that we elaborate on below. Since in this section we consider only the network component, we assume that $p(u'_i|\omega_1, \theta_u) = 1$ for all $i, j, i.e., all observed user features are the same and thus perfectly match all fingerprints.

To understand the notation involved in expanding the first factor in (4), examine Figure 3 where a host with network signature d_i generates an observation d'_i. Measurement begins with a SYN packet, which takes some time to get to the target, followed by the server “think” delay before it generates the first SYN-ACK response. Database feature vectors d_i consist of departure timestamps from the server, where $d_{i,1} = 0$ for all i. Note that $d_{i, r+1} - d_{i,r}$ is the...
r-th retransmission timeout (RTO) of the stack, which was commonly used in early estimators [5], [50], [42]. Recently, however, usage of absolute timestamps \(d_{ir}\) was identified [41] as having certain modeling advantages, which is our approach.

On the client side, arrival timestamps \(d'_{ir}\) are measured relative to the transmission time of the SYN. Assume \(T_j\) represents the sum of the forward delay, server think time, and propagation/transportation delays of the reverse path, where \(T_j\) has some unknown distribution \(f_T(\tau) = P(T_j = \tau)\). Furthermore, let \(\Delta_{ij}, \Delta_{ij2}, \ldots\) be iid queuing delays of the return path, with another unknown distribution \(f_\Delta(\delta) = P(\Delta_{ij} = \delta)\). Then, assuming no loss, \(d'_{ir} = T_j + d_{ir} + \Delta_{ij}\).

To handle packet loss, assume that \(y_j\) is a random vector that maps the received packets in observation \(j\) to their order on the server, i.e., \(y_j(=k)\) means that the r-th received packet was originally in position \(k\). In Figure 3, for example, we have \(y_j = (1, 3)\). Then, if the \(j\)-th observation comes from system \(\omega_i\), it follows that
\[
d'_{ij} = T_j + d_i,y_j(r) + \Delta_{ij}, \quad r = 1, 2, \ldots, |d'_{ij}|. \tag{5}
\]

As in prior work [5], [41], [42], we assume no reordering due to the large spacing between the packets (often several seconds), which implies \(y_j(=r+1) > y_j(r)\). Let \(\Gamma(i,j)\) be the set of all monotonic loss vectors that start with \(|d_i|\) packets and finish with \(|d'_j|\). Then, the Hershel+ network classifier uses \(p(d'_{ij}|\omega_i, \theta_d)\) equal to [41]
\[
\sum_{\tau} f_T(\tau) \sum_{y \in \Gamma(i,j)} p_t(y) \prod_{r=1}^{\frac{|d'_j|}{|d_i|}} f_\Delta(y_{r} - d_i,y_j(r)), \tag{6}
\]
where \(p_t(y)\) is the probability to observe loss pattern \(y\) under \(|d_i|\) transmitted packets. For lack of a better assumption, Hershel+ uses binomial \(p_t(y)\), Erlang(2) \(f_T(\tau)\), and exponential \(f_\Delta(\delta)\), all with some fixed parameters. Since \(\theta_d\) encapsulates the set of these distributions, our next goal is to recover them using EM iteration.

4.2 Intuition

We start with a heuristic explanation of the proposed update formulas, which is followed by a more rigorous treatment. Recall that \(f'_{ij}(\tau)\) is an estimate of \(P(T_j = \tau)\) during iteration \(t\). Then, one obvious approach is to set this value to the average probability that each observation \(j\) has experienced a forward latency \(\tau\), conditioned on the previous estimates of unknown parameters, i.e.,
\[
f_{T}^{t+1}(\tau) = \frac{1}{m} \sum_{j=1}^{m} P(T_j = \tau|d'_{ij}, o_d, \alpha'). \tag{7}
\]

Next, each database signature with \(k\) original packets admits \(2^k - 1\) unique loss patterns \(y\), where \(k\) goes as high as \(k_{\text{max}} = 21\) in the most recent effort in the field [41]. Estimating the probability \(p_t(y)\) for each possible option \(y\) is likely to produce too many unknown variables and lead to poor convergence of EM. Instead, suppose that all \(\binom{k}{2}\) patterns of losing \(\ell\) packets out of \(k\) are equally likely and define the probability of this event to be \(q_k(\ell)\), where \(k = 1, 2, \ldots, k_{\text{max}}\). The resulting reduction in the number of unknown variables is significant – from roughly \(2^{k_{\text{max}}+1} = 4M\) to just \(k_{\text{max}}(k_{\text{max}}-1)/2 = 210\). Despite its simplicity, the framework of using \(q_k(\ell)\) allows more general scenarios than the traditional iid Bernoulli model used in previous literature [41], [42].

To update distribution \(q_k(\ell)\), our approach involves computing the probability that observations experienced loss of \(\ell\) packets out of \(k\) transmitted, normalized by the probability that the original host sent \(k\) packets in the first place. To express this mathematically, define \(Y_j\) to be the number of SYN-ACKs originated by the host in observation \(j\). Letting \(1_X\) be an indicator of event \(X\), we get
\[
q_{k}^{t+1}(\ell) = \frac{\sum_{j=1}^{m} P(Y_j = k|d'_{ij}, \alpha') 1_{|d'_{ij}|=k-\ell}}{\sum_{j=1}^{m} P(Y_j = k|d'_{ij}, \alpha') 1_{|d'_{ij}|=k}}, \tag{8}
\]
from which the estimated probability of pattern \(y\) is given by
\[
p_{t}^{1}(y) = \frac{q_{d'_{ij}}^{t}(1_{|d'_{ij}|=|y|})}{\binom{|y|}{|d'_ij|}}. \tag{9}
\]
Finally, updates to PMF \(f_{\Delta}^{t}(\delta)\) involve computing the probability that one-way delay of each received packet equals \(\delta\), normalized by the total number of packets collected during the scan, i.e.,
\[
f_{\Delta}^{t+1}(\delta) = \frac{\sum_{j=1}^{m} P(\Delta_{ij} = \delta|d'_{ij}, o_d, \alpha')}{{\sum_{j=1}^{m} P(d'_{ij})}}. \tag{10}
\]

4.3 Analysis

To make the framework outlined above usable, our next task is to express the probability of events that cannot be directly observed (e.g., \(Y_j = k, \Delta_{ij} = \delta\)) using a recurrence that depends on only the distributions contained in \(\delta_{t}^{i}, \ldots, f_{T}^{t}, i, j\). Let \(\delta_{ij} = |d'_{ij} - d_i,y_j(r)|\)
\[
\delta_{ij} = |d'_{ij} - d_i,y_j(r)| \tag{11}
\]
be the one-way delay \(\Delta_{ij}\) conditioned on \(T_j = \tau\), loss pattern \(y\), signature \(\omega_i\), and observation \(j\). For brevity of notation, suppose \(\sum_{ij\gamma}^{t}\) refers to five nested summations, where \(i\) goes from 1 to \(n\), \(j\) rolls from 1 to \(m\), \(\gamma\) moves over all bins of the PMF \(f_T(\tau)\), \(y\) iterates over all monotonic loss vectors in \(\Gamma(i,j)\), and \(s\) travels from 1 to \(|d'_{ij}|\). If some of the variables are absent from the subscript, the corresponding sums are omitted from the result. With this in mind, define
\[
p_{\gamma}^{t}(i,j,y|d'_{ij}, o_d, \alpha') = \frac{p_{ij}^{t}(\gamma)}{\sum_{ij\gamma}^{t} p_{ij}^{t}(\gamma)}, \tag{12}
\]
and consider the next result.

Theorem 4.1. Under network distortion, estimators (3), (7), (8), and (10) can be written as
\[
a_{t}^{t+1} = \frac{1}{m} \sum_{ij} p_{ij}^{t} \gamma, \tag{14}
\]
\[
f_{T}^{t+1}(\tau) = \frac{1}{m} \sum_{ij} p_{ij}^{t} \gamma, \tag{15}
\]
\[
q_{k}^{t}(\ell) = \frac{\sum_{ij\gamma}^{t} p_{ij}^{t} \gamma 1_{|d'_{ij}|=|k-\ell|, |d'_ij|=k}}{\sum_{ij\gamma}^{t} p_{ij}^{t} \gamma 1_{|d'_{ij}|=|d'_ij|=k}}, \tag{16}
\]
\[
f_{\Delta}^{t}(\delta) = \frac{\sum_{ij\gamma}^{t} p_{ij}^{t} \gamma 1_{|\gamma|=\delta}}{\sum_{ij\gamma}^{t} p_{ij}^{t} \gamma 1_{|\gamma|}}. \tag{17}
\]
Table 4: Classification Results of Network EM in D_1

<table>
<thead>
<tr>
<th>Case</th>
<th>p^*</th>
<th>p^{∞}</th>
<th>α^{∞}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11}</td>
<td>0.67</td>
<td>0.95</td>
<td>0.90, 0.05, 0.05</td>
</tr>
<tr>
<td>S_{12}</td>
<td>0.48</td>
<td>0.91</td>
<td>0.05, 0.90, 0.05</td>
</tr>
<tr>
<td>S_{13}</td>
<td>0.45</td>
<td>0.95</td>
<td>0.90, 0.05, 0.05</td>
</tr>
</tbody>
</table>

(a) reverse-exponential ($case\ S_{11}$) (b) Erlang(2) f_3 ($case\ S_{13}$)

Figure 4: Recovery of delay parameters in D_1.

While the result of Theorem 4.1 may appear daunting due to the number of nested summations, its implementation in practice can be done with little extra cost compared to Hershel+. Specifically, usage of (6) in (1) for all i, j already requires five nested loops. In the inner-most loop of that algorithm, (17) adds one increment to a hash table that maintains the PMF of one-way delay. Updates in (14)-(16) are performed less frequently and, in comparison, consume negligible time. The only caveat is that Hershel+ can be optimized [41] to remove the outer summation in (6) when f_T is Erlang(2) and f_A is exponential. Our approach, on the other hand, requires a hash-table lookup for both distributions. This makes its single iteration similar in speed to unoptimized Hershel+.

Theorem 4.2. Iteration (14)-(17) is the EM algorithm for (θ_d, α).

4.4 Discussion

We revisit earlier simulations on dataset D_1, run (14)-(17) over the same input, and show the result in Table 4. Compared to Table 3, the derived EM estimator significantly improves the accuracy of both classification and vector α. The accuracy of estimated delay distributions is shown in Figure 4. With the exception of noise at the points of discontinuity of each density, functions $f^{\infty}_T, f^{\infty}_A$ match the true parameters quite well.

Since all signatures in D_1 had three packets, it was easy to figure out the number of them lost in each d'_j, which led to q_k^{∞} being perfectly accurate, regardless of whether (16) was used or not. In a more interesting database, which we call D_2, Linux is augmented with a fourth packet that follows after a 3-second RTO. To experiment with different loss patterns, define BinT(k, p) to be a binomial distribution with parameters (k, p) truncated to the range [0, $k - 1$]. Since the loss of all k packets cannot be observed, we avoid generating this case in the simulator. Additionally, suppose RevBin(k, p) is the reverse binomial distribution such that $X \sim$ BinT(k, p) and $Y = k - 1 - X$ implies $Y \sim$ RevBin(k, p). With this in mind, consider scenario S_2 in Table 5, which shows q_k and the average observed loss rate among the signatures with k packets.

Table 5: Network Parameters of Scenario S_2

<table>
<thead>
<tr>
<th>Case</th>
<th>Delay</th>
<th>q_1</th>
<th>Loss</th>
<th>q_1</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{21}</td>
<td>as in S_{12}</td>
<td>BinT(3, 0.3)</td>
<td>28%</td>
<td>BinT(4, 0.3)</td>
<td>30%</td>
</tr>
<tr>
<td>S_{22}</td>
<td>as in S_{12}</td>
<td>BinT(3, 0.1)</td>
<td>10%</td>
<td>BinT(4, 0.8)</td>
<td>66%</td>
</tr>
<tr>
<td>S_{23}</td>
<td>as in S_{12}</td>
<td>RevBin(3, 0.1)</td>
<td>57%</td>
<td>RevBin(4, 0.1)</td>
<td>65%</td>
</tr>
</tbody>
</table>

Table 6 shows classification results for three methods — Hershel+, the partial EM framework without loss updates (16), and the full algorithm from Theorem 4.1. Not surprisingly, Hershel+ again struggles to recover α, even when its classification accuracy is pretty high. Omission of (16) does create challenges for partial EM, where in all three cases it produces worse results than Hershel+. On the other hand, the full algorithm improves accuracy and delivers the exact α despite complex underlying network conditions.

5 USER FEATURES

5.1 Distortion Model

Our goal in this section is to expand the second factor in (4) and develop an estimator for its distortion model. This is done in isolation from the network features, i.e., using $p(d'_j|\omega_i, \theta_d) = 1$ for all i, j. Assume $b \geq 1$ user features, where each observation j provides a constant-length vector $u'_j = (u'_{j1}, \ldots, u'_{jb})$. These include the TCP window size, IP TTL (Time to Live), IP DF (Do Not Fragment flag), TCP MSS (Maximum Segment Size), and TCP options, for a total of $b = 5$ integer-valued fields. Since RST features depend on network loss, we delay their discussion until the next section. Note that each field may be allocated a different number of bits in the TCP/IP header and the number of available options a_v for u'_{jv} may depend on v (e.g., two for DF and 64K for Win).

Modification to user features at the target host, which we model with a set of distributions θ_u, can be accomplished by manually changing default OS parameters (e.g., editing the registry), using specialized performance-tuning software, requesting larger/smaller receiver kernel buffers while waiting on sockets (i.e., using setsockopt), and deploying network/host scrubbers [10], [37], [39], [46], [51] whose purpose is to obfuscate the OS of protected machines. Besides intentional feature modification, distortion θ_u may also accommodate unknown network stacks that build upon a documented OS, but change some of its features (e.g., new versions of embedded Linux customized to a particular device).
Prior work either omits formally modeling user volatility [5], [6], [36], [52], [54], or assumes that \(u_{i,v} \) stays the same with some probability \(\pi_u \) and changes to another integer with probability \(1 - \pi_u \) [41], [42]. While the latter approach works well in certain cases, it has limitations. Besides the fact that \(\pi_u \) is generally unknown, binary decision-making fails to create a distribution over the available choices. For example, \(\pi_u = 0.9 \) assumes that each of the 65,534 non-default sizes occurs with probability 0.1. Instead, a more balanced approach would be to assume a uniform distribution over the distortion possibilities and assign them probability \((1 - \pi_u)/(a_u - 1)\). Second, it is likely that certain devices are modified less frequently than others (e.g., due to firmware restrictions) and individual distortions are OS-specific, which implies that \(\pi_u \) should depend on \(i \). Finally, the existing methods have no way of tracking the location and probability mass of distortion, which does not have to be uniform in practice (e.g., a non-default window size 257 bytes is less likely than 64K).

To overcome these problems, assume that \(\pi_{i,v}(y) \) is the probability that feature \(v \) of OS \(i \) is modified to become \(y \), which gives rise to a set of \(nb \) distributions that comprise our user-distortion model \(\theta_u \). Then, the proposed classifier can be summarized by

\[
p(u_{i}^{\prime}|o_{i}, \theta_u) = \prod_{i=1}^{b} \pi_{i,v}(u_{i,v}^{\prime}).
\]

(18)

where modification to features is assumed to be independent. Note that doing otherwise does not appear tractable at this point (i.e., estimation of covariance matrices produces too many variables for EM to handle).

5.2 Iteration

We begin by discussing under what conditions the problem is identifiable, despite having a large number of unknown distributions. Assume \(\phi_{i,v} := \pi_{i,v}(u_{i,v}) \) is the probability with which feature \(v \) stays the same for OS \(i \). Because we do not know ahead of time the reasoning of the user for changing the features or the new values of modified fields, the estimation problem for \(\pi_{i,v} \) is unsolvable unless enough of the probability mass remains at the original location, i.e., \(\phi_{i,v} \) is above some threshold. From common sense, it is likely that \(\phi_{i,v} \geq 0.5 \) holds among the general population of Internet hosts; however, EM converges under even weaker conditions (e.g., when \(\phi_{i,v} \) is the largest value in each PMF \(\pi_{i,v} \)). Coupling this with an initial state that satisfies the same constraint allows EM to discover a unique solution.

We define the estimator for user distortion as the probability to observe \(y \) in feature \(v \) across all matches against OS \(i \), i.e.,

\[
\pi^{t+1}_{i,v}(y) = \frac{\sum_{j=1}^{m} p(o_{i}, u_{j,v}^{\prime}, \theta_u^t, \alpha^t) \delta_{u_{i,v}^{\prime},y}}{\sum_{j=1}^{m} p(o_{i}, u_{j,v}^{\prime}, \theta_u^t, \alpha^t)}. \tag{19}
\]

To allow simplification of this expression below, define

\[
p_{ij}^t := \alpha^t_i p(o_{i}, u_{j,v}^{\prime}, \theta_u^t, \alpha^t) = \alpha^t_i \prod_{i=1}^{b} \pi_{i,v}(u_{i,v}^t), \tag{20}
\]

\[
\beta_{ij}^t := p(o_{i}, u_{j,v}^{\prime}, \theta_u^t, \alpha^t) = \frac{p_{ij}^t}{\sum_{i=1}^{b} p_{ij}^t}. \tag{21}
\]

The next result follows from substitution of (20)-(21) into (3) and (19), as well as earlier proofs of Theorems 3.1 and 4.1.

Theorem 5.1. Under user distortion, estimators (3) and (19) can be written as

\[
\pi^{t+1}_{i,v}(y) = \frac{\sum_{j=1}^{m} \beta_{ij}^t u_{i,v}^{\prime,y}}{\sum_{j=1}^{m} \beta_{ij}^t}. \tag{22}
\]

Furthermore, this is the EM algorithm for \((\theta_u, \alpha)\).

5.3 Discussion

To evaluate the result of Theorem 5.1, we construct a new database \(D_3 \), shown in Table 7, by switching from RTOs to user features. Note that this Linux signature ties Novell in DF and MSS, while Windows does the same in TTL. For simplicity of presentation, we use simulation scenarios with \(\phi_{i,v} = \phi_v \) for all \(i \), where \(\phi_v \) is the probability with which feature \(v \) stays at the default value. This replaces matrix \(\phi_{i,v} \) with a vector \(\phi_v \), which is easier to follow across the different tables.

The initial PMFs \(\pi_{i,v}^0 \) of EM are set up to include 90% of the mass on the default value and split the remainder uniformly across the viable alternatives. Since it is believed [42] that the order of non-NOP options cannot be changed without rewriting the TCP/IP stack of the OS, we initialize \(\pi_{i,v}^0 \) to allow only candidates compatible with the original \(u_{i,v} \). For example, MST is feasible for Linux, but not the other two signatures in Table 7. Note that any single option (M, S, W) and the empty set are valid for all three OSes.

We use two models for generating noisy observations. The first one, which we call RAND, picks uniformly from the space of possible values observed in our Internet scan, except OPT is limited to compatible subsets/supersets of the original. We have 5,695 candidates for Win, four for TTL, two for DF, 266 for OPT, and 1,082 for MSS. Decisions are made independently for each feature \(v \) and each observation \(j \), which models users ’tweaking” their OS without coordinating with each other or sharing a common objective. Even though RAND can generate 13.1 billion unique combinations \(u_j \), only a small subset is encountered by the classifier in our simulations below.

The second model, which we call PATCH, selects an alternative vector of features \(u_j^\prime \) for each OS \(o_{i,v} \) and switches the default value \(u_{i,v} \) to \(u_{i,v}^\prime \) with probability \(1 - \phi_v \), again independently for each \(v \). This represents deployment of software patches that change one of the features to an updated value. The probability for a host to use multiple patches is the product of corresponding \((1 - \phi_v)\)’s. For example, modification to both Win and OPT affects \((1 - \phi_1)(1 - \phi_3)\) fraction of hosts. Vectors \(u_j^\prime \) are non-adversarial and do not attempt to confuse the classifier. We construct them by flipping

<table>
<thead>
<tr>
<th>OS</th>
<th>Win</th>
<th>TTL</th>
<th>DF</th>
<th>OPT</th>
<th>MSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>5,792</td>
<td>64</td>
<td>1</td>
<td>MSTNWN</td>
<td>1,460</td>
</tr>
<tr>
<td>Windows</td>
<td>16,384</td>
<td>128</td>
<td>0</td>
<td>MNWNNTN</td>
<td>1,380</td>
</tr>
<tr>
<td>Novell</td>
<td>6,144</td>
<td>128</td>
<td>1</td>
<td>MNWNSN</td>
<td>1,460</td>
</tr>
</tbody>
</table>

Table 7: User Features of Database **D3**
the DF flag, setting OPT to M, and adding i to all remaining fields (modulo the max field value). The result is given in Table 8.

To estimate vector ϕ^i_{ℓ} in the classifier, we use a weighted average of feature non-modification across all OSes, i.e., $\phi^i_{\ell} = \sum_{t=1}^a \alpha^i_{\ell, t} \phi^i_{\ell, t}$. Our next scenario S_3 is detailed in Table 9 and the corresponding outcome is given by Table 10. We omit vector α^{∞} since it matches ground-truth α very accurately. Due to the new treatment of non-default features in (18), the first iteration of EM in Table 10 is superior to Hershel+.

However, both are much worse than the last iteration. It should be noted that the second case S_{32} modifies Win, TTL, and MSS in 100% of the samples. Identifiability in such conditions is helped by the fact that OPT is constrained to a subset of the original string, which makes a certain fraction of randomly generated values feasible for only one OS. This allows EM to learn to ignore (Win, TTL, MSS) and focus decisions on (DF, OPT). Furthermore, when guessing is involved, EM uses its knowledge of α to correctly pick the most-likely OS. It is also interesting that S_{33} is classified with 100% accuracy once EM gets a grasp on the new values in Table 8 and their probability of occurrence.

6 COMPLETE SYSTEM

6.1 Reset Packets

Because loss of RST packets causes the corresponding user features (i.e., ACK/RST flags, ACK sequence number, window size [42]) to be wiped out, there is dependency between distortion applied by the network and the user. As a result, this case should be handled separately. The first modification needed is to increase the length of network vectors d^i_j and d'^i_j to accommodate the RST timestamp. The second change is to add RST values into user features. Since it is currently believed that RST fields are unmodifiable independently of each other [42], they can be combined into a single integer and appended to user vectors u^i_j and u'^i_j in position $b+1$.

There are four possible scenarios for handling RST packets. They are shown in Table 11, each with a certain probability γ_{ij}^f that must be factored into the formulas developed earlier. When both the observation and candidate signature contain a RST, the only multiplier needed is the probability that the received feature was produced by that OS. If the sampled OS has a RST, but the signature does not, this indicates a possible interference from an intermediate device (e.g., IDS after expiring connection state, scrubbers). In this case, it is likely meaningless to use the temporal characteristics of the RST, which is why we omit it from d'^i_j before computing loss and delay probabilities. However, by $\pi_{ij, \alpha}^f(u_{ij, b+1})$ is still warranted since we must assign a proper weight to this mismatch. The third row of the table corresponds to packet loss, which is handled automatically in $p_f^i(y)$, i.e., no additional actions or multipliers are needed. Finally, the last row is identical to the setup assumed in preceding sections.

6.2 Final Model

We now combine the developed network, user, and RST models into a single framework. Redefining (12) as

$$p_{ij\alpha}^f = \alpha^f_{ij}(\prod_{u=1}^b \pi_{ij, u}^f(u_{ij, u})\prod_{r=1}^{|d^i_j|} f^{\prime}_{ij}(r)p_{ij\alpha}^f)$$ \hspace{1cm} (24)$$

allows us to compute $\beta_{ij\alpha}$ still via (13), as well as reuse (14)-(17). However, (23) requires an update to

$$\pi_{ij\alpha}^{f+1} = \frac{\sum_{y=1}^{m} 1_{u_{ij, \alpha} = y} \sum_{\gamma} \beta_{ij\alpha}^f}{\alpha^{f+1}}$$ \hspace{1cm} (25)$$

where $\nu = 1, 2, \ldots, b+1$. The final classifier, which we call Faulds, is applied after EM has converged and is given by

$$p(y|x_f, \theta, \alpha^{\infty}) = \sum_{\gamma} \beta_{ij\alpha}^f$$

It is easy to generalize our earlier results to cover the complete model, as given in the next theorem without proof.

Theorem 1.1. Under both network and user distortion, estimator (13)-(17), (24)-(25) is the EM algorithm for (θ, α).

6.3 Scaling the Database

Due to the large number of features it combines, Faulds is not challenged by the previous toy databases. We therefore switch to a more realistic set of signatures created by Plata in [41]. We call this database D_4 and note that it contains 420 stacks, among which some have the same exact RTO vector and others overlap in all

1Henry Faulds was a Scottish scientist who extended the ideas of William Herschel and proposed the first usable forensic fingerprint-identification method in 1880.
user features. The database was constructed to ensure that signatures were sufficiently unique under delay distortion, but packet loss and user modifications were not taken into account. As a result, the database contains a number of entries that would be difficult to distinguish under the types of heavy distortion considered in this paper. Nevertheless, these tests should indicate how well Faulds scales to larger databases and whether its recovery of the unknown parameters (α, θ) is affected by an increased uncertainty during the match.

We set popularity α to the Zipf distribution with shape parameter 1.2 and continue using $m = 2^{18}$ observations, which gives us 64K samples from the most common OS and just 49 from the least. We borrow the delay from case S_{13} (i.e., reverse-exponential T with mean 1.5 sec, Erlang(2) Λ with mean 0.5) and packet loss from S_{23} (i.e., reverse-binomial). Finally, we use RAND with stay probability $\varphi_{\alpha} = 0.8$.

The first iteration of Faulds produces a respectable $\rho_1 = 0.42$. This is gradually improved with each step, until convergence to a more impressive $\rho_\infty = 0.70$. To make sense out of α_∞, we sort all signatures in rank order from the most popular to the least and plot the result in Figure 5(a). There is a strong match in the top-100, while the random noise in the tail is explained by the scarcity of these OSes in the observation (i.e., below 250 samples each). For comparison, the outcome of Hershel+ is displayed in part (b) of the figure. To complete the big picture, subfigures (c)-(d) show estimates of f_T and f_Δ. Despite an overall 30% classification mismatch, these PMFs are no worse than previously observed in Figure 4, which indicates that incorrect decisions overwhelmingly went to signatures with similar RTO vectors as the true OS.

Instead of scrutinizing 21 different loss PMFs, suppose we compute a single metric – the fraction of packets dropped within the entire observation x', conditioned on at least one packet surviving.

To this end, define during step t

$$L_k^t = \sum_{\ell=1}^{k-1} L_k^\ell$$ (27)

to be the average number of lost replies in signatures with k packets. Then, taking an estimated ratio of all dropped packets to the total transmitted yields the expected loss rate

$$\rho_{loss}^t = \frac{\sum_{i=1}^n a_i^t t_i^t |d_i|}{\sum_{i=1}^n a_i^t |d_i|}$$ (28)

Recall that the simulation allowed loss to affect at most $k-1$ packets in OSes with $|d_i| = k$. Therefore, its ground-truth packet loss should represent the same quantity as (28). Traces show that 70.1% of the packets were dropped, which matches quite well against $\rho_{loss} = 69.3\%$.

Since $\varphi_{\alpha} = 0.8$ was a constant in this simulation, it makes sense to compare it against feature-modification estimates averaged across all fields and all OSes, i.e.,

$$E[\varphi_{\alpha}] = \frac{1}{b+1} \sum_{v=1}^{b+1} \varphi_{\alpha}^v = \frac{1}{b+1} \sum_{v=1}^{b+1} \sum_{i=1}^n a_i^v \varphi_{\alpha}^v.$$ (29)

Results show that $E[\varphi_{\alpha}] = 0.802$, which is very close to the actual value. While there is some variation in individual φ_{α}, it is of little concern due to the small number of samples seen by Faulds from these OSes. For a discussion of unknown devices and their impact on EM, see [43].

7 INTERNET MEASUREMENT

7.1 Overview

On December 14, 2016, we conducted a port-80 SYN scan of all BGP-reachable IPv4 addresses on the Internet. Of the 2.8B IPs contacted, we gathered responses from 67.6M hosts. In large-scale classification, such as the one attempted here, Faulds produces a huge volume of information in the form of various PMFs and estimates. We start with basic sanity checks of the estimated distortion θ and then delve into classification result α.

7.2 Network Distortion

Figure 6(a) shows the recovered distribution f_T using bin size 30 ms. Delays below 60 ms (29%) represent unloaded servers in close proximity to the scanner, most likely within the continental US.
Those in the 120 – 200 ms range (40%) indicate targets whose RTTs are consistent with destinations in Europe and Asia. The remaining cases covers longer paths, OS scheduling delays, non-trivial CPU load on the server, and involvement of various backend databases to set up the connection. Overall, we obtain \(E[T_j] = 148 \text{ ms} \), 80% of the samples below 200 ms, and 99.2% below 450 ms. Figure 6(b) plots the distribution of one-way delay \(f_k \), in which 92% of the mass concentrates below 30 ms and 97% below 100 ms. The average queuing delay \(E[\Delta_{ref}] = 15 \text{ ms} \) also sounds quite reasonable.

To examine packet loss, define \(q_k = \sum_{i=1}^{\eta_k} \alpha_i |d_i| = k \) to be the estimated fraction of observations that use an OS with \(k \) packets. The top values of \(k \) are four \((\eta_4^w = 0.42, 112 \text{ stacks}) \) in Plata database \(D_k \), six \((\eta_6^w = 0.31, 80 \text{ stacks}) \), three \((\eta_3^w = 0.07, 72 \text{ stacks}) \), and five \((\eta_5^w = 0.94, 54 \text{ stacks}) \). Figure 7 plots the recovered loss PMFs for these values of \(k \), each fitted with an iid binomial model and accompanied by the average loss rate \(L_k^w / k \) from (27). First, it is interesting that the loss rate is heterogeneous, ranging from 0.3% in \(q_6 \) to 12.6% in \(q_5 \). This phenomenon may be inherent to the signatures that map to each \(k \) (e.g., certain printers cut the SYN-ACK sequence when their tiny SYN backlog queue overflows [41]), the load on the corresponding OSes, and host location on the Internet, all of which suggests there is an extra benefit to estimating \(q_k \) independently for different \(k \). Second, while in a few of the plots the binomial model shows a reasonable fit, this does not universally hold. Finally, computing (28) for the Internet scan yields an average loss rate of 3.3% across all observations. This is consistent with 3.8% found in a Google study of SYN-ACK retransmission rates [9].

7.3 User Distortion

Computing (29), we obtain \(E[q_k^n] = 0.81 \), i.e., the average probability to encounter a non-default value was 19%. Faulds produced \(420 \times 6 = 2,520 \) distributions of user features, among which we highlight several interesting cases, focusing on the two most volatile fields – Win and MSS – and limiting all PMFs to values above the 1% likelihood. Since MSS sometimes depends on the MTU of the underlying data-link layer and/or tunneling protocol (e.g., IPv6), this field may experience fluctuation even if the OS does not allow explicit means for changing this value.

We expected devices with firmware restrictions that prevent user access to the configuration of SYN-ACK parameters to exhibit high \(\phi_{10} \). One example is shown in Figure 8(a) for a popular Dell printer. Among 976K occurrences on the Internet, this device keeps the default window with probability 1. Intuition also suggests that general-purpose OSes are more susceptible to modification and/or existence of alternatively patched versions. One example is 21M hosts with Ubuntu Linux, where Figure 8(b) shows that Faulds discovers 31% of the cases with window size exactly half of the default (i.e., 14,480 instead of 28,960). A more dispersed case is Mac OS X Server in part (c), which exhibits noticeable variation in both Win and MSS. Its default values remain with probability 73% and 89%, respectively. Finally, in subfigure (d), CentOS (enterprise Linux) has its original combination (17,896, 8,960) occurring in only 1% of the cases. We conjecture that the Plata database [41], which was constructed from production devices in a large campus network, captured a non-standard version of this stack with jumbo Ethernet frames enabled. Since this is an inherent property of any database, it is important to allow great flexibility in the match process to accommodate such scenarios.

7.4 Classification Results

We define Faulds to be successful for sample \(j \) if the denominator of (1) is non-zero, i.e., \(p(x_j^d | \theta^d, \alpha^d) > 0 \). This means that at least one OS matches \(x_j^d \) with a non-zero probability. Using the Plata
Table 12: Faulds Classification at Iteration 1 (left) and 100 (right)

<table>
<thead>
<tr>
<th>OS</th>
<th>α</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu / Redhat / CentOS</td>
<td>0.224</td>
<td>14,098,093</td>
</tr>
<tr>
<td>Ubuntu / SUSE / CentOS</td>
<td>0.111</td>
<td>8,896,622</td>
</tr>
<tr>
<td>Embedded Linux</td>
<td>0.082</td>
<td>6,326,349</td>
</tr>
<tr>
<td>Windows 7 / 2008 / 2012</td>
<td>0.047</td>
<td>2,942,254</td>
</tr>
<tr>
<td>Ubuntu / Redhat / SUSE</td>
<td>0.037</td>
<td>2,408,386</td>
</tr>
<tr>
<td>Schneider / APC Embedded</td>
<td>0.022</td>
<td>1,587,396</td>
</tr>
<tr>
<td>Windows XP / 2003</td>
<td>0.021</td>
<td>1,314,967</td>
</tr>
<tr>
<td>Redhat / CentOS / SUSE</td>
<td>0.018</td>
<td>1,254,797</td>
</tr>
<tr>
<td>Embedded Linux</td>
<td>0.015</td>
<td>1,044,028</td>
</tr>
<tr>
<td>Windows 2008 R2 / 2012</td>
<td>0.013</td>
<td>907,167</td>
</tr>
</tbody>
</table>

Table 13: Types of Devices Running Webservers

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Count</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>42,277,294</td>
<td>67%</td>
</tr>
<tr>
<td>Switch/router/gateway/network controller</td>
<td>8,854,290</td>
<td>14%</td>
</tr>
<tr>
<td>No label in database</td>
<td>7,038,785</td>
<td>11%</td>
</tr>
<tr>
<td>Printers</td>
<td>2,813,292</td>
<td>4.5%</td>
</tr>
<tr>
<td>RAID controller/NAS</td>
<td>1,348,895</td>
<td>2.1%</td>
</tr>
<tr>
<td>Video conferencing/telepresence</td>
<td>603,035</td>
<td>1.0%</td>
</tr>
<tr>
<td>Cyberphysical systems</td>
<td>91,033</td>
<td>0.14%</td>
</tr>
<tr>
<td>IP phones</td>
<td>61,400</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

Table 14: Unprotected Industrial and Enterprise Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Count</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycom HDX 8000 HD</td>
<td>266,565</td>
<td>Telepresence</td>
</tr>
<tr>
<td>Hickman ITTV 450D</td>
<td>67,091</td>
<td>Telepresence</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 7900 Series</td>
<td>27,151</td>
<td>IP Phone</td>
</tr>
<tr>
<td>AVTech RoomAlert/Rockwell Automation</td>
<td>21,756</td>
<td>Cyberphysical</td>
</tr>
<tr>
<td>Loyalc L-DALI Lighting Control Systems</td>
<td>20,517</td>
<td>Cyberphysical</td>
</tr>
<tr>
<td>Codian Telepresence MCU</td>
<td>20,036</td>
<td>Telepresence</td>
</tr>
<tr>
<td>Polycom RealPresence Server 4000</td>
<td>18,977</td>
<td>Telepresence</td>
</tr>
<tr>
<td>AdTrans IP Phone Manager</td>
<td>11,909</td>
<td>IP Phone</td>
</tr>
<tr>
<td>HWg-STE: Ethernet thermometer</td>
<td>11,826</td>
<td>Cyberphysical</td>
</tr>
<tr>
<td>D-Link DCS Series Internet Camera</td>
<td>9,279</td>
<td>Telepresence</td>
</tr>
</tbody>
</table>

database with 420 network stacks [41]. Faulds successfully classified 63.1M hosts (i.e., 93%). From a pure statistical point of view, the remaining 4.5M devices should be assigned to the OS with the highest α_i^α. But it is also likely these cases come from unknown stacks or observations with too much packet loss, in which case excluding them from classification might be prudent as well, which is our approach below.

The left side of Table 12 shows the top ten OSes after one iteration of Faulds. Note that the Plata database was auto-generated from a pool of devices found at a university network. Even though this process [41] produced only a high-level description of each OS, additional manual effort can be used to provide each signature with a more specific kernel version and/or physical device. We consider this issue orthogonal to the topic of the paper since Faulds operates on TCP/IP signatures and its accuracy does not depend on the name affiliated with each fingerprint x_i.

The dominance of Linux and embedded devices in Table 12 (left) matches the statistics reported in prior work [24], [41], [42], although a more interesting result is the amount of relative change occurring in the classification as Faulds goes through its iterations. Table 12 (right) shows the α vector after 100 steps. The top Linux signature gains 52%, Windows 7 in third place increases by 25%, and two other Linux stacks drop 17% each. Further down the list, there is significant movement as well, where certain embedded systems, such as Schneider APC (data-center hardware solutions), Dell printers, and Cisco, increase their membership by 25 – 229%. There is even more shuffle outside the top-10, which underscores the importance of using proper algorithms for estimating α.

Table 13 splits all classified hosts into eight categories. The top two signatures are desktop/server OSes and various stacks from network-device manufacturers (i.e., switches and routers). In third place, there are 7M hosts with no label, which means Faulds finds a matching signature for each of them, but Plata does not know what these devices are. The bottom half of the table, with a substantial count of cyber-physical systems and office equipment, is more alarming. These oftentimes run on default manufacturer passwords and allow reconfiguration using a built-in webserver. Investigating further, Table 14 shows the top-ten signatures from these categories, which include camera systems, building lighting controllers, and temperature monitors. They present high security risks to organizations because malicious actors may be able to use these systems to gain access to workplace audio/video recordings, printed documents, and environmental settings of critical infrastructure (e.g., cooling in data-centers).

With the recent leaks of NSA exploits and massive world-wide infection by ransomware WannaCry [21], [31], outdated operating systems (i.e., Windows XP/Server 2003) gained renewed attention. In Table 15, we show several signatures that have reached the end of support and are no longer being patched to keep up with the latest vulnerabilities. These are obvious security threats; however, we find over 1.8M old Windows hosts still visible over the public Internet, 500K FreeBSD, and 78K Solaris. Faulds not only allows for a timely measurement of such devices, but also paves the way for scalable, low-overhead Internet characterization, robust device identification, and better modeling of distortion θ experienced by the numerous hardware artifacts found on the Internet.

8 CONCLUSION

In this work, we developed novel theory and algorithms for improving OS-classification accuracy in single-probe fingerprinting,
measuring one-way Internet path properties, and extracting latent distributions of feature distortion. Simulations showed exceptional robustness of our EM techniques against various types of noise. Applied to Internet scans, this methodology can be used to detect vulnerable devices, as well as estimate stack popularity, network delays, packet loss, and header-tuning probabilities.

REFERENCES

dc-12-wang.pdf.

dc-12-wang.pdf.

