
1

Faulds: A Non-Parametric Iterative Classifier
for Internet-Wide OS Fingerprinting

Zain Shamsi, Daren B.H. Cline, and Dmitri Loguinov

Abstract—Recent work in OS fingerprinting [45], [46] has
focused on overcoming random distortion in network and user
features during Internet-scale SYN scans. These classification
techniques work under an assumption that all parameters of the
profiled network are known a-priori – the likelihood of packet
loss, the popularity of each OS, the distribution of networkdelay,
and the probability of user modification to each default TCP/IP
header value. However, it is currently unclear how to obtain
realistic versions of these parameters for the public Internet
and/or customize them to a particular network being analyzed.
To address this issue, we derive a non-parametric Expectation-
Maximization (EM) estimator, which we call Faulds, for the
unknown distributions involved in single-probe OS fingerprinting
and demonstrate its significantly higher robustness to noise
compared to methods in prior work. We apply Faulds to a new
scan of67M webservers and discuss its findings.

I. I NTRODUCTION

The Internet is a fascinating conglomerate of highly hetero-
geneous devices, which differ in hardware capability, security
awareness, software features, and daily usage. Measuring the
amount, type, and behavior of these devices, as well the
networks they connect to, has become an important topic [14],
[16], [18], [21], [27], [30], [36], [45], [46]. To categorize the
makeup of today’s networks, research inactive OS fingerprint-
ing, which is our topic in this paper, aims to determine the
stack of remote hosts using their responses to external stimuli
(i.e., TCP/IP probes) [4], [5], [7], [10], [19], [25], [26],[31],
[33], [39], [44], [47], [51], [52], [55], [56], [57]. In addition to
uncovering the operating system of computers, fingerprinting
can expose household items (e.g., printers, cameras, TVs) and
various cyber-physical systems (e.g., temperature monitors,
lighting controllers), which are classes of devices that have
enjoyed increased exploitation in recent years.

There are many uses for remote stack fingerprinting. First, it
helps hackers in identification of vulnerable hosts and general
network reconnaissance [50], especially during cyber-attacks
that target only a specific OS implementation [22]. Second,
OS fingerprinting is routinely deployed in security, e.g., by
administrators of large networks seeking to find unpatched
hosts and rogue entities [1], [32], [48]. Third, perimeter-
defense systems (e.g., IDS, firewalls) may require the OS of
the target host in order to detect certain types of exploits (e.g.,
those involving reassembly of IP fragments). In such cases,
autonomous fingerprinting of the protected network allows
these installations to function at maximum effectiveness [47],

A shorter version of this paper appeared in ACM CCS 2017.
All authors are with Texas A&M University, College Station,TX 77843

(zain@cse.tamu.edu, dcline@stat.tamu.edu, dmitri@cse.tamu.edu).

[51]. Finally, researchers/organizations use these techniques to
understand usage trends [37], [38], discover the spread of new
technologies [8], [17], [29], [41], and expose botnets [28].

Active stack fingerprinting can be partitioned into three
categories –banner-grabbingvia plain-text protocols (e.g.,
telnet, HTTP, FTP),multi-probe tools that elicit OS-specific
responses from various non-standardized combinations of flags
and/or unexpected usage of protocol fields (e.g., nmap [39],
xprobe [55], p0f [57]), andsingle-probemethods that send a
regular SYN to each host (e.g., Snacktime [6], RING [53],
Hershel [46], Hershel+ [45]).

At large scale, banner-grabbing has several impediments
– frequent removal of OS-identifying strings by administra-
tors (e.g., for security purposes), high bandwidth overhead, and
common interaction with non-platform-specific software (e.g.,
apache, nginx). Multi-probe tools have their own challenges –
heavy load on the target, massive complaints about intrusive
activity, and noisy results when the destination IP is load-
balanced across a server farm (i.e., each packet hits a different
machine). More importantly, the accuracy of multi-packet tools
suffers a significant degradation when firewalls block auxiliary
probes (e.g., a UDP to a closed port, rainbow flags in TCP
headers, ICMP port unreachable) and the underlying classifier
is not robust against unexpected feature removal/modification.
As shown in [45], OS classification with nmap over the public
Internet fails in almost30% of the cases. Furthermore, nmap
sometimes produces nonsensical results and worse accuracy
than the alternatives utilizing a single probe.

Before modeling and improving multi-packet classifiers,
which are still poorly understood, it is important to ask
whether there exists a set of algorithms for maximizing per-
formance of single-packet tools in Internet-wide scans. Such
techniques provide a maximally stealthy option and may be
able to bypass firewalls/IDS when packets loaded with “tricks”
cannot. As it turns out, even the most advanced model in
single-probe literature, i.e., Hershel+ [45], leaves roomfor
improvement. It has many built-in assumptions that may be
violated in practice, which in turn may affect its classification
accuracy and overall performance on such basic metrics as
the fraction of the Internet running a particular stack. Our
motivation for this paper is to understand the limitations of
existing single-probe techniques and offer novel avenues for
increasing both the classification accuracy and amount of
information recovered from responses to a SYN packet.

A. Overview of Results

Assume a database of known fingerprintsx = (x1, . . . ,xn)
and an observationx′ = (x′

1, . . . ,x
′
m) from a large number

2

of Internet hosts. Suppose vectorα = (α1, . . . , αn) specifies
the distribution ofpopularityamong the known OSes, i.e.,αi

is the fraction of hosts using fingerprintxi. Deciding which
OS generated eachx′

j is generally hindered by presence of
distortion during observation, which adds random delays to
packets, drops some of them, and modifies header fields.

Hershel+ relies on a-priori knowledge of not onlyα, but
also additional parametersθ of distortion – the probability
of change in each TCP/IP feature and distributions of network
delay, packet loss, and server think time. While the underlying
model in Hershel+ is more robust to distortion than those in
prior approaches [6], [53], its performance does depend on
how well α and θ can be estimated ahead of time. Unfor-
tunately, extraction of these parameters from prior Internet
scans and Hershel+ decisions is far from simple. In fact, using
the fraction of previous classifications that went to OSi as
a substitute forαi may lead to inferior results compared to
staying with the default parameters [46].

As the Internet is highly heterogeneous and constantly
evolving, even if (α, θ) could be estimated by monitoring
routers and/or using end-to-end measurement between strate-
gically positioned hosts (e.g., PlanetLab), it is unclear whether
conditions observed in the past or along certain paths can
yield meaningful predictions about the specific network being
fingerprinted (e.g., a corporate LAN is very different from
the public Internet). Instead, we argue that(α, θ) should be
the output of the classifier rather than theinput. Doing so
allows the unknown parameters to be customized to a specific
observationx′, i.e., reflect the OS composition of the network
being analyzed and its distortion properties.

To accomplish this objective, we derive a non-parametric
estimator for(α, θ) in Hershel+ under the theoretical frame-
work of Expectation-Maximization (EM) [13], [20]. We call
this approach Faulds and show that its iterative refinement of
unknown distributions, followed by reclassification ofx′, can
significantly improve the accuracy of Hershel+. Additionally,
as the algorithm recovers both(α, θ), it provides important
network characterization results for OS popularity, as well as
distributions of delay, header-modification probabilities, and
packet loss experienced byx′.

We perform a fresh Internet scan and show new EM-guided
classification decisions of Faulds. We not only update the OS-
popularity vectorα, which demonstrates non-trivial changes
compared to Hershel+, but also expose statistical parameters
of distortionθ observed by Faulds from63M webservers.

II. BACKGROUND

A. Nmap

Perhaps the most popular and exhaustive tool for OS finger-
printing is nmap [39]. To understand its infeasibility for wide-
area usage, we briefly review its outgoing traffic and response
requirements, as well as the matching algorithm. By default,
nmap starts with a vertical scan of the target using1,000 well-
known ports in an attempt to find two TCP ports, one of which
is open and the other is closed, as well as a closed UDP port.
It then sends16 uniquely crafted probes – six regular TCP
packets to an open port, one valid and one invalid ICMP ping,

one UDP packet to a closed port, four malformed packets to
an open TCP port, and three TCP packets to a closed port. It
retransmits all probes multiple times to neutralize the impact
of packet loss, which results in over100 packets per host in
addition to the initial port scan.

Besides overhead, running nmap against the entire Internet
poses a number of additional challenges. First, there is a low
likelihood that a port scan, combined with probes to closed
ports, gets unnoticed by the IDS. Many software packages
(e.g., snort) contain explicit rules to detect and block the
rather esoteric nmap traffic. Certain networks take offense
at being nmapped, which results in swift action to block
the entire subnet/AS of the scanner and complaints about
abusive behavior. Second, the firewall may allow select ports
to reach the target host (e.g., port80 to a webserver); however,
there is little incentive to pass UDP or TCP packets to other
ports that do not offer any services. Third, in similar fashion,
the OS firewall can be configured (e.g., using domain group
policy) to silently drop incoming packets to closed ports. In
fact, Windows and Mac OS X suppress outgoing ICMP port
unreachableseven when an explicit rule is created to allow
such packets through the firewall[3], [35].

Nmap expects responses to not deviate from those specified
in the database (e.g., a RST to a TCP rainbow packet, ICMP
port unreachable from a closed UDP port, ICMP echo reply
to a ping). Because it considers absence of a response to be a
feature, it can be misled into assigning large positive weights
to firewall actions, which skews the result towards network
stacks that inherently respond with fewer signals. This may
occur despite a complete non-match in other features, meaning
that the target may share nothing in the packet header (e.g.,
TCP window size, TTL, options, MSS) with the signature it is
matched to [45]. Other issues include the database itself, which
contains signatures that are subsets of others from completely
unrelated stacks and allows specialnull header fields that can
match any value in the observation. Unless the target responds
to all 16 probes exactly as expected, an obscure device with
the most null fields can trump the other alternatives, including
the correct signature.

Additionally, certain TCP fields are quitevolatile, i.e.,
change from user tweaks, underlying network MTU, and
software setsockopt function calls. This does not inherently
change the operating system, but creates an illusion of a
different stack. For example, Server 2008 R2 accepts incoming
connections with a kernel buffer (i.e., TCP window size) of
8,192 bytes; however, an apache webserver can reconfigure
this field to an arbitrary value before listening on the socket.
Furthermore, this can be done on a per-socket basis and
may vary over time depending on memory usage or other
considerations. When faced with this type of uncertainty, nmap
uses heuristic weights and thresholds that do not have rigorous
theory/verification behind them. As a result, it exhibits highly
unreliable identification in certain scenarios [45].

B. Single-Packet Tools

For accurate OS fingerprinting at Internet scale, low-
overhead methods resilient to volatility are preferred. Our

3

TABLE I
FEATURE VECTORSxi (TCP OPTIONS: M = MSS, N = NOP, S = SACK, T = TIMESTAMP, AND W = WINDOW SCALE)

OS name Win TTL DF OPT MSS RST RTOs
Linux 3.2 5,792 64 1 MSTNW 1,460 0, 0, 0, 0 3, 6, 12, 24.2, 48.2
Windows 2003 16,384 128 0 MNWNNTNNS 1,380 0, 0, 0, 0 3, 6.5
Novell 6,144 128 1 MNWSNN 1,460 1, 1, 0, 1 1.4, 3.0

RTO

RTO

Client Server SYN

RST (optional)

SYN-ACK

SYN-ACK

Fig. 1. Half-open connections in TCP.

focus in this paper is on single-probe techniques, which
generally work by sending a TCP SYN to the target host and
inducing a stream of SYN-ACK responses, possibly with a
RST at the end. Since the connection is kept in the half-open
state, the server continues retransmitting SYN-ACKs untilits
internal maximum-retry threshold is exceeded. Delays between
the SYN-ACKs, known asretransmission timeouts(RTOs),
as well as their count and presence of the last RST, reveal
valuable information about the OS of the responding host.
This is illustrated in Fig. 1. Coupling the RTOs with default
TCP/IP header values makes stack classification possible.

The main difference between prior work [6], [27], [45], [46],
[53] lies in the features they extract from TCP/IP headers and
the assumed distortion model. As of this writing, Hershel+ [45]
is both the most recent effort in this direction and most robust
to observation noise. We review its operation and formulas
later in the paper.

C. Other Techniques

Besides exploiting application-layer software (e.g.,
openSSL), cyber-attacks frequently target bugs in the OS
kernel. In response to this, researchers have been developing
methods to find and quantify unpatched systems [15], [41].
Services such as Shodan [30] and Censys [14] scan the
Internet, parse the downloaded banners (e.g., HTTP “Server:”
strings), and allow keyword search among the banners of
responding hosts. Another direction of research has tried to
identify industrial control devices by attempting to complete
handshakes using various SCADA protocols [18], [36]. The
effectiveness of identifying and attacking such systems was
illustrated by the famous Stuxnet worm in 2010.

A related area to OS fingerprinting attempts to automatically
discover features that can differentiate network stacks from
each other [2], [9], [42] and build separable (i.e., maximal
and non-redundant) databases from production systems [45].
Additional approaches, many of which are now part of nmap,
include usage of TCP initial sequence numbers [33], [56],
scraping of various fixed header fields [5], [7], [19], [52],
[55], [57], tests for reassembly of IP fragments [47], [51],
and reliance on clock-skew differences in kernels [10], [25].

Other protocols can be used in fingerprinting as well, e.g.,
HTTP [44], ICMP [4], [55], DNS [31], and DHCP [26].

III. L EARNING FROM OBSERVATION

A. General Problem

Suppose the OS database consists ofn ≥ 1 known stacks
(ω1, . . . , ωn), each with some vector-valuedfingerprint xi =
(xi1, xi2, . . .). As shown in Table I, fingerprints contain a
combination offeatures, including default header values used
for new connections and SYN-ACK retransmission timeouts
(RTOs) of each OS. Further assume a set of observationsx′ =
(x′

1, . . . ,x
′
m) obtained by scanning the Internet and eliciting

responses fromm live servers, wherex′
j = (x′

j1, x
′
j2, . . .) is

a vector of sampled features from hostj. For the type of
OS fingerprinting considered here, i.e., single-probe, this is
done by dispatching a SYN to every IP address in BGP and
collecting SYN-ACKs/RSTs from the responding servers, as
previously shown in Fig. 1.

The goal of the classifier is then to determine for each
x′
j the most-likely fingerprint in the database. This task is

complicated by the presence of distortion (also calledvolatility
[45]) θ that randomly modifies the original features of the
system before the observer gets them. This may involve a
change in the temporal relationship between the packets (e.g.,
queuing delays), removal of some features (e.g., loss of RST
packets), and rewriting of TCP headers in an effort to optimize
or obscure the end-system.

Defineαi = p(ωi) to be the unknown fraction of hosts in
x′ with OS i and letα = (α1, . . . , αn) be the corresponding
vector. Now supposep(y|ωi, θ) is the probability that the
fingerprint of signaturei has been changed intoy underθ.
Similarly, assume thatp(ωi|y, θ, α) is the probability that an
observed vectory was produced by a host running OSi,
conditioned on distortion modelθ and popularityα. Then,
application of Bayes’ rule shows that the classifier must
determine for eachj the one database entryωi with the largest

p(ωi|x
′
j , θ, α) =

αip(x
′
j |ωi, θ)

p(x′
j |θ, α)

, (1)

where, for any vector of featuresy, the denominator is

p(y|θ, α) =

n
∑

i=1

αip(y|ωi, θ). (2)

Analysis of (1) in existing work [45], [46] assumes thatα
is uniform (i.e.,αi = 1/n) and θ is fixed by oracle input.
Therefore, bothαi and denominatorp(x′

j |θ, α) are indepen-
dent of i and can be removed from the optimization, leaving
only p(x′

j |ωi, θ). In contrast, our goal here is to estimate
both α and θ dynamically as the classifier is running, which

4

should both increase its accuracy and yield interesting Internet-
characterization results as byproduct of classification. Before
reaching this objective, a gradual build-up of formalization is
needed. This section deals with estimatingα, the next one
covers network distortion, and the one after that focuses on
modification to fixed header features.

B. Fingerprint Popularity

Observation vectorx′ gives rise to a number of equations
in the form of (2), where the left side contains the empirical
(known) probability of observing each unique vectory ∈ x′

and the right side is a model that embeds the unknown
parameters. Extraction ofα and θ from such systems of
equations commonly involves the Expectation-Maximization
(EM) method, which produces a solution using fixed-point
iteration [13], [20]. At every stept, it maximizes the expected
log-likelihood function conditioned on the parameters obtained
during the previous iterationt− 1. As long as the number of
equations exceeds the number of unknown parameters, EM
works well for many problems in practice.

For now, we treatp(x′
j |ωi, θ) as a black-box classifier (e.g.,

Snacktime, Hershel, Hershel+), which does not attempt to es-
timateθ, and focus on determiningα. This is the simplest (and
only) case where (2) forms a linear system of equations, i.e.,
p(yk|θ, α) =

∑n
i=1 αicik(θ), where allcik(θ) are constants.

Throughout the paper, superscripts applied to parameters refer
to the iteration number during which they are estimated, e.g.,
αt
i approximatesαi during stept. Now notice that a sensible

estimate of popularity for OSi is the average probability with
which observations map to this fingerprint, conditioned on the
previous estimate of popularity, i.e.,

αt+1
i =

1

m

m
∑

j=1

p(ωi|x
′
j , θ, α

t). (3)

While the next result is fairly straightforward, its derivation
methodology is needed for later parts of the paper.

Theorem 1:For a classifier with fixedθ, (3) represents the
EM algorithm for recovering the popularity vectorα.

Proof: For a given set of observationsx′ = (x1, . . . ,xm),
define thelikelihood function ofα with respect to observation
x′ as

p(x′|θ, α) :=

m
∏

j=1

p(x′
j |θ, α) =

m
∏

j=1

n
∑

i=1

αip(x
′
j |ωi, θ). (4)

Direct computation of the Maximum Likelihood Estimator
(MLE) for p(x′|θ, α) is often impossible due to the complex
shape of the function. Instead, EM introduces hidden variables,
which help simplify (4), and applies maximization to theex-
pectedlikelihood function, conditioned on the current estimate
of unknown parameters. To this end, define hidden variables
z = (z1, . . . , zm) to specify which OS produced each observa-
tion x′

j . Note that the dataset of pairs((x′
1, z1), . . . , (x

′
m, zm))

is calledcomplete, as opposed to justx′, which is incomplete.
Then, thecomplete likelihood functionis given by

p(x′, z|θ, α) :=

m
∏

j=1

p(x′
j , zj |θ, α) =

m
∏

j=1

p(x′
j |zj , θ)p(zj |α)

=

m
∏

j=1

αzjp(x
′
j |ωzj , θ). (5)

It is often more convenient to work with summations, in
which case the above is replaced with

log p(x′, z|θ, α) =

m
∑

j=1

(logαzj + log p(x′
j |ωzj , θ))

=

m
∑

j=1

n
∑

i=1

(logαi + cij)1zj=i, (6)

wherecij := log p(x′
j |ωi, θ) is a constant that can eventually

be removed from optimization since it does not depend on
α. Now, the E-step takes the expectation of (6) with respect
to z, conditioned on the previous valuesαt and the available
observations, producing

Q(α|αt) := Ez[log p(x
′, z|θ, α)|x′, θ, αt]

=
m
∑

j=1

n
∑

i=1

(logαi + cij)E[1zj=i|x
′, θ, αt]

=

m
∑

j=1

n
∑

i=1

(logαi + cij)β
t
ij , (7)

where

βt
ij := p(ωi|x

′
j , θ, α

t) =
αt
ip(x

′
j |ωi, θ)

∑n
ℓ=1 α

t
ℓp(x

′
j |ωℓ, θ)

. (8)

The M-step maximizes (7) with respect to the unknown
parameterα and entails solving

∂Q(α|αt)

∂αi

= 0. (9)

Note that we can reduce the number of unknown variables
usingαn = 1−

∑n−1
i=1 αi, which yields fori = 1, 2, . . . , n−1

m
∑

j=1

(βt
ij

αi

−
βt
nj

αn

)

= 0. (10)

Defining c =
∑m

j=1 β
t
nj/αn, we get

αi =
1

c

m
∑

j=1

βt
ij . (11)

From normalization
∑n

i=1 αi = 1, it follows thatc must be
m and that additionally (11) applies toi = n. We therefore
get (3).

Note that this is markedly different from deciding popularity
using the fraction of classification decisions that go to each
OS, which is known ashard EM and commonly used in clus-
tering algorithms such ask-means [23]. In fact, all previous
fingerprinting tools [6], [7], [39], [45], [46], [55], [57] can be
viewed as performing one iteration of hard EM, i.e., outputting
the fraction of classifications that belong to each OSωi as an
estimate of its popularityαi.

5

TABLE II
NETWORK DISTORTION IN SCENARIOS1

Case Forward latency (sec) One-way delay (sec) Loss
Distribution Mean Distribution Mean

S11 Erlang(2) 0.5 Exp 0.5 3.8%
S12 Pareto 0.5 Pareto 0.5 50%
S13 Reverse-exp 1.5 Erlang(2) 0.5 10%
S14 Pareto 0.1 Uniform 0.1 50%

C. Discussion

We now address the question of whether (3) is sufficient for
achieving good classification on its own and how much of the
accuracy depends on knowing the exact distortion modelθ. If
the majority of the benefit is already obtained from recovering
α, the extra computational cost and modeling effort involved
in estimatingθ may be unnecessary. For discussion purposes,
we use a set of toy databases that allow simple demonstration
of the intended effects. Note that the same conclusions apply
to larger datasets, but finding the corresponding scenariosmay
be more time-consuming.

Simulations below apply a forward latency to the SYN
packet, pass each SYN-ACK through a FIFO queue, which
adds random one-way delays along the return path, and drop
packets using an iid (independent and identically distributed)
loss model with some fixed probability. This is similar to the
context in which prior methods [45], [46] have been tested.
For the scenario we callS1, there are four different cases
for the distribution of foward/reverse delays and packet-loss
probability. These are shown in Table II and discussed in more
detail next.

The first row matches exactly the assumed parametersθ in
Hershel+ [45]. The second row uses Pareto delays with mean
500 ms and50% loss, emulating highly noisy network condi-
tions. The next row uses a shiftedreverse-exponentialforward
latency with CDFe−λ(2−x), defined for−∞ < x ≤ 2, which
tests contrary-to-intuition examples where larger delaysare
more likely than smaller. We employλ = 2 and truncate this
distribution at zero, obtaining the average forward SYN delay
of 1.5 sec. The last case in the table examines smaller average
delays than the assumed modelθ in Hershel+, but couples it
with substantial loss.

Our first databaseD1 contains truncated signatures of Linux
3.2 (ω1), Windows Server 2003 (ω2), and Novell Netware (ω3)
from Table I. We retain the first two retransmission timeouts
(RTOs), remove all fixed header features, and obtain the
fingerprints in Fig. 2(a). Note that these Linux and Windows
signatures are pretty close to each other, albeit not identical;
however, they are quite different from Novell. The first three
distortionsS11−S13 applied to this database are illustrated in
the remaining subfigures, where we show the first200 samples
and remove observations with lost packets.

Defineρt to be the fraction of correct classifications for a
given method during iterationt, wheret = ∞ represents the
convergence point of the underlying estimator (usually20−40
iterations). If the method does not perform iteration, only
ρ1 is meaningful. We consider three techniques – Hershel+,
hard EM with multiple iterations, and soft EM in (3), all
using the same functionp(x′

j |ωi, θ) and starting from uniform

0 2 4 6
RTO

1
 (sec)

0

2

4

6

8

10

R
T

O
2
 (

se
c)

Linux
Windows
Novell

(a) databaseD1

0 2 4 6
RTO

1
 (sec)

0

2

4

6

8

10

R
T

O
2
 (

se
c)

Linux
Windows
Novell

(b) caseS11

0 2 4 6
RTO

1
 (sec)

0

2

4

6

8

10

R
T

O
2
 (

se
c)

Linux
Windows
Novell

(c) caseS12

0 2 4 6
RTO

1
 (sec)

0

2

4

6

8

10

R
T

O
2
 (

se
c)

Linux
Windows
Novell

(d) caseS13

Fig. 2. Database and distorted observations.

TABLE III
CLASSIFICATION RESULTS IND1

Case α Hershel+ Hard EM EM in (3)
ρ1 α1 ρ∞ α∞ ρ∞ α∞

S11 0.90 0.67 0.59 0.95 0.95 0.95 0.89
0.05 0.35 0.00 0.06
0.05 0.06 0.05 0.05

S12 0.05 0.48 0.45 0.06 0.98 0.89 0.11
0.90 0.41 0.00 0.82
0.05 0.12 0.02 0.07

S13 0.90 0.45 0.37 0.09 0.01 0.10 0.11
0.05 0.51 0.88 0.79
0.05 0.12 0.11 0.10

S14 0.3 0.60 0.65 0.33 0.97 0.34 0.81
0.6 0.23 0.00 0.13
0.1 0.12 0.03 0.05

popularityα0
i = 1/n.

Results of this process withm = 218 observations are
shown in Table III. In the first row, Hershel+ performs quite
well, achievingρ1 = 67%. Since Novell Netware is an easy-
to-separate signature from the other two, Hershel+ recovers
α3 pretty accurately; however, it is utterly confused about the
frequency of the other two stacks. Applying hard EM increases
accuracy, but full reconstruction ofα still proves difficult.
Application of (3) solves this issue.

Swapping (α1, α2), the second simulation in Table III
shows that Hershel+ is essentially guessing between Linux
and Windows, while hard EM is misled into divergence, where
it drops accuracy from48% to 6%. While (3) is immune to
divergence in this case, its estimate ofα suffers from non-
negligible errors. The next two cases in the table are even
more difficult. They show that EM can be driven into inferior
states when the assumedθ greatly deviates from that of the
underlying network. In fact, application of (3) not only fails
to obtain vectorsα that resemble the true distribution, but also
harms performance of the system, i.e.,ρ∞ ≪ ρ1.

It is interesting that hard-EM techniques, universally used in
prior work [6], [7], [39], [45], [46], [55], [57], may generally

6

SYN dj
′

1
 dj

′

2

server

client

di1 di2 di3

lost

Fig. 3. Delay features (stackωi produces observationx′

j).

be unsuitable for characterizing the fraction of hosts running
each OS, especially ifα is highly skewed. Additionally, EM
iteration is meaningful only whenθ is either known a-priori,
or can be accurately extracted from the collected observations.
We investigate the latter direction next.

IV. N ETWORK FEATURES

A. Distortion Model

Our goal in this section is to estimate unknown distortion
parametersθ inside p(x′

j |ωi, θ). Let featuresxi = (di,ui)
consist of network components (i.e., delaysdi) and user-
modified header values (i.e.,ui). Since classification [45], [46]
usually assumes that distortion is applied to each subvector
independently, it follows that

p(x′
j |ωi, θ) = p(d′

j |ωi, θd)p(u
′
j |ωi, θu), (12)

whereθd, θu are the network/user distortion models, respec-
tively. Each of them contains multiple PMFs (probability mass
functions) that we elaborate on below. Since in this section
we consider only the network component, we assume that
p(u′

j |ωi, θu) = 1 for all i, j, i.e., all observed user features
are the same and thus perfectly match all fingerprints.

To understand the notation involved in expanding the first
factor in (12), examine Fig. 3 where a host with network
signaturedi generates an observationd′

j . Measurement begins
with a SYN packet, which takes some time to get to the target,
followed by the server “think” delay before it generates the
first SYN-ACK response. Database feature vectorsdi consist
of departure timestamps from the server, wheredi1 = 0
for all i. Note thatdi,r+1 − dir is the r-th retransmission
timeout (RTO) of the stack, which was commonly used in
early estimators [6], [53], [46]. Recently, however, usageof
absolute timestampsdir was identified [45] as having certain
modeling advantages, which is our approach as well.

On the client side, arrival timestampsd′jr are measured
relative to the transmission time of the SYN. AssumeTj

represents the sum of the forward delay, server think time, and
propagation/transmission delays of the reverse path, where Tj

has some unknown distributionfT (τ) = P (Tj = τ). Further-
more, let∆j1,∆j2, . . . be iid queuing delays of the return path,
with another unknown distributionf∆(δ) = P (∆jr = δ).
Then, assuming no loss,d′jr = Tj + dir + ∆jr. In practice,
Tj and∆jr are continuous variables, but it is convenient to
discretize them into small bins and directly work with PMFs.

To handle packet loss, assume thatγj is a random vector
that maps the received packets in observationj to their order
on the server, i.e.,γj(r) = k means that ther-th received

packet was originally in positionk. In Fig. 3, for example, we
haveγj = (1, 3). Then, if thej-th observation comes from
systemωi, it follows that

d′jr = Tj + di,γj(r) +∆jr , r = 1, 2, . . . , |d′
j |. (13)

As in prior work [6], [45], [46], we assume no reordering
due to the large spacing between the packets (often several
seconds), which impliesγj(r+1) > γj(r). Let Γ(i, j) be the
set of all monotonic loss vectors that start with|di| packets
and finish with |d′

j |. Then, the Hershel+ network classifier
usesp(d′

j |ωi, θd) equal to [45]

∑

τ

fT (τ)
∑

γ∈Γ(i,j)

pi(γ)

|d′

j|
∏

r=1

f∆(d
′
jr − τ − di,γ(r)), (14)

wherepi(γ) is the probability to observe loss patternγ under
|di| transmitted packets. To avoid clutter, we omit the formulas
for handling random signaturesdi in Hershel+, which require
an extra summation over all possible sub-OSes and normaliza-
tion by the corresponding weights, but keep this functionality
in the code. For lack of a better assumption, Hershel+ uses
binomial pi(γ), Erlang(2)fT (τ), and exponentialf∆(δ), all
with some fixed parameters. Sinceθd encapsulates the set of
these distributions, our next goal is to recover them using EM
iteration.

B. Intuition

We start with a heuristic explanation of the proposed update
formulas, which is followed by a more rigorous treatment.
Recall thatf t

T (τ) is an estimate ofP (Tj = τ) during iteration
t. Then, one obvious approach is to set this value to the average
probability that each observationj has experienced a forward
latencyτ , conditioned on the previous estimates of unknown
parameters, i.e.,

f t+1
T (τ) =

1

m

m
∑

j=1

P (Tj = τ |d′
j , θ

t
d, α

t). (15)

Next, each database signature withk original packets admits
2k − 1 unique loss patternsγ, where k goes as high as
kmax = 21 in the most recent effort in the field [45]. Estimat-
ing the probabilitypi(γ) for each possible optionγ is likely to
produce too many unknown variables and lead to poor conver-
gence of EM. Instead, suppose that all

(

k
ℓ

)

patterns of losingℓ
packets out ofk are equally likely and define the probability of
this event to beqk(ℓ), wherek = 1, 2, . . . , kmax. The resulting
reduction in the number of unknown variables is significant –
from roughly2kmax+1 = 4M to justkmax(kmax−1)/2 = 210.
Despite its simplicity, the framework of usingqk(ℓ) allows
more general scenarios than the traditional iid Bernoulli model
used in previous literature [45], [46].

To update distributionqk(ℓ), our approach involves com-
puting the probability that observations experienced lossof ℓ
packets out ofk transmitted, normalized by the probability
that the original host sentk packets in the first place. To
express this mathematically, defineYj to be the number of

7

SYN-ACKs originated by the host in observationj. Letting
1X be an indicator of eventX , we get

qt+1
k (ℓ) =

∑m
j=1 P (Yj = k|θtd, α

t)1|d′

j
|=k−ℓ

∑m
j=1 P (Yj = k|θtd, α

t)1|d′

j
|≤k

, (16)

from which the estimated probability of patternγ is given by

pti(γ) =
qt|di|

(|di| − |γ|)
(|di|
|γ|

)
. (17)

Finally, updates to PMFf t
∆(δ) involve computing the

probability that one-way delay of each received packet equals
δ, normalized by the total number of packets collected during
the scan, i.e.,

f t+1
∆ (δ) =

∑m
j=1

∑|d′

j |

s=1 P (∆js = δ|d′
j , θ

t
d, α

t)
∑m

j=1 |d
′
j |

. (18)

C. Analysis

To make the framework outlined above usable, our next
task is to express the probability of events that cannot be
directly observed (e.g.,Yj = k, ∆jr = δ) using a recurrence
that depends on only the distributions contained inθtd, i.e.,
(f t

T , f
t
∆, q

t
k). Let

δijτγr = d′jr − τ − di,γ(r) (19)

be the one-way delay∆jr conditioned onTj = τ , loss pattern
γ, signatureωi, and observationj. For brevity of notation,
suppose

∑

ijτγs refers to five nested summations, wherei
goes from1 to n, j rolls from 1 to m, τ moves over all
bins of the PMFfT (τ), γ iterates over all monotonic loss
vectors inΓ(i, j), and s travels from1 to |d′

j |. If some of
the variables are absent from the subscript, the corresponding
sums are omitted from the result. With this in mind, define

ptijτγ := αt
if

t
T (τ)p

t
i(γ)

|d′

j |
∏

r=1

f t
∆(δijτγr), (20)

βt
ijτγ := p(ωi, τ, γ|d

′
j , θ

t
d, α

t) =
ptijτγ

∑

iτγ p
t
ijτγ

(21)

and consider the next result.
Theorem 2:Under network distortion, estimators (3), (15),

(16), and (18) can be written as

αt+1
i =

1

m

∑

jτγ

βt
ijτγ , (22)

f t+1
T (τ) =

1

m

∑

ijγ

βt
ijτγ , (23)

qtk(ℓ) =

∑

ijτγ β
t
ijτγ1|d′

j
|=k−ℓ,|di|=k

∑

ijτγ β
t
ijτγ1|d′

j
|≤|di|=k

, (24)

f t
∆(δ) =

∑

ijτγs β
t
ijτγ1δijτγs=δ

∑

j |d
′
j |

. (25)

Proof: We start with the recurrence onα. Keeping
distortion limited to network features, (3) becomes

αt+1
i =

1

m

m
∑

j=1

αt
ip(d

′
j |ωi, θ

t
d)

p(d′
j |θ

t
d, α

t)
.

With the help of (14), we get

p(d′
j |ωi, θ

t
d) =

∑

τγ

f t
T (τ)p

t
i(γ)

|d′

j |
∏

r=1

f t
∆(δijτγr), (26)

which leads to

αt
ip(d

′
j |ωi, θ

t
d) =

∑

τγ

pijτγ (27)

and, leveraging (2) for the denominator of (26),

αt+1
i =

1

m

m
∑

j=1

∑

τγ p
t
ijτγ

∑

iτγ p
t
ijτγ

=
1

m

∑

jτγ

βt
ijτγ . (28)

Moving on to the forward latency, notice that (15) becomes

f t+1
T (τ) =

1

m

m
∑

j=1

p(d′
j |τ, θ

t
d, α

t)p(τ |θtd)

p(d′
j |θ

t
d, α

t)

=
1

m

m
∑

j=1

∑

i α
t
ip(d

′
j |ωi, τ, θ

t
d)f

t
T (τ)

p(d′
j |θ

t
d, α

t)

=
1

m

m
∑

j=1

∑

iγ p
t
ijτγ

∑

iτγ p
t
ijτγ

=
1

m

∑

ijγ

βt
ijτγ . (29)

Next, the probability that the host in observationj sentk
packets is

P (Yj = k|θtd, α
t) =

n
∑

i=1

p(ωi|d
′
j , θ

t
d, α

t)1|di|=k

=
n
∑

i=1

αt
ip(d

′
j |ωi, θ

t
d, α

t)1|di|=k

p(d′
j |θ

t
d, α

t)
. (30)

Using this, the numerator of (16) expands to
m
∑

j=1

∑

i α
t
ip(d

′
j |ωi, θ

t
d, α

t)1|d′

j
|=k−ℓ,|di|=k

p(d′
j |θ

t
d, α

t)

=
∑

ijτγ

βt
ijτγ1|d′

j
|=k−ℓ,|di|=k. (31)

Applying the same logic to the denominator of (16), we get
(24). Finally, updates to one-way delay admit the following
interpretation

P (∆js = δ|d′
j , θ

t
d, α

t) =

∑

iτγ p
t
ijτγ1δijτγs=δ

p(d′
j |θ

t
d, α

t)

=
∑

iτγ

βijτγ1δijτγs=δ, (32)

which is a sum of match probabilities over all signatures, for-
ward latencies, and loss patterns that result in one-way delay δ
in the s-th received packet. Adding the two summations over
j, s and dividing by the total number of observed packets, we
get (25).

While the result of Theorem 2 may appear daunting due to
the number of nested summations, its implementation in prac-
tice can be done with little extra cost compared to Hershel+.
Specifically, usage of (14) in (1) for alli, j already requires
five nested loops. In the inner-most loop of that algorithm,
(25) adds one increment to a hash table that maintains the
PMF of one-way delay. Updates in (22)-(24) are performed

8

TABLE IV
CLASSIFICATION RESULTS OFNETWORK EM IN D1

Case ρ1 ρ∞ α∞

S11 0.67 0.95 0.90, 0.05, 0.05
S12 0.48 0.91 0.05, 0.90, 0.05
S13 0.45 0.95 0.90, 0.05, 0.05
S14 0.60 0.85 0.30, 0.60, 0.10

less frequently and, in comparison, consume negligible time.
The only caveat is that Hershel+ can be optimized [45] to
remove the outer summation in (14) whenfT is Erlang(2) and
f∆ is exponential. Our approach, on the other hand, requires a
hash-table lookup for both distributions. This makes its single
iteration similar in speed to unoptimized Hershel+.

Theorem 3:Iteration (22)-(25) is the EM algorithm for
(θd, α).

Proof: AssumeHj = (zj , Tj, γj) are the hidden variables
that specify for observationj its true OS, forward latency, and
loss pattern, respectively. Further supposeH = (H1, . . . , Hm)
is the collection of hidden variables for the entire measure-
ment. Then, the complete likelihood function is given by

p(d′, H |θd, α) :=

m
∏

j=1

p(d′
j , H |θd, α)

=
m
∏

j=1

p(d′
j |Hj , θd, α)p(Hj |θd, α), (33)

where

p(d′
j |Hj , θd, α) =

|d′

j|
∏

r=1

f∆(d
′
jr − τj − dzj ,γj(r)) (34)

p(Hj |θd, α) = αzjfT (Tj)pzj (γj). (35)

Define

pijτγ = αifT (τ)pi(γ)

|d′

j|
∏

r=1

f∆(d
′
jr − τ − di,γ(r)). (36)

Following the proof of Theorem 1, the log-likelihood ex-
pands to

log p(d′, H |θd, α) :=

m
∑

j=1

log(pzj ,j,Tj ,γj
)

=

m
∑

j=1

∑

iτγ

log(pijτγ)1zj=i,Tj=τ,γj=γ .

(37)

The expected log-likelihood function is then given by

Q(θd, α|θ
t
d, α

t) =
∑

ijτγ

log(pijτγ)p(ωi, τ, γ|d
′
j , θ

t
d, α

t)

=
∑

ijτγ

log(pijτγ)β
t
ijτγ . (38)

Taking partial derivatives with respect toαi andfT (τ), we
get a set of equations similar to (9)-(10). Their solution is

0 1 2 3 4
seconds

0

0.02

0.04

0.06

0.08

P
M

F

actual
estimated

(a) reverse-expfT (caseS13)

0 1 2 3 4
seconds

0

0.02

0.04

0.06

0.08

P
M

F

actual
estimated

(b) Erlang(2)f∆ (caseS13)

0 0.2 0.4 0.6 0.8 1
seconds

0

0.1

0.2

0.3

0.4

0.5

P
M

F

actual
estimated

(c) ParetofT (caseS14)

0 0.5 1
seconds

0

0.05

0.1

0.15

0.2

0.25

P
M

F

actual
estimated

(d) uniform f∆ (caseS14)

Fig. 4. Recovery of delay parameters inD1.

trivially given by (22)-(23). A more interesting case is the
loss PMF. Using substitution

qk(k − 1) = 1−

k−2
∑

ℓ=0

qk(ℓ), (39)

in (38), we get forℓ = 0, 1, . . . , k − 2 that

∂Q(θd, α|θ
t
d, α

t)

∂qk(ℓ)
=

∑

ijτγ

1|d′

j
|=k−ℓ,|di|=k

qk(ℓ)/
(

k
ℓ

) βt
ijτγ

−
∑

ijτγ

1|d′

j
|=1,|di|=k

qk(k − 1)
βt
ijτγ . (40)

Settingc to be the second summation in (40) and equating
the derivative to zero, we get

qk(ℓ) =
1

c

∑

ijτγ

1|d′

j
|=k−ℓ,|di|=k

(

k

ℓ

)

βt
ijτγ . (41)

Since the PMFqk must add up to1, it follows that

c =

k−1
∑

ℓ=0

∑

ijτγ

1|d′

j
|=k−ℓ,|di|=k

(

k

ℓ

)

βt
ijτγ

=
∑

ijτγ

1|d′

j
|≤k,|di|=k

(

k

ℓ

)

βt
ijτγ . (42)

Using this in (41) and canceling
(

k
ℓ

)

yields (24). Note that
derivation of (25) is very similar. We omit it for brevity.

D. Discussion

We revisit earlier simulations on datasetD1, run (22)-
(25) over the same input, and show the result in Table IV.
Compared to Table III, the derived EM estimator significantly
improves the accuracy of both classification and vectorα.
Note thatS12 contain43% of the observations with just one
packet, i.e., zero RTOs. In methods that rely on RTO [6], [46],
[53], these samples would be either discarded as impossible

9

to classify or assigned to a uniformly random signature. In
contrast, estimator (22)-(25) manages to do much better as it
learns distributions(fT , f∆, α) and makes the best decision
possible under these conditions. The accuracy of estimated
delay distributions is shown in Fig. 4. With the exception of
noise at the points of discontinuity of each density, functions
f∞
T , f∞

∆ match the true parameters quite well.
Recalling (13), whereTj + ∆jr are always measured

together, it may not be obvious howTj can be separated
from ∆jr and why the result in Fig. 4 is possible. Indeed,
this is reminiscent of the classical deconvolution problem:
given observations{Xi + Yi}

m
i=1, whereXi ∼ FX(x) and

Yi ∼ FY (x) are iid, determine the individual distributions
FX , FY . Deconvolution is generally unsolvable unless either
FX or FY is known ahead of time. While our problem
is similar, there is a crucial difference – EM can see the
same valueTj coupled withmultiple instances of∆jr , for
r = 1, 2, . . . , |d′

j |. As long asqk(k − 1) < 1 (i.e., packet
loss leaves at least two packets in enough observations) and
m → ∞, deconvolution is possible in our setting, but up to a
location shift, i.e., one of the estimated distributions may be
shifted left by a constant and the other right by the same
amount. If we know that one of them starts at zero, it is
possible to determine the shift after the fact. Furthermore, if
both estimated densitiesf∞

T , f∞
∆ already begin at zero, no

correction is needed. This is the case in Fig. 4 and later in our
Internet scan.

Since all signatures inD1 had three packets, it was easy to
figure out the number of them lost in eachd′

j , which led to
q∞k being perfectly accurate, regardless of whether (24) was
used or not. In a more interesting database, which we callD2,
Linux is augmented with a fourth packet that follows after
a 3-second RTO. To experiment with different loss patterns,
define BinT(k, p) to be a binomial distribution with parameters
(k, p) truncated to the range[0, k − 1]. Since the loss of all
k packets cannot be observed, we avoid generating this case
in the simulator. Additionally, suppose RevBin(k, p) is the
reverse binomial distributionsuch thatX ∼ BinT(k, p) and
Y = k − 1 − X implies Y ∼ RevBin(k, p). With this in
mind, consider scenarioS2 in Table V, which showsqk and
the average observed loss rate among the signatures withk
packets.

Table VI shows classification results for three methods –
Hershel+, the partial EM framework without loss updates
(24), and the full algorithm from Theorem 2. Not surprisingly,
Hershel+ again struggles to recoverα, even when its classi-
fication accuracy is pretty high. Omission of (24) does create
challenges for partial EM, where in all four cases it produces
worse results than Hershel+. On the other hand, the full
algorithm improves accuracy and delivers the exactα despite
complex underlying network conditions. The corresponding
distributions q∞k are shown in Table VII. They all match
ground-truthqk with high precision.

V. USERFEATURES

A. Distortion Model

Our goal in this section is to expand the second factor in
(12) and develop an estimator for its distortion model. This

TABLE V
NETWORK PARAMETERS OFSCENARIOS2

Case Delay q3 Loss q4 Loss
S21 As in S12 BinT(3, 0.3) 28% BinT(4, 0.3) 30%
S22 As in S12 BinT(3, 0.1) 10% BinT(4, 0.8) 66%
S23 As in S12 RevBin(3, 0.1) 57% RevBin(4, 0.1) 65%
S24 As in S13 BinT(3, 0.7) 54% BinT(4, 0.7) 61%

TABLE VI
CLASSIFICATION RESULTS IND2

Case α Hershel+ EM α, fT , f∆ Full EM
ρ1 α1 ρ∞ α∞ ρ∞ α∞

S21 0.90 0.76 0.68 0.70 0.63 0.91 0.90
0.05 0.25 0.31 0.05
0.05 0.07 0.05 0.05

S22 0.90 0.45 0.34 0.13 0.06 0.97 0.90
0.05 0.47 0.84 0.05
0.05 0.19 0.10 0.05

S23 0.90 0.45 0.36 0.10 0.06 0.90 0.90
0.05 0.46 0.90 0.05
0.05 0.18 0.04 0.05

S24 0.90 0.42 0.33 0.14 0.10 0.92 0.90
0.05 0.38 0.88 0.05
0.05 0.29 0.02 0.05

is done in isolation from the network features, i.e., using
p(d′

j |ωi, θd) = 1 for all i, j. Assumeb ≥ 1 user features,
where each observationj provides a constant-length vector
u′
j = (u′

j1, . . . , u
′
jb). These include the TCP window size, IP

TTL (Time to Live), IP DF (Do Not Fragment flag), TCP
MSS (Maximum Segment Size), and TCP options, for a total
of b = 5 integer-valued fields. Since RST features depend on
network loss, we delay their discussion until the next section.
Note that each field may be allocated a different number of
bits in the TCP/IP header and the number of available options
av for u′

jv may depend onv (e.g., two for DF and64K for
Win).

Modification to user features at the target host, which we
model with a set of distributionsθu, can be accomplished
by manually changing default OS parameters (e.g., editing
the registry), using specialized performance-tuning software,
requesting larger/smaller receiver kernel buffers while waiting
on sockets (i.e., using setsockopt), and deploying network/host
scrubbers [12], [40], [43], [49], [54] whose purpose is to
obfuscate the OS of protected machines. Besides intentional
feature modification, distortionθu may also accommodate
unknown network stacks that build upon a documented OS, but
change some of its features (e.g., new versions of embedded
Linux customized to a particular device).

Prior work either omits formally modeling user volatility
[6], [7], [39], [55], [57], or assumes thatuiv stays the same
with some probabilityπv and changes to another integer with
probability1−πv [45], [46]. While the latter approach works
well in certain cases, it has limitations. Besides the fact thatπv

is generally unknown, binary decision-making fails to create a
distribution over the available choices. For example,πv = 0.9
assumes thateach of the 65,534 non-default window sizes
occurs with probability0.1. Instead, a more balanced approach
would be to assume a uniform distribution over the distortion
possibilities and assign them probability(1 − πv)/(av − 1).
Second, it is likely that certain devices are modified less

10

TABLE VII
RECOVERY OFLOSSPMFS IN D2

Case Vector k = 3 k = 4
S21 qk (0.35, 0.45, 0.19) (0.24, 0.41, 0.27, 0.08)

q∞
k

(0.35, 0.45, 0.19) (0.24, 0.41, 0.27, 0.08)
S22 qk (0.73, 0.24, 0.03) (0.00, 0.04, 0.26, 0.69)

q∞
k

(0.73, 0.24, 0.03) (0.00, 0.04, 0.26, 0.69)
S23 qk (0.03, 0.24, 0.73) (0.00, 0.05, 0.29, 0.66)

q∞
k

(0.03, 0.24, 0.73) (0.00, 0.05, 0.29, 0.66)
S24 qk (0.04, 0.29, 0.67) (0.01, 0.10, 0.35, 0.54)

q∞
k

(0.04, 0.29, 0.67) (0.01, 0.10, 0.35, 0.54)

frequently than others (e.g., due to firmware restrictions)and
individual distortions are OS-specific, which implies thatπv

should depend oni. Finally, the existing methods have no way
of tracking the location and probability mass of distortion,
which does not have to be uniform in practice (e.g., a non-
default window size257 bytes is less likely than64K).

To overcome these problems, assume thatπiv(y) is the
probability that featurev of OS i is modified to becomey,
which gives rise to a set ofnb distributions that comprise our
user-distortion modelθu. Then, the proposed classifier can be
summarized by

p(u′
j |ωi, θu) =

b
∏

v=1

πiv(u
′
jv), (43)

where modification to features is assumed to be independent.
Note that doing otherwise does not appear tractable at this
point (i.e., estimation of covariance matrices produces too
many variables for EM to handle).

B. Iteration

We begin by discussing under what conditions the problem
is identifiable, despite having a large number of unknown
distributions. Assumeφiv := πiv(uiv) is the probability with
which featurev stays the same for OSi. Because we do not
know ahead of time the reasoning of the user for changing the
features or the new values of modified fields, the estimation
problem forπiv is unsolvable unless enough of the probability
mass remains at the original location, i.e.,φiv is above some
threshold. From common sense, it is likely thatφiv ≥ 0.5
holds among the general population of Internet hosts; however,
EM converges under even weaker conditions (e.g., whenφiv

is the largest value in each PMFπiv). Coupling this with an
initial state that satisfies the same constraint allows EM to
discover a unique solution.

We define the estimator for user distortion as the probability
to observey in featurev across all matches against OSi, i.e.,

πt+1
iv (y) =

∑m
j=1 p(ωi|u

′
j , θ

t
u, α

t)1u′

jv
=y

∑m
j=1 p(ωi|u′

j , θ
t
u, α

t)
. (44)

To allow simplification of this expression below, define

ptij := αt
ip(u

′
j |ωi, θ

t
u, α

t) = αt
i

b
∏

v=1

πt
iv(u

′
jv), (45)

βt
ij := p(ωi|u

′
j , θ

t
u, α

t) =
ptij

∑n
i=1 p

t
ij

. (46)

TABLE VIII
USERFEATURES OFDATABASE D3

OS Win TTL DF OPT MSS
Linux 5,792 64 1 MSTNW 1,460
Windows 16,384 128 0 MNWNNTNNS 1,380
Novell 6,144 128 1 MNWSNN 1,460

The next result follows from substitution of (45)-(46) into
(3) and (44), as well as earlier proofs of Theorems 1 and 2.

Theorem 4:Under user distortion, estimators (3) and (44)
can be written as

αt+1
i =

1

m

m
∑

j=1

βt
ij , (47)

πt+1
iv (y) =

∑m
j=1 β

t
ij1u′

jv
=y

mαt+1
i

. (48)

Furthermore, this is the EM algorithm for(θu, α).

C. Discussion

To evaluate the result of Theorem 4, we construct a new
databaseD3, shown in Table VIII, by switching from RTOs
to user features. Note that this Linux signature ties Novell
in DF and MSS, while Windows does the same in TTL. For
simplicity of presentation, we use simulation scenarios with
φiv = φv for all i, whereφv is the probability with which
featurev stays at the default value. This replaces matrixφiv

with a vectorφv, which is easier to follow across the different
tables.

The initial PMFsπ0
iv of EM are set up to include90% of the

mass on the default value and split the remainder uniformly
across the viable alternatives. Since it is believed [46] that
the order of non-NOP options cannot be changed without
rewriting the TCP/IP stack of the OS, we initializeπ0

i4 to
allow only candidates compatible with the originalui4. For
example, MST is feasible for Linux, but not the other two
signatures in Table VIII. Note that any single option (M, S,
W) and the empty set are valid for all three OSes.

We use two models for generating noisy observations. The
first one, which we call RAND, picks uniformly from the
space of possible values observed in our Internet scan, except
OPT is limited to compatible subsets/supersets of the original.
We have5,695 candidates for Win, four for TTL, two for
DF, 266 for OPT, and1,082 for MSS. Decisions are made
independently for each featurev and each observationj,
which models users “tweaking” their OS without coordinating
with each other or sharing a common objective. Even though
RAND can generate13.1 billion unique combinationsu′

j ,
only a small subset is encountered by the classifier in our
simulations below.

The second model, which we call PATCH, selects an al-
ternative vector of featuresu′′

i for each OSωi and switches
the default valueuiv to u′′

iv with probability 1 − φv, again
independently for eachv. This represents deployment of
software patches that change one of the features to an updated
value. The probability for a host to use multiple patches is the
product of corresponding(1−φv)’s. For example, modification

11

TABLE IX
PATCHED USERFEATURES

Vector Win TTL DF OPT MSS
u′′

1 5,793 128 0 M 1,461
u
′′

2 16,386 32 1 M 1,382
u′′

3 6,147 64 0 M 1,463

TABLE X
PARAMETERS OFSCENARIOS3

Case Model Feature stay probφv Popularityα
S31 RAND (0.3, 0.2, 0.5, 0.4, 0.4) (0.90, 0.05, 0.05)
S32 RAND (0.0, 0.0, 0.1, 0.2, 0.0) (0.90, 0.05, 0.05)
S33 PATCH (0.2, 0.2, 0.2, 0.2, 0.2) (0.7, 0.2, 0.1)

to both Win and OPT affects(1 − φ1)(1 − φ4) fraction of
hosts. Vectorsu′′

i are non-adversarial and do not attempt to
confuse the classifier. We construct them by flipping the DF
flag, setting OPT to M, and addingi to all remaining fields
(modulo the max field value). The result is given in Table IX.

To estimate vectorφt
v in the classifier, we use a weighted

average of feature non-modification across all OSes, i.e.,
φt
v =

∑n
i=1 α

t
iφ

t
iv . Our next scenarioS3 is detailed in Table X

and the corresponding outcome is given by Table XI. We omit
vector α∞ since it matches ground-truthα very accurately.
Due to the new treatment of non-default features in (43),
the first iteration of EM in Table XI is superior to Hershel+.
However, both are much worse than the last iteration. It should
be noted that the second caseS32 modifies Win, TTL, and
MSS in100% of the samples. Identifiability in such conditions
is helped by the fact that OPT is constrained to a subset of
the original string, which makes a certain fraction of randomly
generated values feasible for only one OS. This allows EM to
learn to ignore (Win, TTL, MSS) and focus decisions on (DF,
OPT). Furthermore, when guessing is involved, EM uses its
knowledge ofα to correctly pick the most-likely OS. It is also
interesting thatS33 is classified with100% accuracy once EM
gets a grasp on the new values in Table IX and their probability
of occurrence.

VI. COMPLETE SYSTEM

A. Reset Packets

Because loss of RST packets causes the corresponding user
features (i.e., ACK/RST flags, ACK sequence number, window
size [46]) to be wiped out, there is dependency between
distortion applied by the network and the user. As a result,
this case should be handled separately. The first modification
needed is to increase the length of network vectorsdi and
d′
j to accommodate the RST timestamp. The second change

is to add RST values into user features. Since it is currently
believed that RST fields are unmodifiable independently of
each other [46], they can be combined into a single integer
and appended to user vectorsui andu′

j in positionb+ 1.
There are four possible scenarios for handling RST packets.

They are shown in Table XII, each with a certain probability
ζtij that must be factored into the formulas developed earlier.
When both the observation and candidate signature contain a
RST, the only multiplier needed is the probability that the
received feature was produced by that OS. If the sampled

TABLE XI
CLASSIFICATION RESULTS IND3

Case Hershel+ EM
ρ1 ρ1 ρ∞ φ∞

v

S31 0.76 0.79 0.96 (0.30, 0.20, 0.50, 0.40, 0.40)
S32 0.29 0.32 0.91 (0.00, 0.00, 0.10, 0.20, 0.00)
S33 0.31 0.50 1 (0.20, 0.20, 0.20, 0.20, 0.20)

TABLE XII
HANDLING OF RST PACKETS

RST present Action Multiplier ζtij
d
′

j di

yes yes – πt
i,b+1

(u′

j,b+1
)

yes no ignore RST ind′

j πt
i,b+1

(u′

j,b+1
)

no yes – 1
no no – 1

OS has a RST, but the signature does not, this indicates a
possible interference from an intermediate device (e.g., IDS
after expiring connection state, scrubbers). In this case,it is
likely meaningless to use the temporal characteristics of the
RST, which is why we omit it fromd′

j before computing
the loss and delay probabilities. However, multiplicationby
πt
i,b+1(uj,b+1) is still warranted since we must assign a proper

weight to this mismatch. The third row of the table corresponds
to packet loss, which is handled automatically inpti(γ), i.e., no
additional actions or multipliers are needed. Finally, thelast
row is identical to the setup assumed in preceding sections.

B. Final Model

We now combine the developed network, user, and RST
models into a single framework. Redefining (20) as

ptijτγ = αt
iζ

t
ij

(

b
∏

v=1

πt
iv(u

′
jv)

)

f t
T (τ)p

t
i(γ)

|d′

j|
∏

r=1

f t
∆(δijτγr)

(49)

allows us to computeβt
ijτγ still via (21), as well as reuse

(22)-(25). However, (48) requires an update to

πt+1
iv (y) =

∑m
j=1 1ujv=y

∑

τγ β
t
ijτγ

mαt+1
i

, (50)

wherev = 1, 2, . . . , b + 1. The final classifier, which we call
Faulds1, is applied after EM has converged and is given by

p(ωi|x
′
j , θ

∞, α∞) =
∑

τγ

β∞
ijτγ . (51)

It is easy to generalize our earlier results to cover the
complete model, as given in the next theorem without proof.

Theorem 5:Under both network and user distortion, esti-
mator (21)-(25), (49)-(50) is the EM algorithm for(θ, α).

1Henry Faulds was a Scottish scientist who extended the ideasof William
Herschel and proposed the first usable forensic fingerprint-identification
method in 1880.

12

100 101 102

rank of OS

10-4

10-3

10-2

10-1

100
fr

ac
tio

n
of

 s
am

pl
es

actual
estimated

(a) Fauldsα

100 101 102

rank of OS

10-4

10-3

10-2

10-1

100

fr
ac

tio
n

of
 s

am
pl

es

actual
estimated

(b) Hershel+α

0 1 2 3 4
seconds

0

0.02

0.04

0.06

0.08

P
M

F

actual
estimated

(c) FauldsfT

0 1 2 3 4
seconds

0

0.02

0.04

0.06
P

M
F

actual
estimated

(d) Fauldsf∆

Fig. 5. Results inD4.

C. Scaling the Database

Due to the large number of features it combines, Faulds is
not challenged by the previous toy databases. We therefore
switch to a more realistic set of signatures created by Plata
in [45]. We call this databaseD4 and note that it contains
420 stacks, among which some have the same exact RTO
vector and others overlap inall user features. The database was
constructed to ensure that signatures were sufficiently unique
under delay distortion, but packet loss and user modifications
were not taken into account. As a result, the database contains
a number of entries that would be difficult to distinguish
under the types of heavy distortion considered in this paper.
Nevertheless, these tests should indicate how well Faulds
scales to larger databases and whether its recovery of the
unknown parameters(α, θ) is affected by an increased un-
certainty during the match.

We set popularityα to the Zipf distribution with shape
parameter1.2 and continue usingm = 218 observations,
which gives us64K samples from the most common OS and
just49 from the least. We borrow the delay from caseS13 (i.e.,
reverse-exponentialT with mean1.5 sec, Erlang(2)∆ with
mean0.5) and packet loss fromS23 (i.e., reverse-binomial).
Finally, we use RAND with stay probabilityφv = 0.8.

The first iteration of Faulds produces a respectableρ1 =
0.42. This is gradually improved with each step, until con-
vergence to a more impressiveρ∞ = 0.70. To make sense
out of α∞, we sort all signatures in rank order from the most
popular to the least and plot the result in Fig. 5(a). There
is a strong match in the top-100, while the random noise
in the tail is explained by the scarcity of these OSes in the
observation (i.e., below250 samples each). For comparison,
the outcome of Hershel+ is displayed in part (b) of the figure.
To complete the big picture, subfigures (c)-(d) show estimates
of fT andf∆. Despite an overall30% classification mismatch,
these PMFs are no worse than previously observed in Fig. 4,
which indicates that incorrect decisions overwhelmingly went

TABLE XIII
INJECTIONCLASSIFICATION SUMMARY

Size ofD4 Injected samples ρ1
∗

ρ∞
∗

p∞
loss

E[φ∞

v]
378 (90%) 7,089 (2.8%) 0.88 0.91 0.10 0.80
336 (80%) 49,648 (19.0%) 0.87 0.89 0.11 0.74
294 (70%) 60,058 (22.9%) 0.87 0.89 0.11 0.73
210 (50%) 91,408 (34.9%) 0.91 0.91 0.11 0.72
126 (30%) 189,293 (72.2%) 0.95 0.93 0.17 0.60

to signatures with similar RTO vectors as the true OS.
Instead of scrutinizing21 different loss PMFs, suppose we

compute a single metric – the fraction of packets dropped
within the entire observationx′, conditioned on at least one
packet surviving. To this end, define during stept

Lt
k =

k−1
∑

ℓ=1

ℓqtk(ℓ) (52)

to be the average number of lost replies in signatures withk
packets. Then, taking an estimated ratio of all dropped packets
to the total transmitted yields the expected loss rate

ptloss =

∑n
i=1 α

t
iL

t
|di|

∑n
i=1 α

t
i|di|

. (53)

Recall that the simulation allowed loss to affect at most
k − 1 packets in OSes with|di| = k. Therefore, its ground-
truth packet loss should represent the same quantity as (53).
Traces show that70.1% of the packets were dropped, which
matches quite well againstp∞loss = 69.3%.

Sinceφv = 0.8 was a constant in this simulation, it makes
sense to compare it against feature-modification estimates
averaged across all fields and all OSes, i.e.,

E[φt
v] =

1

b+ 1

b+1
∑

v=1

φt
v =

1

b+ 1

b+1
∑

v=1

n
∑

i=1

αiφ
t
iv. (54)

Results show thatE[φ∞
v] = 0.802, which is very close to

the actual value. While there is some variation in individual
φiv, it is of little concern due to the small number of samples
seen by Faulds from these OSes.

D. Unknown Signatures

We recognize that having a database that knows all devices
on the Internet is near impossible. Therefore, infiltrationof
samples from unknown signatures intox′, which we call
injections, is inevitable in practice. Understanding their impact
is our next topic.

Supposex′
j is produced by some unknown OSω that does

not belong to the database. Ifx′
j is so different from the known

signatures thatp(x′
j |θ

t, αt) = 0, i.e., it matches each OS with
probability0, its injection into the observation will contribute
nothing to updates of(αt, θt) and thus will have no impact on
classification decisions. In order to achieve a flat-out mismatch
of this type, either delayδijτγ must be negative for alli, τ, γ
or the product in (49) must be smaller than the precision of
floating-point arithmetic.

For injections withp(x′
j |θ

t, αt) > 0 the situation is less
clear-cut. In some cases,ω may be close to an existing
signatureωi, which makes injections minimally different from

13

0 0.2 0.4 0.6 0.8 1
seconds

0

0.1

0.2

0.3

0.4

0.5
P

M
F

actual
estimated

(a) fT

0 0.2 0.4 0.6 0.8 1
seconds

0

0.1

0.2

0.3

0.4

0.5

P
M

F

actual
estimated

(b) f∆

Fig. 6. Recovered delay under72% injection.

distorted instances ofxi. As a result, they do not negatively
impact EM or its convergence point. On the other hand, it is
also possible thatx′

j is a potential match to multiple unrelated
OSes and the amount of distortion needed to make them
appear asx′

j is much greater than the underlyingθ. If the
volume of injections is high, how likely is EM to introduce
bias into distributions of delay/loss to the point of impacting
classification accuracy fornon-injectedsamples?

We do not consider encountering of adversarial injections
(i.e., special signatures crafted to cause maximum harm for
a given database and classifier) to be likely in practice and
instead focus on evaluating the effect of random subset re-
moval fromD4. Specifically, assume the simulator produces
distorted observations using all420 network stacks; however,
Faulds has access to only some of the original signatures. For
the next simulation, we use ParetofT andf∆, both with mean
0.1 seconds, iid packet loss at10%, andφv = 0.8.

Define ρt∗ to be the classification accuracy among non-
injected observations during stept and consider Table XIII,
which shows the shrunk database size, number of injected
samples amongm = 218 observations, and the output of
Faulds. The result shows that removal of signatures does not
carry a significant negative impact on accuracy of classification
for the known OSes. In fact,ρt∗ slightly rises as the database
shrinks since it becomes easier to classify among fewer
options. Packet lossp∞loss also appears immune, except in
the last row where72% of x′ contains observations from
unknown OSes. Its increase to17% is explained by more
frequent matches that require high packet loss to be feasible.
Finally, the feature-stay probability in the last column isthe
most affected, which was also expected due to the increased
header-field mismatch.

Fig. 6 shows the two delay PMFs estimated by Faulds in
the last row of Table XIII. Recovery is quite good, except
for a slight bump inf∆ between200 and 400 ms. This
shows that removing70% of the signatures inD4 still leaves
enough unique RTO vectors to produce highly accurate results.
In the actual Internet, however, we do not expect injection
conditions to be anywhere near these levels becauseD4

contains an array of major network stacks (e.g., Windows,
Unix), printer firmware (e.g., HP, Lexmark, Brother), Cisco
equipment, and various derivative implementations that run
on embedded devices. See [45] for more details.

30 90 150 210 270 330 390 450
milliseconds

0

0.05

0.1

0.15

0.2

0.25

P
M

F

(a) fT

10 20 30
milliseconds

0

0.02

0.04

0.06

0.08

0.1

P
M

F

(b) f∆

Fig. 7. Internet delay distributions.

VII. I NTERNET MEASUREMENT

A. Overview

On December 14, 2016, we conducted a port-80 SYN scan
of all BGP-reachable IPv4 addresses on the Internet. Of the
2.8B IPs contacted, we gathered responses from67.6M hosts.
Using a 16-core AMD Opteron @2.8 GHz, a parallelized
C++ version of Faulds was able to process3,801 hosts per
second. In large-scale classification, such as the one attempted
here, Faulds produces a huge volume of information in the
form of various PMFs and estimates. Due to limited space,
we present only a brief review of the obtained results and
leave more detailed analysis (including attempts to uncover
injections and correct for them) for future work.We start with
basic sanity checks of the estimated distortionθ and then delve
into classification resultα.

B. Network Distortion

Fig. 7(a) shows the recovered distributionfT using bin
size 30 ms. Delays below60 ms (29%) represent unloaded
servers in close proximity to the scanner, most likely within
the continental US. Those in the120− 200 ms range (40%)
indicate targets whose RTTs are consistent with destinations
in Europe and Asia. The remaining cases covers longer paths,
OS scheduling delays, non-trivial CPU load on the server,
and involvement of various backend databases to set up the
connection. Overall, we obtainE[Tj] = 148 ms, 80% of the
samples below200 ms, and99.2% below 450 ms. Fig. 7(b)
plots the distribution of one-way delayf∆, in which 92% of
the mass concentrates below30 ms and97% below 100 ms.
The average queuing delayE[∆jr] = 15 ms also sounds quite
reasonable.

To examine packet loss, defineηtk =
∑n

i=1 α
t
i1|di|=k to be

the estimated fraction of observations that use an OS withk
packets. The top values ofk are four (η∞4 = 0.42, 112 stacks
in Plata databaseD4), six (η∞6 = 0.31, 80 stacks), three (η∞3 =
0.07, 72 stacks), and five (η∞5 = 0.04, 54 stacks). Fig. 8 plots
the recovered loss PMFs for these values ofk, each fitted with
an iid binomial model and accompanied by the average loss
rateL∞

k /k from (52). First, it is interesting that the loss rate
is heterogeneous, ranging from0.3% in q6 to 12.6% in q5.
This phenomenon may be inherent to the signatures that map
to eachk (e.g., certain printers cut the SYN-ACK sequence
when their tiny SYN backlog queue overflows [45]), the load
on the corresponding OSes, and host location on the Internet,
all of which suggests there is an extra benefit to estimatingqk

14

0 1 2
packets lost

0

0.2

0.4

0.6

0.8
P

M
F

estimated
binomial fit

(a) q3 (loss8.2%)

0 1 2 3
packets lost

0

0.2

0.4

0.6

0.8

1

P
M

F

estimated
binomial fit

(b) q4 (loss0.9%)

0 1 2 3 4
packets lost

0

0.2

0.4

0.6

P
M

F

estimated
binomial fit

(c) q5 (loss12.6%)

0 1 2 3 4 5
packets lost

0

0.2

0.4

0.6

0.8

1

P
M

F
estimated
binomial fit

(d) q6 (loss0.3%)

Fig. 8. Internet packet-loss PMFs.

independently for differentk. Second, while in a few of the
plots the binomial model shows a reasonable fit, this does not
universally hold. Finally, computing (53) for the Internetscan
yields an average loss rate of3.3% across all observations.
This is consistent with3.8% found in a Google study of SYN-
ACK retransmission rates [11].

C. User Distortion

Computing (54), we obtainE[φ∞
v] = 0.81, i.e., the average

probability to encounter a non-default value was19%. Faulds
produced420 × 6 = 2,520 distributions of user features,
among which we highlight several interesting cases, focusing
on the two most volatile fields – Win and MSS – and limiting
all PMFs to values above the1% likelihood. Since MSS
sometimes depends on the MTU of the underlying data-link
layer and/or tunneling protocol (e.g., IPv6), this field may
experience fluctuation even if the OS does not allow explicit
means for changing this value.

We expected devices with firmware restrictions that prevent
user access to the configuration of SYN-ACK parameters to
exhibit high φiv . One example is shown in Fig. 9(a) for a
popular Dell printer. Among976K occurrences on the Internet,
this device keeps the default window with probability1.
Intuition also suggests that general-purposes OSes are more
susceptible to modification and/or existence of alternatively
patched versions. One example is21M hosts with Ubuntu
Linux, where Fig. 9(b) shows that Faulds discovers31% of
the cases with window size exactly half of the default (i.e.,
14,480 instead of28,960). A more dispersed case is Mac OS
X Server in part (c), which exhibits noticeable variation in
both Win and MSS. Its default values remain with probability
73% and89%, respectively. Finally, in subfigure (d), CentOS
(enterprise Linux) has its original combination (17,896, 8,960)
occurring in only1% of the cases. We conjecture that the Plata
database [45], which was constructed from production devices
in a large campus network, captured a non-standard version of

WIN MSS
10-2

10-1

100

P
M

F

16384*

1400

1440*

1460

(a) Dell printer (976K)

WIN MSS
10-2

10-1

100

P
M

F

14480

17898

26847

28960*

1460*

(b) Ubuntu/Redhat/CentOS (21M)

WIN MSS
10-2

10-1

100

P
M

F 16384

16416

17376

32768

65535*

1380

14401452

1460*

(c) Mac OS X Server (67K)

WIN MSS
10-2

10-1

100

P
M

F

14240

17896*

28960

1422

1436

8960*

(d) CentOS (161K)

Fig. 9. Internet distributionsπi1 andπi5 (default values have an asterisk).

this stack with jumbo Ethernet frames enabled. Since this is
an inherent property of any database, it is important to allow
great flexibility in the match process to accommodate such
scenarios.

D. Classification Results

We define Faulds to be successful for samplej if the
denominator of (1) is non-zero, i.e.,p(xj |θ

t, αt) > 0. This
means that at least one OS matchesx′

j with a non-zero
probability. Using the Plata database with420 network stacks
[45], Faulds successfully classified63.1M hosts (i.e.,93%).
From a pure statistical point of view, the remaining4.5M
devices should be assigned to the OS with the highestα∞

i .
But it is also likely these cases come from unknown stacks
or observations with too much packet loss, in which case
excluding them from classification might be prudent as well,
which is our approach below.

The left side of Table XIV shows the top ten OSes after
one iteration of Faulds. Note that the Plata database was
auto-generatedfrom a pool of devices found at a university
network. Even though this process [45] produced only a
high-level description of each OS, additionalmanual effort
can be used to provide each signature with a more specific
kernel version and/or physical device. We consider this issue
orthogonal to the topic of the paper since Faulds operates on
TCP/IP signatures and its accuracy does not depend on the
name affiliated with each fingerprintxi.

The dominance of Linux and embedded devices in Table
XIV (left) matches the statistics reported in prior work [27],
[45], [46], although a more interesting result is the amountof
relative change occurring in the classification as Faulds goes
through its iterations. Table XIV (right) shows theα vector
after100 steps. The top Linux signature gains52%, Windows
7 in third place increases by25%, and two other Linux stacks
drop 17% each. Further down the list, there is significant
movement as well, where certain embedded systems, such as

15

TABLE XIV
FAULDS CLASSIFICATION AT ITERATION 1 (LEFT) AND 100 (RIGHT)

OS α1 Count
Ubuntu / Redhat / CentOS 0.224 14,098,093
Ubuntu / SUSE / CentOS 0.111 8,896,622
Embedded Linux 0.082 6,326,349
Windows 7 / 2008 / 2012 0.047 2,942,254
Ubuntu / Redhat / SUSE 0.037 2,408,386
Schneider / APC Embedded 0.022 1,587,396
Windows XP / 2003 0.021 1,314,967
Redhat / CentOS / SUSE 0.018 1,254,797
Embedded Linux 0.015 1,044,028
Windows 2008 R2 / 2012 0.013 907,167

−→

OS α100 Count Change
Ubuntu / Redhat / CentOS 0.334 21,361,956 0.52
Embedded Linux 0.103 6,467,303 0.02
Windows 7 / 2008 / 2012 0.056 3,669,372 0.25
Schneider / APC Embedded 0.055 3,632,638 1.29
Ubuntu / Redhat / SUSE 0.031 2,001,329 −0.17
Windows XP / 2003 0.018 1,248,619 −0.05
Redhat / CentOS / SUSE 0.016 1,046,567 −0.17
Dell Laser / Xerox WorkCenters 0.015 976,717 0.25
Windows 2008 R2 / 2012 0.014 837,466 −0.08
Cisco Embedded 0.013 824,039 2.29

TABLE XV
TYPES OFDEVICESRUNNING WEBSERVERS

Device Type Count Fraction
General purpose 42,277,294 67%
Switch/router/gateway/network controller 8,854, 290 14%
No label in database 7,038, 785 11%
Printers 2,813, 292 4.5%
RAID controller/NAS 1,348, 895 2.1%
Video conferencing/telepresence 603,035 1.0%
Cyberphysical systems 91,033 0.14%
IP phones 61,400 0.10%

TABLE XVI
UNPROTECTEDINDUSTRIAL AND ENTERPRISEDEVICES

Device Count Type
Polycom HDX 8000 HD 266,565 Telepresence
Hickman ITV 450D 67,091 Telepresence
Cisco Unified IP Phone 7900 Series 27,151 IP Phone
AVTech RoomAlert/Rockwell Automation 21,756 Cyberphysical
Loytec L-DALI Lighting Control Systems 20,517 Cyberphysical
Codian Telepresence MCU 20,036 Telepresence
Polycom RealPresence Server 4000 18,977 Telepresence
AdTran IP Phone Manager 11,909 IP Phone
HWg-STE: Ethernet thermometer 11,826 Cyberphysical
D-Link DCS Series Internet Camera 9,279 Telepresence

Schneider APC (data-center hardware solutions), Dell printers,
and Cisco, increase their membership by25− 229%. There is
even more shuffle outside the top-10, which underscores the
importance of using proper algorithms for estimatingα.

Table XV splits all classified hosts into eight categories.
The top two signatures are desktop/server OSes and various
stacks from network-device manufacturers (i.e., switchesand
routers). In third place, there are7M hosts with no label,
which means Faulds finds a matching signature for each of
them, but Plata does not know what these devices are. The
bottom half of the table, with a substantial count of cyber-
physical systems and office equipment, is more alarming.
These oftentimes run on default manufacturer passwords and
allow reconfiguration using a built-in webserver. Investigating
further, Table XVI shows the top-ten signatures from these
categories, which include camera systems, building lighting
controllers, and temperature monitors. They present high se-
curity risks to organizations because malicious actors may
be able to use these systems to gain access to workplace
audio/video recordings, printed documents, and environmental
settings of critical infrastructure (e.g., cooling in data-centers).

With the recent leaks of NSA exploits and massive world-
wide infection by ransomware WannaCry [24], [34], outdated

TABLE XVII
OSES WITH EXPIRED SUPPORTL IFE CYCLES

OS Count Released
Windows 2000 / XP / 2003 1,512,725 2000 / 2001 / 2003
FreeBSD 7.3 / 8.0 433,978 2010 / 2009
Windows Server 2003 SP1 SP2 195,169 2005 / 2007
Windows Server 2000 SP4/XP SP3 146,421 2003 / 2008
FreeBSD 6.4 71,190 2008
Solaris 9 / Solaris 10 78,269 2003 / 2005
Mac OS X 10.4 36,834 2005
Windows 2000/XP SP1 9,623 2001 / 2002
Novell Netware OES 2 SP1 1,108 2005

operating systems (i.e., Windows XP/Server 2003) gained
renewed attention. In Table XVII, we show several signatures
that have reached the end of support and are no longer being
patched to keep up with the latest vulnerabilities. These are
obvious security threats; however, we find over1.8M old
Windows hosts still visible over the public Internet,500K
FreeBSD, and78K Solaris. Faulds not only allows for a timely
measurement of such devices, but also paves the way for
scalable, low-overhead Internet characterization, robust device
identification, and better modeling of distortionθ experienced
by the numerous hardware artifacts found on the Internet.

VIII. C ONCLUSION

In this work, we developed novel theory and algorithms
for improving OS-classification accuracy in single-probe fin-
gerprinting, measuring one-way Internet path properties,and
extracting latent distributions of feature distortion. Simulations
showed exceptional robustness of our EM techniques against
various types of noise, as well as injection of unknown devices.
Applied to Internet scans, this methodology can be used to
detect vulnerable devices, as well as estimate stack popularity,
network delays, packet loss, and header-tuning probabilities.

Future work involves construction of fingerprint databases
with specimens that are pairwise separable under more com-
plex distortion than just delay, detection of unknown stacks
among the observations, automatic generation of signatures
for them, and extensive comparison against nmap.

REFERENCES

[1] H. Abdelnur, R. State, and O. Festor, “Advanced Network Fingerprint-
ing,” in Proc. RAID, Sep. 2008, pp. 372–389.

[2] A. Aksoy and M. H. Gunes, “Operating System Classification Perfor-
mance of TCP/IP Protocol Headers,” inProc. IEEE LCN, Nov. 2016,
pp. 112–120.

16

[3] Apple Support, “OS X Yosemite: Prevent others from discovering
your Mac.” [Online]. Available: https://support.apple.com/kb/PH18642?
locale=en US.

[4] O. Arkin, “A Remote Active OS Fingerprinting Tool using ICMP,”
USENIX login, vol. 27, no. 2, pp. 14–19, Apr. 2002.

[5] P. Auffret, “SinFP, Unification of Active and Passive Operating System
Fingerprinting,” Journal in Computer Virology, vol. 6, no. 3, pp. 197–
205, Nov. 2010.

[6] T. Beardsley, “Snacktime: A Perl Solution for Remote OS
Fingerprinting,” Jun. 2003. [Online]. Available: http://www.packetfu.
com/wp/snacktime.html.

[7] R. Beverly, “A Robust Classifier for Passive TCP/IP Fingerprinting,” in
Proc. PAM, Apr. 2004, pp. 158–167.

[8] R. Beverly and A. Berger, “Server Siblings: IdentifyingShared
IPv4/IPv6 Infrastructure via Active Fingerprinting,” inProc. PAM, Mar.
2015, pp. 149–161.

[9] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang,D. Song,
and A. Blum, “FiG: Automatic Fingerprint Generation,” inProc. NDSS,
Feb. 2007, pp. 27–42.

[10] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “OS Fingerprinting
and Tethering Detection in Mobile Networks,” inProc. ACM IMC, Nov.
2014, pp. 173–180.

[11] H. K. J. Chu, “Tuning TCP Parameters for the 21st Century,” Jul. 2009.
[Online]. Available: http://www.ietf.org/proceedings/75/slides/tcpm-1.
pdf.

[12] A. Crenshaw, “OSfuscate,” 2008. [Online]. Available:http://www.
irongeek.com/i.php?page=security/code.

[13] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,”Journal of the Royal Statistical
Society, vol. 39, no. 1, pp. 1–38, 1977.

[14] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A Search Engine Backed by Internet-Wide Scanning,” inProc. ACM
CCS, Oct. 2015, pp. 542–553.

[15] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payeret al., “The Matter of
Heartbleed,” inProc. ACM IMC, Nov. 2014, pp. 475–488.

[16] Z. Durumeric, E. Wustrow, and J. Halderman, “ZMap: FastInternet-wide
scanning and its Security Applications,” inProc. USENIX Security, Aug.
2013, pp. 605–620.

[17] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson,
“Examining How the Great Firewall Discovers Hidden Circumvention
Servers,” inProc. ACM IMC, Oct. 2015, pp. 445–458.

[18] X. Feng, Q. Li, H. Wang, and L. Sun, “Characterizing Industrial Control
System Devices on the Internet,” inProc. IEEE ICNP, Nov. 2016, pp.
1–10.

[19] S. Guoqiang and D. Lee, “Network Protocol System Fingerprinting: A
Formal Approach,” inProc. IEEE INFOCOM, Apr. 2006, pp. 1–12.

[20] H. O. Hartley, “Maximum Likelihood Estimation from Incomplete
Data,” Biometrics, vol. 14, no. 2, pp. 174–194, 1958.

[21] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett,
and J. Bannister, “Census and Survey of the Visible Internet,” in Proc.
ACM IMC, Oct. 2008, pp. 169–182.

[22] Kaspersky Labs, “Targeted Cyberattacks Logbook.” [Online]. Available:
https://apt.securelist.com.

[23] M. Kearns, Y. Mansour, and A. Ng, “An Information-Theoretic Anal-
ysis of Hard and Soft Assignment Methods for Clustering,” inProc.
Uncertainty in Artificial Intelligence, Aug. 1997, pp. 282–293.

[24] Z. Kleinman, “Cyber-attack: Is my computer at risk?”BBC
News, May 2017. [Online]. Available: http://www.bbc.com/news/
technology-39896393.

[25] T. Kohno, A. Broido, and K. C. Claffy, “Remote Physical Device Fin-
gerprinting,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, pp. 93–108, May 2005.

[26] E. Kollmann, “Chatter on the Wire: A Look at DHCP Traffic.” [Online].
Available: http://myweb.cableone.net/xnih/download/chatter-dhcp.pdf.

[27] D. Leonard and D. Loguinov, “Demystifying Service Discovery: Imple-
menting an Internet-Wide Scanner,” inProc. ACM IMC, Nov. 2010, pp.
109–122.

[28] Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Analysis of Large-
Scale Botnet Probing Events,” inProc. ACM AsiaCCS, Mar. 2009, pp.
11–22.

[29] M. Luckie, R. Beverly, T. Wu, and M. Allman, “Resilienceof Deployed
TCP to Blind Attacks,” inProc. ACM IMC, Oct. 2015, pp. 13–26.

[30] J. Matherly, “Shodan Search Engine.” [Online]. Available: https://
shodan.io.

[31] T. Matsunaka, A. Yamada, and A. Kubota, “Passive OS Fingerprinting
by DNS Traffic Analysis,” inProc. IEEE AINA, Mar. 2013, pp. 243–250.

[32] C. McNab, Network Security Assessment: Know Your Network.
O’Reilly Media, Inc., 2007.

[33] J. Medeiros, A. Brito, and P. Pires, “An Effective TCP/IP Fingerprint-
ing Technique Based on Strange Attractors Classification,”in Proc.
DPM/SETOP, Sep. 2009, pp. 208–221.

[34] Microsoft Technet, “Microsoft Security Bulletin MS17-010 – Critical.”
[Online]. Available: https://technet.microsoft.com/en-us/library/security/
ms17-010.aspx.

[35] Microsoft Technet, “Stealth Mode in Windows Firewall with
Advanced Security.” [Online]. Available: https://technet.microsoft.
com/en-us/library/dd448557(WS.10).

[36] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujitasphon,
T. Yardley, R. Berthier, J. Mason, Z. Durumeric, and J. A. Halderman,
“An Internet-Wide View of ICS Devices,” inProc. IEEE PST, Dec. 2016,
pp. 96–103.

[37] NetApplications, “Market Share Statistics for Internet Technologies.”
[Online]. Available: http://netmarketshare.com/.

[38] Netcraft Web Server Survey. [Online]. Available: http://news.netcraft.
com/.

[39] Nmap. [Online]. Available: http://nmap.org/.
[40] G. Prigent, F. Vichot, and F. Harrouet, “IpMorph: Fingerprinting Spoof-

ing Unification,” Journal in Computer Virology, vol. 6, no. 4, pp. 329–
342, Nov. 2010.

[41] A. Quach, Z. Wang, and Z. Qian, “Investigation of the 2016 Linux TCP
Stack Vulnerability at Scale,” inProc. ACM SIGMETRICS, Jun. 2017,
pp. 3:1–3:19.

[42] D. Richardson, S. Gribble, and T. Kohno, “The Limits of Automatic OS
Fingerprint Generation,” inProc. ACM AISec, Oct 2010, pp. 24–34.

[43] G. Roualland and J.-M. Saffroy, “IP Personality.” [Online]. Available:
http://ippersonality.sourceforge.net/.

[44] S. Shah, “An Introduction to HTTP Fingerprinting,” May2004.
[Online]. Available: http://net-square.com/httprintpaper.html.

[45] Z. Shamsi and D. Loguinov, “Unsupervised Clustering Under Temporal
Feature Volatility in Network Stack Fingerprinting,” inProc. ACM
SIGMETRICS, Jun. 2016, pp. 127–138.

[46] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, “Hershel:
Single-Packet OS Fingerprinting,” inProc. ACM SIGMETRICS, Jun.
2014, pp. 195–206.

[47] U. Shankar and V. Paxson, “Active Mapping: Resisting NIDS Evasion
Without Altering Traffic,” in Proc. IEEE S&P, May 2003, pp. 44–61.

[48] B. Skaggs, B. Blackburn, G. Manes, and S. Shenoi, “Network Vulner-
ability Analysis,” in Proc. IEEE MWSCAS, Aug. 2002, pp. 493–495.

[49] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP Stack
Fingerprinting,” inProc. USENIX Security, Jun. 2000, pp. 229–240.

[50] A. K. Sood and R. J. Enbody, “Targeted Cyberattacks: A Superset of
Advanced Persistent Threats,”IEEE S&P, vol. 11, no. 1, pp. 54–61, Jan.
2013.

[51] G. Taleck, “Ambiguity Resolution via Passive OS Fingerprinting,” in
Proc. RAID, Sep. 2003, pp. 192–206.

[52] G. Taleck, “SYNSCAN: Towards Complete TCP/IP Fingerprinting,”
CanSecWest, Apr. 2004.

[53] F. Veysset, O. Courtay, O. Heen, and I. R. Team, “New Tooland
Technique for Remote Operating System Fingerprinting,” Apr. 2002.
[Online]. Available: http://www.ouah.org/ring-full-paper.pdf.

[54] K. Wang, “Frustrating OS Fingerprinting with Morph,”
2004. [Online]. Available: http://hackerpoetry.com/images/defcon-12/
dc-12-presentations/Wang/dc-12-wang.pdf.

[55] F. V. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai, Y. Huang, and S.-Y.
Kuo, “Xprobe2++: Low Volume Remote Network Information Gathering
Tool,” in Proc. IEEE/IFIP DSN, Jun. 2009, pp. 205–210.

[56] M. Zalewski, “Strange Attractors and TCP/IP Sequence Number
Analysis,” Apr. 2001. [Online]. Available: http://lcamtuf.coredump.cx/
newtcp/.

[57] M. Zalewski, “p0f v3: Passive Fingerprinter,” 2012. [Online]. Available:
http://lcamtuf.coredump.cx/p0f3.

https://support.apple.com/kb/PH18642?locale=en_US
https://support.apple.com/kb/PH18642?locale=en_US
http://www.packetfu.com/wp/snacktime.html
http://www.packetfu.com/wp/snacktime.html
http://www.ietf.org/proceedings/75/slides/tcpm-1.pdf
http://www.ietf.org/proceedings/75/slides/tcpm-1.pdf
http://www.irongeek.com/i.php?page=security/code
http://www.irongeek.com/i.php?page=security/code
https://apt.securelist.com
http://www.bbc.com/news/technology-39896393
http://www.bbc.com/news/technology-39896393
http://myweb.cableone.net/xnih/download/chatter-dhcp.pdf
https://shodan.io
https://shodan.io
https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
https://technet.microsoft.com/en-us/library/dd448557(WS.10)
https://technet.microsoft.com/en-us/library/dd448557(WS.10)
http://netmarketshare.com/
http://news.netcraft.com/
http://news.netcraft.com/
http://nmap.org/
http://ippersonality.sourceforge.net/
http://net-square.com/httprint_paper.html
http://www.ouah.org/ring-full-paper.pdf
http://hackerpoetry.com/images/defcon-12/dc-12-presentations/Wang/dc-12-wang.pdf
http://hackerpoetry.com/images/defcon-12/dc-12-presentations/Wang/dc-12-wang.pdf
http://lcamtuf.coredump.cx/newtcp/
http://lcamtuf.coredump.cx/newtcp/
http://lcamtuf.coredump.cx/p0f3

	Introduction
	Overview of Results

	Background
	Nmap
	Single-Packet Tools
	Other Techniques

	Learning from Observation
	General Problem
	Fingerprint Popularity
	Discussion

	Network Features
	Distortion Model
	Intuition
	Analysis
	Discussion

	User Features
	Distortion Model
	Iteration
	Discussion

	Complete System
	Reset Packets
	Final Model
	Scaling the Database
	Unknown Signatures

	Internet Measurement
	Overview
	Network Distortion
	User Distortion
	Classification Results

	Conclusion
	References

