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ABSTRACT

Stable and Scalable Congestion Control for

High-Speed Heterogeneous Networks. (May 2008)

Yueping Zhang, B.S., Beijing University of Aeronautics and Astronautics

Chair of Advisory Committee: Dr. Dmitri Loguinov

For any congestion control mechanisms, the most fundamental design objectives

are stability and scalability. However, achieving both properties are very challenging

in such a heterogeneous environment as the Internet. From the end-users’ perspective,

heterogeneity is due to the fact that different flows have different routing paths and

therefore different communication delays, which can significantly affect stability of the

entire system. In this work, we successfully address this problem by first proving a

sufficient and necessary condition for a system to be stable under arbitrary delay. Uti-

lizing this result, we design a series of practical congestion control protocols (MKC

and JetMax) that achieve stability regardless of delay as well as many additional

appealing properties. From the routers’ perspective, the system is heterogeneous be-

cause the incoming traffic is a mixture of short- and long-lived, TCP and non-TCP

flows. This imposes a severe challenge on traditional buffer sizing mechanisms, which

are derived using the simplistic model of a single or multiple synchronized long-lived

TCP flows. To overcome this problem, we take a control-theoretic approach and

design a new intelligent buffer sizing scheme called Adaptive Buffer Sizing (ABS),

which based on the current incoming traffic, dynamically sets the optimal buffer size

under the target performance constraints. Our extensive simulation results demon-

strate that ABS exhibits quick responses to changes of traffic load, scalability to a

large number of incoming flows, and robustness to generic Internet traffic.
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CHAPTER I

INTRODUCTION

1 Overview

During the last decade, the Internet has witnessed an explosive growth in the demand

of network capabilities from end-applications, such as large-scale distributed science

computations and experiments that operate at 100 tera FLOPS (floating-point oper-

ations per second) and require massive (hundreds of peta bytes) data transfers across

the country and around the world. However, it becomes widely recognized that the

current Internet may not meet future requirements or scale to ultra high-speed net-

works. Thus, a significant focused research effort is currently under way to design new

network architectures for coherent global data networks that overcome existing diffi-

culties and ensure a robust future Internet. Congestion control, as the key component

of the Internet infrastructure, lies right in this territory.

The most fundamental properties required by any congestion control protocols

are stability and scalability. Specifically, stability determines a system’s ability to

avoid oscillations in the steady-state and properly respond to external perturbations

caused by the arrival/departure of flows, variation in feedback, and other transient

effects. Scalability refers to capability of a system to achieve its ideal performance

regardless of the system’s size, which can be represented in terms of the user’s pop-

ulation or link’s capacity. Clearly, these two properties are especially important in

such a large-scale, complex dynamical system as the Internet.

The journal model is IEEE/ACM Transactions on Networking.
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However, both properties are seriously challenged by heterogeneity of the Inter-

net, which, as illustrated in Figure 1, can be viewed from two perspectives. From

the perspective of end-users, heterogeneity arises from the fact that different flow

has a different routing path and therefore experiences a different round-trip delay.

As demonstrated in Chapter III, heterogeneous feedback delays significantly affect

the performance of a network system in terms of asymptotic stability. On the other

hand, heterogeneity from the router’s perspective stems from the fact that the in-

coming traffic at a given router is not homogeneous, but composed of a mixture of

traffic with different packet sizes, transfer lengths, and underlying congestion control

protocols. Thus, traditional network technologies, such as buffer sizing mechanisms,

that are built upon the assumption of homogeneous incoming traffic, are no longer

suitable for the current reality and may inversely impact performance of the Internet.

As seen from Figure 1, this work seeks to tackle heterogeneity from both the end-

user’s and router’s perspectives. Specifically, the goal is to design practical Internet

congestion control protocols that are stable under heterogeneous feedback delays and

scalable to future ultra high-speed networks, and to construct an intelligent buffer

sizing scheme that are robust to realistic Internet traffic (including mixtures of short-

and long-lived, TCP and non-TCP traffic) and scalable to a large number of incom-

ing flows. I next provide overviews of these two parts in the following two sections,

respectively.

2 Delay-Independent Stable Congestion Control

Since its introduction by Jacobson [47] in 1988, Internet congestion control has evolved

from binary-feedback methods of AIMD/TCP [19, 111] to the more exciting develop-

ments based on optimization theory [73, 75], game theory [52, 64], and control theory
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Fig. 1. Organization of the dissertation.

[51, 52, 77, 82]. It is widely recognized that TCP’s congestion control in its current

shape is inadequate for very high-speed networks and fluctuation-sensitive real-time

multimedia applications. Thus, a significant research effort is currently under way

(e.g., [30, 31, 49, 56, 60, 61, 64, 99]) to better understand the desirable properties

of congestion control and develop new algorithms that can be deployed in future

high-speed heterogeneous networks.

The stability issue of TCP arises as a result of the oscillatory nature of TCP’s

congestion control algorithm. Specifically, a TCP end-user linearly increases its send-

ing rate in the absence of packet loss and multiplicatively decreases it upon detection

of a lost packet. The binary rate-adjustment behavior causes the transmission rates

of end-users to oscillate around, instead of converging to, a certain value, which is

very undesirable for many Internet applications that require smooth transfer rate,

such as video streaming and VoIP applications. We address this problem by utilizing

a control-theoretic approach. Specifically, we follow Kelly’s framework [60] and model

the congestion control system as a closed-loop feedback control system. One challenge
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for studying stability of such a control system is time delay, which is composed of

a packet’s propagation time over links and queuing time inside router buffers. The

problem is further complicated by the case of heterogeneous delays where each user

i receives its network feedback delayed by a random amount of time Di. To better

understand the relationship of delay and stability, we first conduct a comprehensive

study of the effect of delay on the performance of existing Internet congestion control

protocols (including TCP, rate-based AIMD, Scalable TCP, and TFRC). From this

study, we demonstrate that all of the existing protocols are unable to achieve stability

and exhibit undesirable behavior under non-negligible delay. Driven by this motiva-

tion, we next set our goal to build practical congestion control systems that maintain

stability under heterogeneously delayed feedback as well as offering other appeal-

ing properties (e.g., fair resource allocation in the steady state, low implementation

overhead, fast convergence to stationarity, and low packet loss rate).

Designing stable congestion control under delay is an active research area and has

attracted a significant amount of attention from the networking community during

the last five years. However, most existing papers (e.g., [22, 51, 52, 56, 66, 63, 64, 75])

model all users with homogeneous delay Di = D and do not take into account the fact

that end-users in real networks are rarely (if ever) synchronized. Several recent stud-

ies [65, 77, 97] successfully deal with heterogeneous delays; however, they model Di

as a deterministic metric and require that end-flows (and sometimes routers) dynam-

ically adapt their equations based on feedback delays, which leads to RTT-unfairness,

increased overhead, and other side-effects (such as probabilistic stability). To over-

come these limitations, we systematically approach this problem by first deriving a

tight sufficient condition (whose necessity is also suggested by simulations) for any

single-link congestion control system to be stable regardless of delay. Since this sta-

bility condition does not involve any delay, it is called a delay-independent stability
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condition. Utilizing this result, we further identify several classes of systems that are

stable under arbitrary delay as long as they are stable under immediate feedback.

This way, stability analysis of a delayed system is reduced to that of its undelayed

version, which has been well studied and can be easily carried out. In addition to

its theoretical merit, this result also provides a guideline for developing practical

congestion control schemes with delay-independent stability.

Employing this technique, we propose a congestion control framework called

Max-min Kelly Control (MKC) [115], which introduces several novel modifications

to the classical Kelly Control [60] such that the resulting system satisfied the our

delay-independent stability condition obtained in [117]. We demonstrate that sta-

bility and fairness of MKC do not depend on any parameters of the network (such

as delay, path length, or the routing matrix of end-users). We also show that with

a proper choice of AQM feedback, MKC converges to efficiency exponentially fast,

exhibits stability and fairness under random delays, and does not require routers to

estimate any parameters of individual flows. However, EMKC has two key limita-

tions - constant packet loss in the steady state and slow (linear) convergence rate

to fairness. To overcome these two problems, we design another congestion control

scheme called JetMax [116]. We establish both analytically and experimentally that

JetMax exhibits zero packet loss in both the transient phase and steady state and

converges to both efficiency and fairness in a fixed number of round-trip times (RTTs)

regardless of link capacity and flow population. With parameters used in all ns2 sim-

ulations and Linux experiments, for instance, it takes JetMax only 6 RTTs to reach

the equilibrium under a bottleneck link with arbitrary capacity (e.g., 1 gb/s, 1 tb/s,

or 1 googol (10100) b/s). This, together with delay-independent stability and all its

other appealing properties, makes JetMax an ideal congestion control protocol for

future ultra high-speed heterogeneous networks. In addition to ns2 simulations, we
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conduct an extensive empirical evaluation of JetMax by implementing it as a Linux

kernel module and an MS Windows Server 2003 NDIS driver. Our experimental re-

sults align very well with the theoretical analysis and confirm that JetMax admits a

low-overhead implementation inside routers (three additions per packet). All of these

characteristics make JetMax an ideal protocol for future high-speed heterogeneous

networks and suggest that it, once deployed in the Internet, may remain in service

for many years to come.

3 Robust Router Buffer Management

One of the key components of Internet routers is the I/O buffer, which is closely

linked to various critical performance metrics, including packet loss rate, end-to-end

delay, and utilization level. On one hand, router buffers should be large enough to

accommodate transient bursts in packet arrivals and hold enough packets to maintain

high link utilization. On the other hand, large buffers in turn leads to increased

queuing delays and may potentially cause instability of TCP in certain scenarios [76].

Clearly, optimally determining the required buffer size is of immense importance for

router manufactures when configuring their routers for the future high-speed Internet

and significantly affects the ability of large Internet service providers to deliver and

guarantee competitive Service Level Agreements (SLA) [94].

As today’s Internet rapidly grows in scale and capacity, it becomes widely rec-

ognized that the classic bandwidth-delay-product (BDP) [96] rule for sizing router

buffers is no longer suitable for the future Internet. In addition, the Internet is

foreseeing a disruptive evolution driven by focused collaborative efforts such as the

NSF Global Environment of Network Innovations (GENI) and Future Internet Net-

work Design (FIDN) initiatives. This imposes significant challenges as well as great
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opportunities for all most every corner of Internet technologies, including the next-

generation infrastructure for router buffer management. As a consequence, there has

emerged in the research community a surge of renewed interest [3, 5, 8, 25, 27, 37, 41,

42, 57, 68, 85, 87, 96, 102, 103] in the buffer-sizing problem during the last five years.

However, these results present vastly different, even contradictory, views on how to

optimally dimension the buffer of a router interface. In addition, all these results

rely on certain assumptions of the incoming Internet traffic and may have limited

applications to and exhibit undesirable behavior in other traffic models. In contrast,

Kellett et al. [57] take a completely different approach and models the buffer-sizing

problem as the Lur’e problem. Under this model, they proposed a dynamic buffer

sizing algorithm called Adaptive Drop Tail (ADT). However, the control parameter

K depends on the underlying Lur’e formulation and can hardly be obtained with-

out off-line calculation. Thus, it still remains open to develop a model-independent

buffer-sizing mechanism that is able to ideally allocate buffers under different traffic

patterns.

In this work, we achieve the goal of buffer sizing by proposing a new buffer man-

agement infrastructure, where the router adapts its buffer size to the dynamically

changing incoming traffic based on one or more performance constraints. We first

formulate buffer sizing as the following problem. Let B be the total size of router’s

memory and bl(t) be the amount of buffer allocated to link l at time t. Then, the prob-

lem becomes determining the optimal buffer size for each link l under the constraint

that
∑

l bl(t) ≤ B. We then propose that this problem can be alternatively solved by

leveraging the monotonic relationship between buffer size bl and various performance

metrics (e.g., utilization u, loss rate p, and queuing delay q). Rigorously proving this

relationship is very difficult and out of scope of this dissertation. Instead, we provide

an intuitive explanation of this result using a simple yet generic congestion control
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model.

Utilizing this result, we design a buffer management mechanism, called Adaptive

Buffer Sizing (ABS), which dynamically determines the minimum buffer size satisfy-

ing the target performance constraints based on real-time traffic measurements. ABS

consists of two sub-controllers ABSu and ABSp, each of which employs an Integral

controller that adapts to dynamics of input traffic by regulating the buffer size based

on the error between the measured and target values of utilization and loss rate, re-

spectively. However, we observe that the naive Integral controller ABSu drives buffers

of non-bottleneck routers to infinity. We successfully address this problem by intro-

duce a damping component, such that the resulting ABSu quickly converges buffers

to their equilibrium values in both bottleneck and non-bottleneck routers.

Another challenge is how to tune integral gains for optimal performance. Im-

proper parameter settings may lead to undesirable system behavior, such as slow

convergence and persistent oscillations. We solve this problem by associating with

each sub-controller a gradient-based parameter training component, which is capa-

ble of automatically adapting parameters to achieve their optimal values under the

current ingress traffic. We evaluate the resulting controller in ns2 simulations and

demonstrate that ABS is able to deal with generic Internet traffic consisting of HTTP

sessions, different TCP variants, and non-TCP flows, is robust to changing system

dynamics, and is scalable to link capacities and flow populations, all of which make

the concept of ABS an appealing and practical buffer sizing framework for future

Internet routers.
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CHAPTER II

RELATED WORK

1 Next-Generation Congestion Control

1.1 Delay-Dependent Schemes

A large amount of theoretical and experimental work has been conducted to design

stable congestion controls for high-speed networks. One example is FAST TCP [49],

which utilizes queuing delay, in addition to packet loss, as the primary congestion

measurement. It is proved in [50] that FAST TCP is globally asymptotically stable

under a single bottleneck link with instantaneous feedback and locally asymptotically

stable in a general network with homogeneous feedback delay. However, proper op-

eration of FAST TCP requires reliable computation of the RTT and adaptive tuning

of control parameters, both of which are undesirable in realistic networks. Another

recently proposed transport protocol is XCP [56], which aims to achieve stable flow

adaptation, fare bandwidth sharing, and low packet loss. Instead of simply using

packet loss as the congestion signal, XCP generalizes ECN (Explicit Congestion No-

tification) to indicate the extent of congestion. XCP manages to control efficiency

and fairness by using separate controllers inside the routers. Other promising pro-

posed protocols include HSTCP [30], Scalable TCP [61], BIC-TCP [110], LTCP [11],

and RCP [26], all of which aim to achieve quick convergence to efficiency, stable rate

trajectories, fair bandwidth sharing, and low packet loss.

An entirely different direction in congestion control is to model the network from

an optimization or game-theoretic point of view [52, 63, 64, 66, 75]. The original
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work by Kelly et al. [59, 60] offers an economic interpretation of the resource-user

model, in which the entire system achieves its optimal performance by maximizing

the individual utility of each end-user. To implement this model in a decentralized

network, Kelly et al. describe two algorithms (primal and dual) and prove their global

stability in the absence of feedback delay. However, if feedback delay is present in

the control loop, stability analysis of Kelly controls is non-trivial and currently forms

an active research area [22, 51, 65, 77, 97, 99].

Recall that in Kelly’s framework [60, 77], each user i ∈ [1, N ] is given a unique

route ri that consists of one or more network resources (routers). Feedback delays

in the network are heterogeneous and directional. The forward and backward delays

between user i and resource j are denoted by D→
ij and D←

ij , respectively. Thus, the

round-trip delay of user i is the summation of its forward and backward delays with

respect to any router j ∈ ri: Di = D→
ij + D←

ij . Under this framework, Johari et al.

discretize Kelly’s primal algorithm as follows [51]:

xi(n) = xi(n− 1) + κi

(
ωi − xi(n−Di)

∑
j∈ri

µj(n−D←
ij )

)
, (1)

where κi is a strictly positive gain parameter, ωi can be interpreted as the willingness

of user i to pay the price for using the network, and µj(n) is the congestion indication

function of resource j:

µj(n) = pj

(∑
u∈sj

xu(n−D→
uj)

)
, (2)

where sj denotes the set of users sharing resource j and pj(·) is the price charged by

resource j. Note that we use a notation in which Di = 1 means immediate (i.e., most

recent) feedback and Di ≥ 2 implies delayed feedback.

Next, recall that for a homogeneous delay D, system (1)-(2) is locally stable if
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[51]:

κi

∑
j∈ri

(
(pj + p′j

∑
u∈sj

xu)
∣∣∣
x∗u

)
< 2 sin

(
π

2(2D − 1)

)
, (3)

where x∗u is the stationary point of user u and pj(·) is assumed to be differentiable at

x∗u.

For heterogeneous delays, a combination of conjectures made by Johari et al.

[51], derivations in Massoulié [77], and the proofs of Vinnicombe [97] suggest that

delay D in (3) can be simply replaced with individual delays Di to form a system of

N stability equations; however, the proof exists only for the continuous version of (1)

and leads to the following necessary stability equation [97]:

κi

∑
j∈ri

(
(pj + p′j

∑
u∈sj

xu)
∣∣∣
x∗u

)
<

π

2Di

. (4)

Inspired by Kelly’s optimization framework, one additional method called MaxNet

is proposed in [107] and is aimed at improving convergence properties [106] of tra-

ditional models of additive feedback. In MaxNet, each user i obtains feedback

ηi(t) = maxj∈ri
pj(t) from the most congested router in its path and applies ηi(t)

to an unspecified control law xi(t) = fi(ηi(t)). Based on the technique developed in

[82], the authors prove that MaxNet is locally stable in generic networks with fixed

bottleneck assignments if

0 < f ′i(η
∗
i ) <

x∗i
Di

, (5)

where x∗i and η∗i are, respectively, the equilibrium rate and stationary feedback of

flow i.

1.2 Delay-Independent Schemes

To the best of our knowledge, the first delay-independent stability condition is due

to Vinnicombe, who proposes and examines the following continuous fluid model of
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a network with sources operating TCP-like algorithms [98]:

ẋi(t) =
xi(t−Di)

Di

(
αi(t)−

(
αi(t) + βi(t)

)
ηi(t)

)
, (6)

where αi(t) = a
(
xi(t)Di

)n
, βi(t) = b

(
xi(t)Di

)m
, a, b, m, n are constants, network feed-

back ηi(t) =
∑

j∈ri
pj(n−D←

ij ), and link price pj(t) = (yj(t)/Cj)
B is an approximation

of packet loss at link j of capacity Cj and buffer size B. It is proven in [98] that the

above controller is locally stable if

a(x∗i Di)
n <

1

B
. (7)

Setting n = 0 and a < 1/B, the resulting system achieves delay-independent stability.

An additional result is available from [112], where Ying et al. considers the following

variant of controller (6):

ẋi(t) = κixi(t−Di)
( 1

xn
i (t)

− xm
i (t)ηi(t)

)
, (8)

where κi is a constant. The authors prove that (8) is globally stable regardless of

delay in general network topologies if m + n > B. This work is similar in spirit to

ours; however, the analysis and proposed methods are different.

2 Router Buffer Sizing

The optimal buffer size depends on the target performance constraints (such as link

utilization, packet loss rate, and queuing delay). For instance, considering only uti-

lization, buffers should be sufficiently large to prevent the router from idling so that

full utilization is achieved. In particular, it is commonly suggested that the buffer size

b of a bottleneck router should be at least the product of the output link’s capacity C

and the average round-trip time R of all incoming TCP sessions, i.e., b ≥ CR. This
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rule-of-thumb is commonly attributed to Villamizar and Song [96] and is deployed

in most current large commercial routers [3]. However, the huge amount of mem-

ory space required by this rule becomes progressively unrealistic as link speed of the

Internet evolves to the magnitude of multiple giga-bps and even tera-bps.

As pointed out by Appenseller et al. [3], this classic principle is applicable in

scenarios where only synchronized long-lived TCP flows are present. However, In-

ternet core routers are usually utilized by hundreds of thousands of flows, in which

case synchronization rarely happens and the aggregate window size process converges

to a Gaussian process [3]. Based on this result, they prove that when router buffers

are sized according to b = CR/
√

N , link utilization is lower bounded by 98.99%. A

completely different result is given by Avrachenkov et al. [5], who model buffer sizing

as an optimization problem and derive that the optimal buffer size of N unsynchro-

nized flows is b = (CR)2/32N3. Both results deviate from the rule-of-thumb in that

their suggested buffer sizes scale inversely to the number of flows, indicating that all

current backbone routers are over-buffered and their memory space and costs can be

substantially reduced.

The small-buffer criteria are extended by Enachescu et al. [27], who suggest that

buffers be as small as 10 − 20 packets in core routers provided the packet arrival

process follows a Poisson distribution. This assumption is enforced by introducing

Paced TCP [27], where senders evenly spread out-going packets over an RTT. This

result is further extended to the model of combined input-output queue [8] and later

supported in [87, 103].

Although the assumption of totally asynchronous flows and Poisson arrivals are

sound for backbone routers, as pointed out in [25], generic Internet routers are usually

accessed by partially synchronized flows. In this case, the minimum buffer require-
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ment is shown to be [25]:

b =
p(N)CRe − 2SN(1− p(N))

2− p(N)
, (9)

where Re is the harmonic mean of the RTTs, S is the MTU, p(N) = 1− (1− 1/N)LN

is the fraction of flows that see at least one packet loss, and LN is the average number

of dropped packets during a congestion event.

Besides saturating a given link, Dhamdhere et al. [25] propose that minimizing

packet loss rate should also be taken into account when sizing router buffers. To

accomplish this goal, they develop a buffer management rule based on Flow Propor-

tional Queuing (FPQ), in which the loss rate is kept within a threshold value p by

increasing the RTTs (or the buffer size) of the flows proportionally to N . Letting Rp

and R∗
q respectively be the propagation and required queuing delays of the link, the

proposed buffer sizing equation is:

b = CR∗
q = K∗

pN − CRp, (10)

where K∗
p = 0.87/

√
p∗ and p∗ is the target loss rate. If we consider both utilization

and loss constraints, buffer size should be the larger of (9) and (10) and the resulting

mechanism is called Buffer Sizing for Congested Link (BSCL) [25].

Note that buffer sizing rule (10) suggests that the bottleneck buffer should lin-

early increase with N , which is in sharp contrast to the aforementioned small-buffer

rules [3, 5, 27]. Furthermore, utilizing a generalized AIMD model, Eun and Wang [28]

arrive at an interesting conclusion that it is possible to achieve both full utilization

and zero loss rate for any intermediate buffer size b between RC/
√

N and RCN .

Recent studies by Srikant et al. [68] and Dovrolis et al. [85] suggest that the optimal

buffer size should also depend on the ratio between the input and output links’ speed.

Specifically, if the ratio is small, buffers of constant sizes O(1) are sufficient for high
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utilization and loss loss rate; otherwise, large buffers are required.

Compared to the above schemes that seek to derive an explicit model of buffer

size and Internet traffic, another class of methods tries to solve this problem by

utilizing a certain implicit relationship between them. Specifically, Shorten et al. [92]

propose a buffer sizing approach by introducing several sender-side modifications to

TCP. They demonstrate that the resulting method, called Adaptive AIMD, adapts

to any buffer size in the path while preserving fairness and TCP-friendliness between

different flows. In addition, Kellett et al. [57] formulate the relationship between

buffer size and utilization as a sector-bounded nonlinearity and develop an adaptive

buffer sizing scheme called Adaptive Drop Tail (ADT), whose control equation is given

by:

b(n) = b(n− 1) + K
(
u∗ − u(n)

)
, (11)

where unspecified parameter K needs to satisfy K = (0, 2/k2) to achieve stability and

k2 is the sector nonlinearity upper bound. However, it is unclear how k2 is obtained

for a given traffic condition and how it can be calculated in real time as the system’s

dynamics change. Clearly, ADT has to resolve these issues before being used in real

Internet routers.
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CHAPTER III

EFFECT OF DELAY ON THE PERFORMANCE OF

EXISTING CONGESTION CONTROL PROTOCOLS

1 Introduction

In this chapter, we aim to understand how feedback delays of regular end-users, in-

duced by queuing at the bottleneck router, affect the behavior of existing congestion

control protocols. We do not address the issue of delays arising due to large propaga-

tion delays, or due to queuing at non-bottleneck routers. To better understand why

delay is a significant factor in the performance of a congestion controller, consider

the following illustration. We placed an MPEG-4 video server at Michigan State

University and used home DSL clients to stream scalable MPEG-4 FGS video from

the server. In the case reported in this work, the client’s access link supported up

to 512 kb/s on the physical layer, which corresponded to approximately 450 kb/s of

IP-layer throughput. As shown in Figure 2 for one representative experiment, both

the RTT of the flow and the sending rate of the server exhibited significant fluctu-

ation throughout this ten-minutes streaming session. The increase in the RTT was

in response to buffering delays at the DSL link and was directly correlated with oc-

currences of packet loss. The server used rate-based AIMD congestion control, which

frequently increased the rate to over 600 kb/s and then dropped it below 35 kb/s in

response to significant packet loss. Clearly, this performance is undesirable for many

reasons, including fluctuating video quality, high packet loss, low link utilization, and

prohibitively large retransmission delays.

In what follows in this chapter, we first study TCP and demonstrate that its
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Fig. 2. Video streaming over 512-kb/s residential DSL. Evolution of the RTT (left)

and that of the IP-layer sending rate (right).

performance deteriorates as buffering delay becomes large and reaches unacceptable

levels (i.e., high rates of oscillations and packet loss). However, we subsequently show

that TCP has the best delayed performance compared to other protocols including

rate-based AIMD, Scalable TCP, and TFRC. Combined, these two results paint a

rather bleak picture for current best-effort streaming methods; however, they provide

clear insight into a long-standing question of whether window-based protocols do in

fact perform best in the current Internet. We conclude the chapter with observations

that delayed instability is inherent to all AIMD-friendly classes of control methods

and that better algorithms based on AQM feedback may be the only alternative for

improving the performance of congestion control in the future Internet.

2 Delayed Behavior of AIMD

Existing congestion controls are broadly classified into two categories: rate-based and

window-based, where the former is usually more desirable in video streaming. It is

generally observed that controlling rate-based flows is challenging [72, 109] as their
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Fig. 3. Combined sending rate of two competing TCP flows.

oscillations and packet loss exhibit worse performance than those of similar window-

based mechanisms; however, we are not aware of any quantitative studies that support

this statement in the context of streaming or outside of ATM data-link literature.

While all TCP-friendly controls oscillate, these oscillations become more pronounced

as the delay in the feedback increases (we call this situation “increased instability”),

which happens when the flows adjust their current rates based on out-dated feedback

and then overreact to packet loss caused by the overshoot.

2.1 Delay-Related Oscillations in TCP

We first consider delayed behavior of TCP. Recall that TCP follows the AIMD policy

[19, 47] in its window adjustment, where the sender additively increases its congestion

window per positive ACK and multiplicatively decreases it upon each packet loss.

When buffers sizes are large (such as in the DSL example shown in the introduction),

propagation delay is less of an issue and contributes negligibly to the delayed feedback

and/or the dynamics of the whole system. Thus, in the rest of the chapter, we assume
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Fig. 4. Trajectories of two TCP flows: (a) 10 ms delay; (b) Instantaneous feedback.

a network configuration with delays arising only due to buffering at the most congested

(bottleneck) router of a given path.

In such a model, when the combined sending rate of all flows exceeds the bot-

tleneck capacity, TCP continues increasing its window and queuing the extra data at

the bottleneck until congestion is detected. The delay needed for TCP to realize that

the buffer is full is directly related to the amount of bursty packet loss the flow will

suffer and the amount of window-size reduction following the loss.

It is well known that under ideal assumption of instantaneous feedback, all AIMD

congestion controls converge to the fair operating point with minimal packet loss

[19]. However, when large buffers in the network create delays, TCP becomes more

“unstable” and exhibits complex behavior on small time-scales. Consider one such

example. We use the ns2 simulator and examine two competing TCP flows sharing

a bottleneck link with 0.2 mb/s bandwidth and 10 ms propagation delay. The buffer

size is 20 packets and the sampling rate is 100 ms. Figure 3 depicts the combined

rate of these two flows. As seen in the figure, the average combined rate is just
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below the link’s capacity; however, the instantaneous combined rate reaches as high

as 0.6 mb/s, which overflows the link and leads to large bursts of packet loss. In

response to this loss, the combined rate periodically drops almost to zero, which

leads to under-utilization of network resources and amplified oscillations compared to

the non-delayed case.

We next examine how fairness between the two flows in Figure 3 is affected

by delays. As shown in Figure 4 (a), when the link becomes congested, the flows

persistently oscillate around the fairness line and do not maintain fairness on small

time-scales. Moreover, the trajectory exhibits no noticeable regularity and appears

unpredictable. In contrast, Figure 4 (b) depicts the behavior of two TCP flows under

immediate feedback, where the oscillations along the fairness line are relatively small

and fairness is maintained at all times.

To understand the delayed behavior of TCP in analytical terms, we next investi-

gate its control equation and derive the amount of lost data as a function of queuing

delay D.

2.2 Delayed TCP

It is well known that AIMD mechanisms buffer excess data when the bottleneck link

is saturated since feedback delays prevent the sources from adjusting their rates in a

timely manner. For sufficiently large feedback delays (i.e., large buffers), end-users

eventually overshoot the bottleneck link and experience bursty packet losses due to

the excess data sent into the network before congestion is detected. We call this

behavior “excessive buffering” and examine its extent in AIMD and other protocols

in the rest of this chapter.

We start our investigation with window-based AIMD (e.g., TCP) schemes. Our

next result shows that as soon as the bottleneck link is saturated, TCP automatically
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switches the growth rate of its window W (t) from linear to
√

t. This naturally leads

to a more “conservative” behavior of TCP under non-negligible buffering delays and

explains its advantage over the other methods studied in this chapter.

Lemma 1. After the bottleneck link is saturated, the size of TCP’s congestion window

grows proportionally to
√

t.

Proof. Assume discrete time and recall that TCP’s congestion window W (t) is in-

creased by MTU2/W (t− 1) upon each positive (non-duplicate) ACK [1]. For clarity

of presentation, we express window size in units of packets instead of bytes. Using

this notation, W (t) is given by:

W (t) =





W (t− 1) + 1/W (t− 1) per ACK

βW (t− 1) per loss
, (12)

where β is the factor of multiplicative decrease and W (t) is congestion window in units

of packets. After the link is saturated, TCP increments its window in response to a

stream of ACKs coming from the receiver at fixed average rate C pkts/sec, where C is

the bottleneck link capacity. This happens because the bottleneck continues buffering

some incoming data, while transmitting the remaining packets to the receiver exactly

at the rate of C pkts/sec. Once these packets arrive at the receiver, they generate a

stream of ACKs at the same packet-rate C. It is common to approximate (12) with

a fluid model, in which the ACKs arrive as a fluid at the exact rate C. Then, we can

re-write (12) using a differential equation:

dW

dt
=

C

W
. (13)

Re-organizing (13) and integrating both sides, we get:

W (t) =
√

2Ct + δ , (14)
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where δ = W (0)2 is the integration constant.

We next consider an ns2 simulation to validate the conclusion of Lemma 1. In

this simulation, we run a single TCP flow over a bottleneck link with an infinitely

large buffer. The packet size is 1, 040 bytes, the bottleneck link capacity C = 2

mb/s (244 pkts/sec), and the round-trip propagation delay is 60 ms. Using C = 244

pkts/sec in (14), observe from Figure 5 that ns2 simulations match the model very

well.

As demonstrated above, TCP overshoots the bottleneck link after saturation and

its congestion window tends to infinity provided that the bottleneck queuing delay

allows so. Note, however, that the sending rate r(t) of TCP does not grow to infinity

(and in fact converges to link capacity C as we show below) since the RTT also

increases when packets start being queued at the bottleneck link. Nevertheless, the

amount of extra data sent into the link (all of which gets lost prior to TCP’s reaction

to the actual losses) is non-negligible as we show in the next result.

Lemma 2. The aggregated amount of lost data in window-based AIMD during each
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overshoot is proportional to the square root of the buffering delay
√

D.

Proof. Assume the time starts at t = 0 when the bottleneck link is about to overflow.

For each received ACK after t = 0, a TCP source sends out 1 + 1/W (t) packets,

which means that the amount of “extra” data injected into the network is 1/W (t)

packets per ACK. As discussed in the proof of Lemma 1, the ACKs are fed back to

the sender at rate C pkts/sec. Then, the amount of extra data S(t) sent into the link

during the segment [0, t] can be modeled by a simple recurrence:

S(t) = S(t− 1) +
1

W (t− 1)
, (15)

where discrete time t is given in ACKs and starts from the point of bottleneck satura-

tion. Converting the above into a differential equation and shifting time to seconds:

dS(t)

dt
=

C

W (t)
, (16)

where congestion window W (t) is given in (14). Expanding W (t):

dS(t)

dt
=

C√
2Ct + δ

, (17)

where δ = W (0)2 is again the square of the congestion window just before the link

overflows at time t = 0. Re-organizing the terms in (17) and integrating both sides,

we have:

S(D) =

D∫

0

C√
2Ct + δ

dt. (18)

Solving this integral, we get S(D) ∼ √
2CD + δ.

We now return to the sending rate r(t) of TCP. Recall that after the bottleneck

link is saturated, TCP sends out 1 + 1/W (t) packets per ACK and ACKs arrive at

rate C. According to (14), congestion window W tends to infinity as t becomes large.
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Fig. 6. (a) Rate adjustment of window-based protocols under delays. (b) Rate adjust-

ment of rate-based protocols under delays.

Thus, 1 + 1/W (t) → 1 and TCP eventually sends out exactly one packet per ACK

and converges its rate r(t) to C as time progresses.

Consider an ns2 illustration in Figure 6 (a), where we use the same configuration

as in Figure 5 except that we now disable slow start to better simulate TCP’s behavior

in congestion avoidance. Notice in the figure that, after the bottleneck link becomes

full, the increase in TCP’s rate is slowed down and its r(t) eventually converges to

capacity C.

2.3 Delayed Rate-Based AIMD

We next examine a class of rate-base AIMD flows, in which the control actions take

places once per RTT instead of once per ACK. Note that both window-based and

rate-based AIMD perform essentially the same until the point at which their sending

rates start to exceed capacity C; after that, their performance becomes drastically

different. The explanation of this phenomenon is simple as rate-based methods must
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battle the various difficulties in accurately and timely estimating the RTT and notic-

ing its increase in response to a growing buffer at the bottleneck (this information

is automatically supplied to window-based methods through positive ACKs). Unfor-

tunately, a closed-form solution to the exact queuing model coupled with end-flow

control equations does not exist for both rate-based AIMD and TFRC, even when we

assume that the delay in obtaining RTT samples is negligible. The case becomes more

complicated when the RTT feedback is delayed and/or smoothed with an exponential

filter.

In this section, we only solve the simpler case of rate-based AIMD and TFRC in

which the RTT is not accurately tracked by the source (i.e., is perceived to remain

more or less constant until packet loss is detected) and leave the more extensive

analysis of variable RTTs in future work.

Lemma 3. Under constant RTT, the amount of lost data in rate-based AIMD during

each overshoot is proportional to D2.

Proof. The equation for rate-based AIMD is given by:

r(t) =





r(t−RTT ) + α per RTT

βr(t−RTT ) per loss
, (19)

where r(t) is the sending rate at time t. The source increases its sending rate by

constant α per RTT and reduces it by a factor of β upon each packet loss. Taking

feedback delays into account, the increase phase of (19) can be written in the fluid

sense as following:

dr(t)

dt
=

α

RTT (t−∆)
, (20)

where ∆ is the delay needed to drain parts of the buffer for the source to recognize

the increase in the RTT and RTT (t) = q(t)/C is the queue size at time t divided
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Fig. 7. (a) Rate adjustment of Scalable TCP under delay. (b) Comparison of lost data

per overshoot in TCP, Scalable TCP, and rate-based AIMD.

by capacity C. Closed-form solution to this model does not exist even when the

feedback delay is zero (i.e., ∆ = 0). We abandon this direction and study a model

with constant RTT, which often happens in practice when ∆ ≥ D and the flow cannot

realize that its RTT has increased until after it has drained the bottleneck queue (by

which time packet loss has occurred and any attempts to adjust the rate are too late

from the control-theoretic view).

Solving (20) with constant RTT, we obtain that the sender’s rate is a linear

function of time (i.e., r(t) ∼ t) and the amount of lost data by time t is:

S(t) =

t∫

0

(r(u)− C)du =

t∫

0

r(u)du− Ct, (21)

where time t = 0 is again the instant when the buffer is about to overflow. From

(21), we obtain that S(t) ∼ t2 and S(D) ∼ D2.

This situation is illustrated in Figure 6 (b), in which the amount of overshoot S

grows quadratically as a function of time needed for the source to react to packet loss.
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Taking into account variable RTT, numerical solutions to the exact queuing model

(20) show that for a certain amount of time immediately following the overshoot of

C, r(t) behaves as a linear function; however, the remaining increase in r(t) is only

logarithmic. Nevertheless, both cases show that rate-based AIMD grows its sending

rate to infinity under a sufficiently large delay.

Compared to window-based AIMD methods, this growth in r(t) is clearly a

problem and supports the observation that rate-based AIMD flows experience more

packet loss and higher oscillations than their window-based counterparts [72, 109].

3 Next-Generation TCP

Recent research efforts to design better congestion controls for high-bandwidth net-

works have led to the development of next-generation TCPs – High-speed TCP

(HSTCP) [30] and Scalable TCP [61] – which incorporate simple and easily deployable

changes to classical TCP. Since HSTCP is similar to Scalable TCP, we only consider

the latter and examine its behavior under delayed feedback.

Lemma 4. The amount of lost data in Scalable TCP during each overshoot is pro-

portional to D.

Proof. Recall that Scalable TCP relies on the following binary-feedback controller

[61]:

W (t) =





W (t− 1) + 0.01 per ACK

.875W (t− 1) per loss
, (22)

where W (t) is the size of congestion window at time t. Notice that after each RTT,

congestion window W (t) is increased by a factor of 1.01 since for each RTT, the

number of arriving ACKs is at most equal to the window size (i.e., Scalable TCP is

an MIMD controller).
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Similar to TCP, the sending rate of Scalable TCP does not grow at the same

pace as the window size because of the increased RTT. After the bottleneck link is

fully utilized, the source sends out 1.01 packets per ACK (i.e., its rate r(t) = 1.01C

exceeds bottleneck capacity by a fixed fraction). Thus, the amount of excess data

sent per ACK is fixed, i.e., 0.1 packets, and the total overshoot S grows linearly with

time, i.e., S ∼ D.

Figure 7 (a) demonstrates the buffering behavior of Scalable TCP in ns2. For

convenience of visualization, we change STCP’s window increase step size from 0.01

to 0.05 such that the difference between the steady-state flow rate and capacity C is

easy to identify. As the figure shows, simulations match the discussion in Lemma 4

very well.

To summarize the results, Figure 7 (b) shows a comparison of the amount of lost

data among all three methods. Notice that window-based self-clocking in TCP and

Scalable TCP are powerful mechanisms that prevent the sending rates of these flows

from growing to infinity when the bottleneck link becomes saturated.

4 TFRC

TFRC (TCP-Friendly Rate Control) (e.g., [31, 81]) has become a de-facto standard

for multimedia applications. Instead of immediately responding to congestion in a

manner like TCP, TFRC gradually adjusts its rate if the congestion persists. Recall

that TFRC uses a discrete TCP-friendly equation and directly adjusts its rate based

on the latest measurement of packet loss and RTT:

r(n) =
MTU√

p(n−∆1)RTT (n−∆2)
, (23)
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where MTU is the maximum transmission unit, p(n) is the long-term average packet

loss computed at time n, and RTT (n) = q(n)/C is the round trip delay seen inside

the router at time n. Since both packet loss and RTT are fed back from the network,

their values are retarded by the corresponding feedback delays ∆1 and ∆2.

Again assuming that the source maintains a constant RTT until the first loss is

detected (i.e., either because ∆2 > D or the smoothing filter on RTT exhibits slow

convergence), TFRC’s behavior is stated in the following lemma.

Lemma 5. Under constant RTT, the amount of lost data in TFRC during each

overshoot is proportional to D2.

Proof. Assume at time t = 0 the buffer is about to overflow and the average long-term

packet loss up to that point is strictly positive. Let M(n) > 0 be the number of lost

packets up to time n and T (n) be the total number of transmitted packets up to time

n. Modeling p(n) as the long-term average loss1, we get:

p(n) =
M(n)

T (n)
, t ≥ 0, (24)

where M(n) = M is constant since the source has not detected any new buffer

overflows and continues to perceive the network as uncongested. Since the change in

T (n) is simply rate r(n), we can write the following continuous-time model:

dT (t)

dt
= r(t), (25)

where dT/dt represents the number of packets sent per time unit. Combining this

1To keep the problem tractable, we simplify several aspects in TFRC’s computa-
tion of packet loss.
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with (23)-(24) and assuming instantaneous feedback, we have:

dT (t)

dt
=

ω
√

T (t)√
M

, (26)

where ω = MTU/RTT is a constant. Reorganizing (26) and integrating both sides,

we get T (t) ∼ t2 and r(t) ∼ t. Thus, the amount of lost data also increases quadrat-

ically with delay D.

We next explore control-theoretic stability of TFRC under the assumption that

an AQM-enabled router can feed back the exact value of the most-recent packet loss

p(n). Such AQM support no longer requires TFRC to smooth the long-term packet

loss obtained from the receiver and may potentially improve TFRC’s performance.

However, as our next lemma shows, this is not the case.

Lemma 6. Under AQM feedback and constant RTT, TFRC can only be stabilized at

points x∗ that incur no less than 33% packet loss. For other values of packet loss,

TFRC cannot be stabilized and oscillates.

Proof. Write a TFRC control equation for a single flow and immediate AQM feedback

p(n) = (r(n)− C)+/r(n):

r(n) =
ω
√

r(n− 1)√
r(n− 1)− C

, (27)

where ω = MTU/RTT is a constant and we assume that r(n − 1) > C. The only

non-negative stationary point of this system is given by:

r∗ =
C +

√
C2 + 4ω2

2
. (28)

We next check local stability of TFRC at r∗ and derive its average loss in the sta-
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Fig. 8. (a) Behavior of TFRC for different stationary points: (a) r∗ = 1.503C; (b)

r∗ = 1.494C.

tionary state. Linearizing (27) in r∗, we get:

∂r(n)

∂r(n− 1)

∣∣∣∣
r∗

=
−ωC

2
√

r(r − C)3/2

∣∣∣∣
r∗

=
−C

2(r∗ − C)
. (29)

Recall that system (27) is stable at r∗ if the absolute value of (29) is less than one,

which translates into | C
2(r∗−C)

| < 1 where r∗ is in (28). Solving this inequality, we

have:

r∗ >
3C

2
. (30)

This means that system (27) may be stable in the stationary point only at the expense

of at least 33% of the packets being dropped.

According to (28), the stationary point x∗ can be tuned by properly choosing

constant ω. Consider a simulation of (27) in Figure 8 with two different stationary

points. In Figure 8(a), we set capacity C to 1 mb/s, the MTU to 1,500 bytes, and

the RTT to 13.8 ms (ω = 870 kb/s). Under these conditions, the stationary point

x∗ is 1,503 kb/s and the flow clearly converges to x∗ after decaying oscillations. In
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Figure 8(b), we adjust the RTT to 14 ms such that x∗ = 1, 494 kb/s. As the figure

shows, the system diverges even when started in a close vicinity of the stationary

point. Thus, within the operating range of most applications (i.e., packet loss below

33%), AQM-TFRC cannot be stabilized.

5 Discussion

It is possible that eventually the Internet will adopt a class of AQM-based mechanisms

that are capable of providing asymptotically stable congestion control to end-flows.

In such a case, we find that a wide variety of algorithms, including XCP [56], RCP

[26], and Kelly controls [60, 66, 75] will be able to supply rate-based, oscillation-free

virtual channels. While the issue of designing oscillation-free, rate-based congestion

control for best-effort networks remains open, we find that window-based protocols

are expected to become more popular as they offer better (albeit far from ideal) per-

formance under delay and an easy-to-implement platform being part of the TCP/IP

protocol stack. On a bigger scale, we believe that more effort should be put into

scalable extensions to control methods that are provably stable under arbitrary delay

in the control-theoretic sense and that their presentation to the streaming commu-

nity should become more “digestible.” We next present our work in this direction and

demonstrate that rate-based control methods can not only be oscillation-free, but also

provably stable and fair under heterogeneous end-user feedback delays.
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CHAPTER IV

THEORETICAL FOUNDATION

1 Introduction

In this chapter, we gain a deeper insight into stability of single-link congestion control

systems under diagonal delays. Most max-min systems (e.g., MKC [115], RCP [26],

and XCP [56]) can be linearized to the following shape (more on this below):

xi(n) =
N∑

j=1

aijxj(n−Di), (31)

where aij are some constants, N is the number of flows, and xi(n) and Di are, re-

spectively, the sending rate and round-trip time of user i. Using this model, we

first derive a sufficient stability condition of (31) to be ||A||2 < 1, where A = (aij)

is the coefficient matrix of the system and matrix norm ||.||2 is induced by the L2

vector norm. Subsequently, we prove that this result actually extends to any ma-

trix norm induced by a monotonic vector norm (which subsumes all standard vector

norms, such as ||.||1, ||.||2, ||.||∞, and ||.||w∞). Moreover, we prove that a special norm

||A||s = infW∈P∗ ||WAW−1||2 (where P∗ is the set of all positive diagonal matrices)

is a monotonic induced norm and further generalize the sufficient stability condition

of system (31) to ||A||s < 1, whose necessity is also indicated by simulations. Armed

with these results, we identify several classes of systems that are stable under diagonal

delays if and only if they are stable under undelayed feedback. We also discuss and

verify obtained results using Matlab simulations.

In the following section, we present modeling assumptions of single-link conges-
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tion control and existing results in the area of delay-independent stability.

2 Background

2.1 Modeling Single-Link Congestion Control

Assume a network with N users accessing a single bottleneck link. Delays in network

feedback arise from both the transmission/propagation time along the data links and

the queuing delays at each of the intermediate routers. Consider an illustration in

Figure 9, where routers j and k are on the path of sender (user) i. The time lag

for a packet to travel from sender i to router j is denoted by forward delay D→
ij ,

while the delay from router j to the receiver and subsequently from the receiver

back to the sender is denoted by backward delay D←
ij . It is clear that the sum of

directional delays with respect to each router is the round trip delay of user i, i.e.,

Di = D→
ij + D←

ij = D→
ik + D←

ik .

Each acknowledgement packet of flow i carries certain network feedback p(n),

which is continually computed by the bottleneck router as a function of the combined
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incoming rate of all flows, i.e.,

p(n) = g
( N∑

j=1

xj(n−D→
j )

)
. (32)

This feedback is utilized by each source i to update its sending rate xi(n) according

to the following control rule:

xi(n) = fi

(
p(n−D←

i )
)
, (33)

where function fi(.) is assumed to be differentiable in the equilibrium point.

Note that (32)-(33) usually forms a nonlinear system, whose local stability can

be studied by linearizing the system in the equilibrium point x∗. Denote by A = (aij)

the corresponding Jacobian matrix, then the linearized system is described as follows:

xi(n) =
N∑

j=1

aijx(n−D→
j −D←

i ), (34)

where aij = ∂fi/∂xj|x∗ .
The following result transforms stability analysis of (34) to that of an equivalent

system (31).

Lemma 7. System (34) is stable under all heterogeneous directional delays D→
i and

D←
i if and only if system (31) is stable under all round-trip delays Di.

We omit the proof of this lemma for brevity and note that a similar result is

derived for continuous-time systems in [77]. Compared to (34), system (31) has a

simpler shape and is more amenable to analysis. Thus, in the rest of this chapter, we

focus our study on system (31) and keep in mind that our results also apply to (34).
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2.2 Existing Stability Results

In this work, we are interested in delay-independent stability as defined below of a

given dynamical system.

Definition 1. We call a system stable independent of delays if neither its control

gain nor stability condition explicitly involves delays.

It is well-known that system (31) under zero delay is stable if and only if the

spectral radius ρ(A) < 1 [45]. When delay is introduced into the control loop, stability

analysis of the resulting system becomes more complicated. The most recent result in

this direction is presented in [115], which proves that (31) with a symmetric Jacobian

A is stable regardless of delay if and only if ρ(A) < 1.

One more generic version of this problem is to study stability of the system under

arbitrary delay Dij > 0, i.e.,

xi(n) =
N∑

j=1

aijxj(n−Dij). (35)

We note that in the last equation each feedback is delayed by Dij time units instead

of a round-trip delay Di as in (31). Thus, stability conditions of system (35) are

sufficient, but not necessary for system (31).

The convergence property of (35) is initially studied by Chazan and Miranker

[18] in the context of asynchronous iteration and the first sufficient and necessary

condition is due to Bertsekas and Tsitsiklis [10], who prove that (35) is stable for all

uniformly-bounded and time-varying delays Dij(n) if ρ(|A|) < 1 and unstable under

a certain set of delays Dij(n) if ρ(|A|) ≥ 1. The same result is later obtained by

Kaszkurewicz et al. [53] using a different technique.

A slightly stronger version of this result is available in [95], which first introduces

the following terminology.
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Definition 2 ([95]). Time delays Dij(n) are admissible if:

lim
n→∞

n−Dij(n) = ∞, ∀i, j (36)

and regulated (uniformly bounded) if 0 ≤ Dij(n) < D̄, ∀i, j for some non-negative

constant D̄ that is independent of n.

Then, Su et al. [95] prove that system (35) is stable for all admissible delays

Dij(n) when ρ(|A|) < 1 and unstable for a certain sequence of regulated delays

Dij(n) with D̄ = 1 when ρ(|A|) ≥ 1.

In addition, Kaszkurewicz et al. provide an alternative way of verifying condition

ρ(|A|) < 1 by showing that it is equivalent to the existence of a positive diagonal

matrix W such that ||W−1AW ||∞ < 1. This is a consequence of [55, Appendix 2]:

ρ(|A|) = inf
W∈P∗

||W−1AW ||∞, (37)

where P∗ is the set of all positive, diagonal matrices.

However, for system (31), condition ρ(|A|) < 1 is too strong and is not necessary.

One example is given in [115], which demonstrates that MKC in the form of (31) may

be stable even though ρ(|A|) > 1. The relationship between stability conditions of

(31) and (35) under different types of delays is illustrated in Fig. 10. As shown in the

figure, stability of the system under zero delay and arbitrary delays Dij has been well

studied; however, understanding of (31) under diagonal delays Di is lacking in the

current picture. Thus, in the rest of this chapter, we fill in this void and investigate

conditions under which system (31) achieves delay-independent stability.
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Fig. 10. Illustration of the current research status of delay-independent stability of

system (31) under different types of delays.

3 Main Results

3.1 Induced Matrix Norms

We start by recalling definitions of induced matrix norms, which are used later.

Definition 3 ([45]). Matrix norm ||.|| induced by or subordinate to a given vector

norm ||.|| is defined as following:

||A|| = sup
x 6=0

||Ax||
||x|| . (38)

The following properties of induced matrix norms are available from [45].

Property 1. Any induced matrix norm ||.|| satisfies inequality ||Ax|| ≤ ||A|| · ||x||.

Property 2. For any matrix A and an arbitrary induced matrix norm ||.||, we have

ρ(A) ≤ ||A||.

To better understand Definition 3, consider the following commonly used induced

matrix norms: spectral norm ||A||2 =
√

ρ(A∗A) (where A∗ is the conjugate transpose

of A) induced by the L2 vector norm, maximum absolute column sum norm ||A||1 =
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maxj(
∑

i |aij|) induced by the L1 vector norm, maximum absolute row sum norm

||A||∞ = maxi(
∑

j |aij|) induced by the L∞ vector norm, and weighted maximum

norm ||A||w∞ = maxi(
∑

j |aij|wj)/wi (w > 0) induced by the weighted infinity vector

norm ||x||w∞. We refer interested readers to [45] for more details.

3.2 First Sufficient Condition

We start with the following result.

Theorem 1. If A is symmetric and stable, system (31) is stable regardless of delays

Di.

Proof. Applying the z-transform to system (31), we obtain:

H(z) = ZAH(z), (39)

where Z = diag(z−Di) is a diagonal matrix and H(z) is the vector of z-transforms of

each flow rate xi: H(z) =
(
H1(z), H2(z), · · · , HN(z)

)T
. Notice that system (31) is

stable if and only if all poles of its z-transform H(z) are within the unit circle in the

z-plane. To examine this condition, re-organize the terms in (39):

(ZA− I)H(z) = 0. (40)

Next notice that the poles of H(z) are simply the roots of:

det(ZA− I) = 0. (41)

Thus, ensuring that all roots of (41) are inside the open unit circle will be both

sufficient and necessary for system (31) to be stable. Bringing in notation F(z) =
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det(ZA− I), we can re-write F(z) as following:

F(z) = det(Z[A− Z−1I]) (42)

= det(Z)det(A− Z−1).

Noticing that det(Z) is strictly non-zero for non-trivial z, we can reduce (41) to:

F(z) = det
(
A−Q(z)

)
= 0, (43)

where Q(z) = diag(zDi).

To prove that all roots of (43) lie in the open unit circle, we suppose in contra-

diction that there exists a root |z0| ≥ 1 such that F(z0) = 0. Denote by B matrix

Q(z0). Following [80] and using basic matrix algebra, it is easy to have that there

exists a non-zero vector v such that Av = Bv. For symmetric matrices, we can write

||A||2 = ρ(A) < 1 and:

||A||2 = sup
x 6=0

||Ax||2
||x||2 ≥ ||Av||2

||v||2 =
||Bv||2
||v||2 , (44)

where ||.||2 in application to vectors is a standard L2 norm.

Since B is diagonal with |bii| = |z0|Di ≥ 1, Bv is simply a vector (v1b11, . . . , vNbNN)T

and we can express vector norm L2 using the following:

||Bv||2
||v||2 =

(∑N
i=1 |vi|2|bii|2

)1/2

(∑N
i=1 |vi|2

)1/2
≥

(∑N
i=1 |vi|2

)1/2

(∑N
i=1 |vi|2

)1/2
= 1. (45)

Thus, we get that both ||A||2 ≥ 1 and ||A||2 < 1 must be satisfied simultaneously,

which is a contradiction. This means that no |z0| ≥ 1 can be a root of F(z) and that

any heterogenous systems with a symmetric stable matrix A is stable under arbitrary

delay.
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Note that the above reasoning indicates symmetry of A is not necessary and

leads us to the following generalization.

Corollary 1. If Jacobian A satisfies ||A||2 < 1, system (31) is stable for all delays

Di.

3.3 Weaker Sufficient Conditions

We next extend the requirement of L2 norm in the last result to any monotonic vector

norm, which is defined below.

Definition 4 ([7]). If a vector norm ||.|| on Rn satisfies the following inequality:

||x|| ≤ ||y|| for all x, y ∈ Rn such that |x| ≤ |y|, (46)

we call this norm monotonic.

This allows us to prove the following theorem.

Theorem 2. If there exists a monotonic vector norm ||.||α such that induced matrix

norm ||A||α < 1, system (31) is stable regardless of delays Di.

Proof. We utilize the technique in the proof of Theorem 1, whose goal is to show that

||Bv||α/||v||α ≥ 1 for all v. Again, notice that Bv = (v1b11, . . . , vNbNN)T and that

|bii| ≥ 1. Due to the monotonicity of the norm and the fact that |vi| ≤ |biivi|, we

directly get ||v||α ≤ ||Bv||α. The remaining proof is similar to that of Theorem 1.

The following result provides a systematic way for generating monotonic induced

matrix norms.

Theorem 3. Matrix norm ||A||w2 = ||WAW−1||2 for any non-singular diagonal ma-

trix W = diag(w) is a monotonic induced norm.
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Proof. First write:

||A||w2 = sup
x 6=0

||Ax||w2
||x||w2

= sup
x6=0

||WAx||2
||Wx||2 . (47)

Next, we need to show that ||x||w2 = ||Wx||2 is monotonic with respect to x. In

other words, we must show that for any two vectors x1 and x2 such that |x1| ≤ |x2|,
||Wx1||2 ≤ ||Wx2||2. This directly follows from the fact that |Wx1| ≤ |Wx2| for any

non-singular diagonal W and from monotonicity properties of ||.||2 in application to

vectors.

Then, a more generic sufficient stability condition is easy to derive from Theorem

2.

Corollary 2. The following is sufficient for system (31) to be stable for all delays

Di:

||A||s = inf
W∈P∗

||WAW−1||2 < 1, (48)

where P∗ is the set of all positive diagonal matrices.

We next show that spectral norm in (48) is weaker than infinity norm, which is

used in (37) as the sufficient and necessary condition for stability of system (35).

Theorem 4. For any matrix A, we have ||A||s ≤ ρ(|A|) = infW∈P∗ ||WAW−1||∞.

Proof. Denote by D = |A| the absolute value of A and observe that:

||WAW−1||2 =
√

ρ(W−1A∗WWAW−1)

=
√

ρ(A∗W 2AW−2)

≤
√

ρ(D∗W 2DW−2)

= ||WDW−1||2, W ∈ P∗ (49)

where A∗ is the conjugate transpose of A. Next, since D is a non-negative matrix,
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we immediately obtain from [54, Lemma 2.7.25] that:

inf
W∈P∗

||WDW−1||2 = ρ(D). (50)

Completing the chain of arguments, we get:

inf
W∈P∗

||WAW−1||2 ≤ inf
W∈P∗

||WDW−1||2 = ρ(|A|) (51)

for all matrices A.

3.4 Delay-Independent Stable Matrices

In this subsection, we apply results obtained so far and identify several classes of

matrices that are stable under diagonal delays if and only if they are stable under

zero delay, i.e., ρ(A) < 1.

We first examine the class of normal matrices N , which are defined as the set

of matrices A for which AA∗ = A∗A, where A∗ is the conjugate transpose of A.

Normal matrices include symmetric (i.e., aij = aji), skew-symmetric (i.e., aij = −aji),

Hermitian (i.e., A∗ = A), skew-Hermitian (i.e., A∗ = −A), circulant, and unitary

matrices (i.e., A∗ = A−1).

Lemma 8. If A ∈ N , A is stable under diagonal delays Di if and only if ρ(A) < 1.

Proof. First notice that if matrix A is normal, then A and A∗ have the same eigen-

vectors and their eigenvalues are conjugates of each other [86]. Then applying eigen

decomposition on both matrices, we have A = ΓΛΓ−1 and A∗ = ΓΛ∗Γ−1, where Λ

and Λ∗ are, respectively, diagonal matrices of eigenvalues of A and A∗ and Γ is the
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matrix with the corresponding eigenvectors. Then, we have:

||A||2 =
√

ρ(A∗A) =
√

ρ(ΓΛΓ−1ΓΛ∗Γ−1)

=
√

ρ(ΓΛΛ∗Γ−1) =
√

ρ2(A) = ρ(A). (52)

The rest of proof directly follows from Theorem 1.

We next defineDN as the set of matrices diagonally similar toN . In other words,

for any matrix A ∈ DN , there exists matrix B ∈ N and non-singular diagonal matrix

W such that WAW−1 = B. Then, we can prove the result below.

Lemma 9. If A ∈ DN , A is stable under diagonal delays Di if and only if ρ(A) < 1.

Proof. Let WAW−1 = B, where B is normal and W is non-singular diagonal. Then,

we have ρ(A) = ρ(WAW−1) = ||WAW−1||2 = ||A||2. According to Corollary 1, this

implies that ρ(A) < 1 is both sufficient and necessary for A to be stable under delays

Di.

The third class is P , which consists of non-negative/non-positive matrices (i.e.,

A ≥ 0 or A ≤ 0). Combining the facts that ρ(A) = ρ(|A|) and ρ(A) ≤ ||A||s ≤
ρ(|A|) = ρ(A) and invoking Corollary 2, we directly arrive at the following lemma.

Lemma 10. If A ∈ P, A is stable under diagonal delays Di if and only if ρ(A) < 1.

Similar to DN , we define DP as the set of matrices diagonally similar to P .

Then, we have the following result.

Lemma 11. If A ∈ DP, A is stable under diagonal delays Di if and only if ρ(A) < 1.

Proof. Assume A is diagonally similar to a non-negative/non-positive matrix B.

Then, B = WAW−1 for some non-singular diagonal matrix W . Noticing that

ρ(|B|) = ρ(B) = ρ(A) and ρ(A) ≤ ||A||s ≤ ρ(|A|) = ρ(B) = ρ(A), we have
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ρ(A) = ||A||s, which directly follows from Corollary 2 that ρ(A) < 1 is both suf-

ficient and necessary for system (31) to be stable.

Next, define radial matrices R as the class of matrices satisfying ||A||2 = ρ(A).

Recalling that ||.||2 is induced from the L2 norm and invoking Theorem 2, the following

lemma is obvious.

Lemma 12. If A ∈ R, A is stable under diagonal delays Di if and only if ρ(A) < 1.

Analogous to Lemma 9, the last result also applies to DR, which denotes any

matrix diagonally similar to R. Results obtained in this subsection are summarized

as following.

Theorem 5. The following matrices are stable under arbitrary diagonal delays Di if

and only if ρ(A) < 1: N , DN , P, DP, R, and DR.

We conclude by identifying the relationship between different classes of matrices

examined in this subsection.

Theorem 6. The following relations hold: N ⊂ DN ⊂ DR, N ⊂ R ⊂ DR, and

P ⊂ DP ⊂ DR.

Proof. We only present proofs of DN ⊂ DR and DP ⊂ DR and omit others for

brevity. First let A ∈ DN , then there exists non-singular diagonal matrix W such

that WAW−1 = B ∈ N . Since N ⊂ R according to (52), we have B ∈ R and

therefore DN ⊂ DR.

We next prove DP ⊂ DR. Since A ∈ DP , there exists diagonal matrix W and

B ∈ P such that B = WAW−1. From (50), we know that for any B ∈ P , there

exists diagonal matrix V such that ||V BV −1||2 = ρ(B). Letting C = UAU−1 and

U = WV , we have ||C||2 = ρ(B) = ρ(A) = ρ(C). This implies that A is diagonally

similar to radial matrix C and therefore DP ⊂ DR.
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Fig. 11. Relationship between various classes of matrices

This result is also illustrated in Fig. 11, where notation A → B refers to A ⊂ B.

As seen in the figure, DR is the widest class of matrices for which ρ(A) < 1 guarantees

stability of (31). We leave exploration of more generic classes of delay-independent

matrices for future work.

3.5 Discussion

In this subsection, we verify the obtained results using Matlab simulations. Our first

step is to check sufficiency and also lack of necessity in the condition of Theorem 1.

We generate 3000 two-by-two matrices and plot points (x, y) on a 2D plane, where

x = ρ(A) and y = ||A||2. To detect instabilities, each matrix is tested with 100

random combinations of delay D1 and D2, each uniformly distributed in [1, 30]. We

exclude all matrices with ρ(A) > 1 since these are a-priori known to be unstable. Out

of 3000 random matrices, 1020 had ρ(A) < 1, out of which 468 were stable and 552

unstable under directional delay. Fig. 12(a) shows the stable points and (b) plots

the unstable ones. From the first figure, notice that condition ||A||2 ≥ ρ(A) is never

violated and Theorem 1 is not necessary for stability. At the same time, all unstable

points in figure 12(b) are located above ||A||2 = 1, confirming the sufficiency of this

condition.

Out of 468 stable matrices, 251 had ||A||2 ≥ 1 and 331 had ||A||∞ ≥ 1. Further-
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Fig. 12. Delayed stability as a function of ρ(A) and ||A||2.

more, 240 matrices had both norms above 1 simultaneously and in 87% of the cases,

||A||2 was smaller than ||A||∞. Out of 552 unstable matrices, all had ||A||2 ≥ 1 and

||A||∞ ≥ 1. Moreover, 86% of the cases had ||A||2 < ||A||∞. It thus appears that

||A||2 is a tighter norm in terms of obtaining the necessary and sufficient condition.

The next simulation generates 10000 random two-by-two matrices and examines

whether condition ||A||s = infW ||WAW−1||2 < 1 is in fact sufficient for stability

of the delayed system. Fig. 13 plots 3535 stable/unstable points (1763 stable and

1772 unstable). The largest ||A||s for a stable matrix was 0.9953 and the smallest for

an unstable matrix was 1.0024. This demonstrates that for the generated matrices,

condition ||A||s < 1 was both sufficient and necessary. We leave further investigation

of necessity of this condition to future work. We next apply results obtained in

the chapter to design practical congestion control protocols with delay-independent

asymptotic stability.
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CHAPTER V

MAX-MIN KELLY CONTROL (MKC)

1 Classic Kelly Control

As described in Chapter II, modern Internet congestion control theory is pioneered by

the framework proposed by Kelly [60], who applies microeconomics and optimization

theory in modeling end-users’ behavior in the distributed congestion control game.

The proposed congestion control framework (1)-(2) is referred to as Classic Kelly

Control. In this section, we discuss intuitive examples that explain the cryptic formu-

las (1)-(2) and demonstrate in simulation how delays affect stability of Kelly controls.

We then show that the Classic Kelly control, or any mechanism that relies on the

sum of feedback functions from individual routers, exhibits a tradeoff between lin-

ear convergence to efficiency and persistent stationary packet loss. We subsequently

overcome both limitations in Section 2.

1.1 Delayed Stability Example

The following example illustrates stability problems of (1) when feedback delays are

large. We assume a single-source, single-link configuration and utilize a congestion in-

dication function that computes the estimated packet loss using instantaneous arrival

rates:

p(n) =
x(n)− C

x(n)
, (53)

where C is the link capacity and x(n) is the flow rate at discrete step n.
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Fig. 14. Stability of Kelly control under different feedback delays (κ = 1/2, ω = 10

mb/s, and C = 1, 000 mb/s).
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We note that the price function p(n) in the original Kelly control is nonnegative;

however, as shown in [115], this results in slow linear AIMD-like probing for link

capacity until the slowest link in the path is fully utilized, which is generally considered

too slow for high-speed networks. Thus, under AQM feedback assumed throughout

this dissertation, we allow negative values in (53), which signals the flow to increase

its sending rate when x(n) < C. In section 3.1, we show that the negative component

of packet-loss (53) improves convergence to efficiency from linear to exponential.

Applying (53) to Kelly control (1) yields a linear end-flow equation:

x(n) = x(n− 1) + κω − κ
(
x(n−D)− C

)
. (54)

Next, assume a particular set of parameters: κ = 1/2, ω = 10 mb/s, and C = 1, 000

mb/s. Solving the condition in (3), we have that the system is stable if and only if

delay D is less than four time units. As illustrated in Figure 14(a), delay D = 1 keeps

the system stable and monotonically convergent to its stationary point. Under larger

delays D = 2 and D = 3 in Figures 14(b) and (c), the flow exhibits progressively

increasing oscillations before entering the steady state. Eventually, as soon as D

becomes equal to four time units, the system diverges as shown in Figure 14(d).

Using the same parameter κ and reducing ω to 20 kb/s, we examine (54) via ns2

simulations, in which a single flow passes through a link of capacity 50 mb/s. We run

the flow in two network configurations with the round-trip delay equal to 90 ms and

120 ms, respectively. As seen in Figure 15, the first flow reaches its steady state after

decaying oscillations, while the second flow exhibits no convergence and periodically

overshoots capacity C by 200%.

Since Kelly controls are unstable unless condition (3) is satisfied [51], a natural

strategy to maintain stability is for each end-user i to adaptively adjusts its gain
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Fig. 15. Simulation results of the classic Kelly control under different delays (κ = 1/2,

ω = 20 kb/s, C = 50 mb/s).

parameter κi ∼ 1/Di such that (3) is not violated. However, this method depends on

reliable estimation of round-trip delays Di and leads to unfairness between the flows

with different RTTs.

1.2 Stationary Rate Allocation

As mentioned in the previous subsection, price function (53) should allow negative

values, such that the convergence speed of Kelly control is improved from linear

to exponential. However, we show next that this modification presents a problem

in the stationary resource allocation. Consider a network of M resources and N

homogeneous users (i.e., with the same parameters κ and ω). Further assume that

resource j has capacity Cj, user i utilizes route ri of length Mi (i.e., Mi = |ri|), and

packet-loss ηi(n) fed back to user i is the aggregate feedback from all resources in

path ri. We further assume that there is no redundancy in the network (i.e., each

user sends its packets through at least one resource and all resources are utilized by

at least one user). Thus, we can define routing matrix AN×M such that Aij = 1 if
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user i passes through resource j (i.e., j ∈ ri) and Aij = 0 otherwise. Further denote

the j-th column of A by vector Vj. Clearly, Vj identifies the set sj of flows passing

through router j.

Let xj(n) = (x1(n−D→
1j ), x2(n−D→

2j ), . . . , xN(n−D→
Nj)) be the vector of sending

rates of individual users observed at router j at time instant n. In the spirit of (53),

the packet loss of resource j at instant n can be expressed as:

pj(n) =
xj(n) ·Vj − Cj

xj(n) ·Vj

, (55)

where the dot operator represents vector multiplication. Then, we have the following

result.

Lemma 13. Let x∗ = (x∗1, x
∗
2, . . . , x

∗
N) be the stationary rate allocation of Kelly control

(1) with packet-loss function (55). Then x∗ satisfies:

N∑
i=1

Mix
∗
i =

M∑
j=1

Cj + Nω. (56)

Proof. In the steady state, we can write the control equation of user i as following:

x∗i = (1− κη∗i )x
∗
i + κω

=

(
1− κ

∑
j∈ri

x∗ ·Vj − Cj

x∗ ·Vj

)
x∗i + κω , (57)

where η∗i denotes the stationary feedback seen by user i. Using simple manipulations

in (57), we have:

Mix
∗
i −

∑
j∈ri

(
x∗i Cj

x∗ ·Vj

)
= ω . (58)

Taking a summation of (58) for all N users, we get:

N∑
i=1

Mix
∗
i =

N∑
i=1

∑
j∈ri

(
x∗i Cj

x∗ ·Vj

)
+ Nω . (59)
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Assuming no redundant users or resources, we can re-write (59) as follows:

N∑
i=1

Mix
∗
i =

M∑
j=1

∑
i∈sj

(
x∗i Cj

x∗ ·Vj

)
+ Nω

=
M∑

j=1

(x∗ ·Vj)

(
Cj

x∗ ·Vj

)
+ Nω

=
M∑
i=1

Ci + Nω , (60)

which completes the proof.

Lemma 13 provides a connection between the stationary resource allocation and

the path length of each flow. Note that according to (56), the stationary rates x∗i are

constrained by the capacity of all resources instead of by that of individual bottle-

necks. In fact, this observation shows an important difference between real network

paths, which are limited by the slowest resource, and the model of proportional fair-

ness augmented with (55), which takes into account the capacity of all resources in

the network. As demonstrated in [115], this difference leads to significant overflow of

slow routers and under-utilization of fast routers along a given path.

In the next section, we propose a new controller that overcomes both drawbacks

of controller (1) (i.e., instability under delay and linear convergence to efficiency).

2 Stable Congestion Control

2.1 Max-min Kelly Control

We start our discussion with the following observations. First, we notice that in

the classic Kelly control (1), the end-user decides its current rate xi(n) based on

the most recent rate xi(n − 1) and delayed feedback ηj(n − D←
ij ). Since the latter

carries information about xi(n−Di), which was in effect RTT time units earlier, the
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controller in (1) has no reason to involve xi(n − 1) in its control loop. Thus, the

sender quickly becomes unstable as the discrepancy between xi(n−1) and xi(n−Di)

increases. One natural remedy to this problem is to retard the reference rate to

become xi(n − Di) instead of xi(n − 1) and allow the feedback to accurately reflect

network conditions with respect to the first term of (1).

Second, to avoid unfairness1 between flows, one must fix the control parameters

of all end-users and establish a uniform set of equations that govern the system. Thus,

we create a new notation in which κiωi = α, κi = β and discretize Kelly control as

following:

xi(n) = xi(n−Di) + α− βηi(n)xi(n−Di), (61)

where ηi(n) is the congestion indication function of user i.

Next, to overcome the problems of proportional fairness described in the previous

section and utilize negative network feedback, we combine (61) with max-min fairness

(this idea is not new [56, 106]), under which the routers only feed back the packet

loss of the most-congested resource instead of the combined packet loss of all links in

the path:

ηi(n) = max
j∈ri

pj(n−D←
ij ), (62)

where pj(·) is the congestion indication function of individual routers that depends

only on the aggregate arrival rate yj(n) of end-users.

We call the resulting controller (61) Max-min Kelly Control (MKC) and em-

phasize that flows congested by the same bottleneck receive the same feedback and

behave independently of the flows congested by the other links (see below for a jus-

tification of this). Therefore, we study in the next section the single-bottleneck case

1While “fairness” is surely a broad term, we assume its max-min version in this
chapter.
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since each MKC flow is always congested by only one router. Implementation details

of how routers should feed back function (62) and how end-flows track the changes

in the most-congested resource are presented in the simulation section.

2.2 Single-Link Stability of MKC

Consider an MKC system with a generic feedback function ηi(n) in the form of (62),

which we assume is differentiable in the stationary point and has the same first-order

partial derivative for all end-users. Our goal is to derive sufficient and necessary

conditions for the stability of (61)-(62) under arbitrarily delayed feedback.

We first prove MKC’s stability in a single-link network containing N users

{x1, . . . , xN} with corresponding delays to/from the bottleneck router given by D→
i

and D←
i . Then, we can simplify (61)-(62) by dropping index j of the bottleneck

resource and expanding ηi(n) in (61):

xi(n) = xi(n−Di) + α− βp(n−D←
i )xi(n−Di), (63)

where

p(n) = p
( N∑

u=1

xu(n−D→
u )

)
(64)

is the packet-loss function of the bottleneck router.

To invoke Theorem 5, our first step is to show stability of the following undelayed

version of (63)-(64):





xi(n) =
(
1− βp(n− 1)

)
xi(n− 1) + α

p(n) = p
(∑N

u=1 xu(n)
) . (65)

Theorem 7. Undelayed N-dimensional system (65) with feedback p(n) that is com-

mon to all users has a symmetric Jacobian and is locally asymptotically stable if and
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only if:

0 < βp∗ < 2, (66)

0 < βp∗ + βNx∗
∂p

∂xi

∣∣∣∣
x∗

< 2, (67)

where x∗ is the fixed point of each individual user, vector x∗ = (x∗, x∗, . . . , x∗) is the

fixed point of the entire system, and p∗ is the steady-state packet loss.

Proof. We first derive the stationary point x∗ of each individual user. Since all end-

users receive the same feedback and activate the same response to it, all flows share

the bottleneck resource fairly in the steady state, i.e., xi(n) = x∗ for all i. Using

simple manipulations in (65), we get the stationary individual rate x∗ as following:

x∗ =
α

βp∗
. (68)

Linearizing the system in x∗:

∂fi

∂xi

∣∣∣∣
x∗

=

(
1− βp− βxi

∂p

∂xi

)∣∣∣∣
x∗

, (69)

∂fi

∂xk

∣∣∣∣
x∗

=

(
−βxi

∂p

∂xk

)∣∣∣∣
x∗

, k 6= i, (70)

where fi(x) = (1− βp(x))xi + α. Since packet loss depends on the aggregate rate of

all users, p(n) has the same first partial derivative evaluated in the fixed point for all

users, which implies that for any users i and k, we have:

∂p

∂xi

∣∣∣∣
x∗

=
∂p

∂xk

∣∣∣∣
x∗

. (71)
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This observation leads to a simple Jacobian matrix for MKC:

J =




a b · · · b

b a · · · b

...
...

. . .
...

b b · · · a




, (72)

where:

a = 1− βp∗ − βx∗
∂p

∂xi

∣∣∣∣
x∗

, b = −βx∗
∂p

∂xi

∣∣∣∣
x∗

. (73)

Clearly Jacobian matrix J is circulant2 and thus its k-th eigenvalue λk is given

by [16]:

λk = a + b(ζk + ζ2
k + ζ3

k + · · ·+ ζN−1
k ), (74)

where ζk = ei2πk/N (k = 0, 1, . . . , N − 1) is one of the N -th roots of unity. We only

consider the case of N ≥ 2, otherwise the only eigenvalue is simply a. Then, it is not

difficult to get the following result:

λk =





a + (N − 1)b ζk = 1

a + b
ζk − ζN

k

1− ζk

= a− b ζk 6= 1
, (75)

where the last transition holds since ζN
k = 1 for all k.

Next, recall that nonlinear system (65) is locally stable if and only if all eigen-

values of its Jacobian matrix J are within the unit circle [58]. Therefore, we get the

following necessary and sufficient local stability conditions:





|a− b| < 1

|a + (N − 1)b| < 1

. (76)

2A matrix is called circulant if it is square and each of its rows can be obtained
by shifting (with wrap-around) the previous row one column right [16].
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To ensure that each λi lies in the unit circle, we examine the two conditions in

(76) separately. First, notice that |a− b| = |1− βp∗|, which immediately leads to the

following:

0 < βp∗ < 2. (77)

Applying the same substitution to the second inequality in (76), we obtain:

0 < βp∗ + βNx∗
∂p

∂xi

∣∣∣∣
x∗

< 2. (78)

Thus, system (65) is locally stable if and only if both (77) and (78) are satisfied.

According to the proof of Theorem 7, Jacobian J of the undelayed system (65)

is symmetric and therefore is radial. Combining this property with Theorem 5, we

arrive at the following result.

Corollary 3. Heterogeneously delayed MKC (63)–(64) is locally asymptotically stable

if and only if (66)-(67) are satisfied.

Corollary 3 is a generic result that is applicable to MKC (61) with a wide class

of congestion-indicator functions ηi(n). Further note that for a given bottleneck

resource with pricing function p(n) and the set of is users, conditions (66)-(67) are

easy to verify and do not depend on feedback delays, the number of hops in each

path, or the routing matrix of all users. This is in contrast to many current studies

[51, 77, 97, 99], whose results are dependent on individual feedback delays Di and the

topology of the network.

2.3 Stability of MKC with Heterogeneous αi and βi

In the last section, we established local stability of MKC, in which the proof holds

only for a symmetric Jacobian matrix under the assumption of constant parameters

α and β. We next utilize the techniques developed in Chapter IV to prove MKC’s
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stability under arbitrary parameters αi and βi. The resulting control equation thus

becomes:

xi(n) = xi(n−Di) + αi − βip(n)xi(n−Di), (79)

where feedback p(n) is a function of the combined incoming rate of all flows.

Theorem 8. Assuming p(n) is differentiable, (79) is stable under arbitrary delays

Di if:

0 < βi

(
p∗ +

N∑
i=1

x∗i p
′
)

< 2, i = 1, . . . , N, (80)

where x∗i and p∗ are, respectively, the equilibrium points of xi(n) and p(n), and p′ is

the derivative of p(n) evaluated in the equilibrium point.

Proof. Linearizing system (79) in the equilibrium point x∗, we get the Jacobian matrix

A = (aik) as follows:

aik =





−βix
∗
i p
′ i 6= k

1− βi(p
∗ + x∗i p

′) i = k

. (81)

Introducing diagonal matrix W = diag(
√

βkx∗k), we can construct a new matrix

B = (bik) = WAW−1 given below:

bik =





−√
βix∗i βkx∗kp

′ i 6= k

1− βi(p
∗ + x∗i p

′) i = k

, (82)

which is symmetric. Thus, matrix A is diagonally similar to a symmetric matrix B

and, according to Lemma 9, is stable under diagonal delays Di if and only if ρ(A) < 1.

We next define square matrix C = (cik) such that:

cik =





βix
∗
i p
′ i 6= k

βi(p
∗ + x∗i p

′) i = k

. (83)
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It is easy to see that A = I − C, where I is the identity matrix. Applying eigen

decomposition on matrix C, we re-write C as C = ΓΛΓ−1, where Γ is a matrix of

eigenvectors of C and Λ is a diagonal matrix with the corresponding eigenvalues.

Then, we can compute the spectral radius ρ(A) as follows:

ρ(A) = ρ(I − ΓΛΓ−1)

= ρ(Γ(I − Λ)Γ−1)

= ρ(I − Λ)

= 1− ρ(C). (84)

Then, condition ρ(A) < 1 leads to 0 < ρ(C) < 2. Combining Property 2 and the

assumption that x∗i , p
∗, p′ > 0 [60, 115], we upper-bound ρ(C) with ||C||∞, which for

cik > 0 leads to ρ(C) ≤ maxi(
∑N

k=1 cik). This immediately yields (80).

It is easy to see that by letting α = αi and β = βi for all i, Theorem 8 directly

translates to the sufficient condition of [115, Theorem 3].

2.4 Exponential MKC

To understand the practical implications of MKC, we next associate MKC with the

following packet-loss function p(n) in (64):

p(n) =

∑N
u=1 xu(n−D→

u )− C∑N
u=1 xu(n−D→

u )
, (85)

where we again assume a network with a single link of capacity C and N users. This is

a rather standard packet-loss function with the exception that we allow it to become

negative when the link is under-utilized. As we show in the next section, (85) achieves

exponential convergence to efficiency, which explains why we call the combination of

(63),(85) Exponential MKC (EMKC).
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Theorem 9. Heterogeneously delayed single-link EMKC (63),(85) is locally asymp-

totically stable if and only if 0 < β < 2.

Proof. We first derive the fixed point of EMKC. Notice that in the proof of Theorem

7, we established the existence of a unique stationary point x∗i = x∗ for each flow.

Then assuming EMKC packet-loss function (85), we have:

p∗ =
Nx∗ − C

Nx∗
. (86)

Combining (86) and (68), we get the stationary point x∗ of each end-user:

x∗ =
C

N
+

α

β
. (87)

Denoting by X(n) =
∑N

i=1 xi(n) the combined rate of all N end-users at time n,

the corresponding combined stationary rate X∗ is:

X∗ = Nx∗ = C + N
α

β
. (88)

Next, recall from Theorem 7 that stability conditions (66)-(67) must hold for the

delayed system to be stable. Consequently, we substitute pricing function (85) into

(67) and obtain with the help of (88):

βp∗ + βNx∗
∂p(n)

∂x(n)

∣∣∣∣
x∗

= βp∗ +
βNx∗C
N2x∗2

= β. (89)

Thus, condition (67) becomes

0 < β < 2. (90)

Notice that in the steady state, packet loss probability p∗ is no larger than one. Hence,

the last condition is more conservative than (66), which allows us to conclude that

when 0 < β < 2, all eigenvalues of Jacobian matrix J are inside the unit circle.
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Applying Corollary 3, heterogeneously delayed EMKC defined by (63) and (85) is

also locally asymptotically stable if and only if 0 < β < 2.

We next prove global asymptotic stability of EMKC under homogeneous delay.

2.5 Global Stability of EMKC under Constant Delay

Recall that global asymptotic stability of a nonlinear dynamic system requires both

Lyapunov stability and global quasi-asymptotic stability (whose definition follows

later) in the unique stable fixed point [39]. Note that we proved local asymptotic

stability of EMKC in the preceding section, which implies Lyapunov stability of the

system. Thus, our remaining task is to prove that EMKC will converge to the unique

fixed point regardless of its initial conditions. To accomplish this, we first consider

several auxiliary results.

2.5.1 Preliminaries

We start with a very simple lemma.

Lemma 14. For an arbitrary sequence vn such that vn → 0 for n →∞ and another

sequence αn such that ∀n > n0: |αn| < 1 − ε, where ε > 0, the following recurrence

converges to zero regardless of the value of x0: xn = αnxn−1 + vn.

Proof. Defining a new set of variables such that yn = xn+n0 , βn = αn+n0 , and un =

vn+n0 to shift recurrence xn by n0 time units forward and skipping the transient

region of the evolution of xn when αn can potentially be larger than 1, we obtain

yn = βnyn−1 + un. Using these assignments, |βn| is less than 1− ε for all n ≥ 0. We

next demonstrate that sequence yn converges to zero, which implies that xn does too.
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Recursively expanding yn, for n ≥ 2, we get:

yn =
n∏

i=1

βiy0 + un +
n−1∑
i=1

ui

n∏
j=i+1

βj. (91)

For convenience of presentation, let

S1(n) =
n∏

i=1

βiy0 + un and S2(n) =
n−1∑
i=1

(
ui

n∏
j=i+1

βj

)
. (92)

Since |βn| < 1− ε and un is a time-shifted version of vn, we immediately obtain

that S1(n) → 0 as n → ∞. Next examine S2(n) and show that it also tends to zero

for large n. Re-writing (92):

|S2(n)| ≤
n−1∑
i=1

(
|ui|

n∏
j=i+1

|βj|
)
. (93)

Again since |βn| < 1− ε, we have:

|S2(n)| ≤
n−1∑
i=1

|ui|(1− ε)n−i = G1(n) + G2(n), (94)

where we define:

G1(n) =

n/2∑
i=1

|ui|(1− ε)n−i and G2(n) =
n−1∑

i=n/2+1

|ui|(1− ε)n−i. (95)

To show that both G1(n) and G2(n) converge to zero, we need the following no-

tations: m1(n) = max(|u1|, . . . , |un/2|) and m2(n) = max(|un/2+1|, . . . , |un−1|). Then

we have:

G1(n) ≤ m1(n)

n/2∑
i=1

(1− ε)n−i = m1(n)
n−1∑

j=n/2

(1− ε)j

= m1(n)

(
n−1∑
j=0

(1− ε)j −
n/2−1∑
j=0

(1− ε)j

)

= m1(n)
(1− ε)n − (1− ε)n/2

ε
. (96)
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Since m1(n) is bounded and 0 < ε < 1, G1(n) → 0. For G2(n), we have:

G2(n) ≤ m2(n)
n−1∑

i=n/2+1

(1− ε)n−i ≤ m2(n)
∞∑
i=0

(1− ε)i =
m2(n)

ε
. (97)

Notice that since both un/2 and un converge to zero, then so must m2(n). Therefore,

we get G2(n) → 0, which leads to S2(n) → 0 and hence yn → 0.

We next present our main result of this section.

Theorem 10. Assume a nonlinear system xn = f(xn−1, yn−1), where function f(x, y)

is linear in both arguments, i.e., f(x, y) = a+bx+cy+dxy, for some constants a−d.

Further assume that yn converges to a stationary point y∗ as n →∞ and form another

system, which replaces yn with y∗ in system xn: x̃n = f(x̃n−1, y
∗). Then, system xn

converges if and only if system x̃n converges, in which case the two stationary points

are the same regardless of the initial points x0 and x̃0 in which each system is started:

limn→∞ |xn − x̃n| = 0.

Proof. We again only prove the sufficient condition. The necessary condition follows

by reversing the order of steps. First notice that system x̃n is stable (bounded) if

and only if |b + dy∗| < 1. Next denote by ∆xn the absolute distance between the

trajectories of the two systems at time n: ∆xn = xn − x̃n. Further let ∆yn = yn − y∗

be the distance of yn from its stationary point. Then we can write:

∆xn+1 = xn+1 − x̃n+1 = f(xn, yn)− f(x̃n, y
∗)

= f(xn, yn)− f(x̃n, yn) + f(x̃n, yn)− f(x̃n, y∗)

= (b + dyn)∆xn + (c + dx̃n)∆yn. (98)

Next notice that (98) defines a recursive relationship on ∆xn:

∆xn = αn∆xn−1 + vn, (99)
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where αn = b + dyn and vn = (c + dx̃n)∆yn. First, since x̃n is bounded and ∆yn → 0

as n →∞, we have vn → 0 for large n. Second, since |b + dy∗| < 1, there exists such

ε that: |b + dy∗| < 1− 2ε.

Since yn → y∗, there exists such n0 that ∀n > n0, sequence αn is bounded by the

following:

|αn| = |b + dyn| < 1− ε, ∀n > n0. (100)

Thus, system (99) satisfies the conditions of Lemma 14 and converges to zero as

n →∞.

2.5.2 Main Results

We next show global stability of the combined rate X(n) of N EMKC flows sharing

a single bottleneck and convergence of loss p(n) to p∗ regardless of the behavior of

flow rates xi(n).

Lemma 15. When 0 < β < 2, the combined rate X(n) of EMKC is globally asymptot-

ically stable under constant delay and converges to X∗ = C +Nα/β at an exponential

rate.

Proof. Assume that delay D is constant. Combining (61)-(62) and taking the sum-

mation for all N flows, we get that EMKC’s combined rate X(n) =
∑

i xi(n) forms a

linear system:

X(n) =

(
1− β

X(n−D)− C

X(n−D)

)
X(n−D)+Nα = (1−β)X(n−D)+βC+Nα. (101)

It is clear that the above linear system is stable if and only if 0 < β < 2. Since

convergence of linear systems implies global asymptotic stability, we can conclude

that X(n) is globally stable regardless of individual flow trajectories xi(n).

We next show the convergence speed of X(n). Recursively expanding (101), we
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have:

X(n) = (1− β)
n
D (X0 −X∗) + X∗, (102)

where X0 is the combined initial rate and X∗ = C +Nα/β is the combined stationary

rate of all flows. Notice that for 0 < β < 2, the first term in the above equation

approaches zero exponentially fast and X(n) indeed converges to X∗.

Using (62), it is not difficult to see that p(n) can be expressed as p(n) = 1 −
C/X(n). Combining this observation with the result of Lemma 15, we immediately

have the following corollary.

Corollary 4. When 0 < β < 2, EMKC’s packet loss p(n) converges to p∗ =

Nα/(Cβ + Nα) regardless of the initial rates of the flows or their individual rates

xi(n).

Before showing global stability of EMKC, we first review the following stability

concept that describes asymptotic properties of a dynamic system.

Definition 5. [39] A point x∗ is globally quasi-asymptotically stable if and only if for

all ε > 0 there exists n0 such that for all n > n0 : |x(n) − x∗| < ε regardless of the

initial point x(0).

According to Corollary 3, EMKC is locally quasi-asymptotically stable in its

unique fixed point x∗. In what follows, we prove that each individual flow rate xi(n)

is globally quasi-asymptotically stable, which implies that the entire system of flows

x(n) = 〈x1(n), . . . , xN(n)〉 also exhibits global quasi-asymptotic stability.

Theorem 11. Assuming an N-flow EMKC system with constant delay D and an

arbitrary initial point x(0) = 〈x1(0), . . . , xN(0)〉, xi(n) converges to x∗ = C/N + α/β

if and only if 0 < β < 2.
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Proof. We start with the sufficient condition. Under constant delay D, each EMKC

flow activates a rate adjustment every D time units. Thus, we can define a new set of

flows {ui(t)}, which operate in time units scaled by a factor of D. Under this notation,

we can write xi(n) = ui(n/D) = ui(t) and xi(n − D) = ui(n/D − 1) = ui(t − 1).

Notice that ui(t) has the same exact stability properties as xi(n). Select an arbitrary

flow ui and focus on its stability: ui(t) = f(ui(t−1), p(t−1)), where p(t) is the packet

loss at time t and f(x, y) is given by:

f(x, y) = (1− βy)x + α. (103)

Then form a new system ũ(t) = f(ũ(t − 1), p∗) = (1 − βp∗)ũ(t − 1) + α, where

ũ(0) = ui(0), and notice that the solution to this recurrence is stable if and only

if |b + dy∗| = |1 − βp∗| < 1. This condition is automatically satisfied using the

proof of EMKC’s local stability in Theorem 9. According to Corollary 4, we notice

that p(t) converges to its unique stationary point p∗ regardless of x(0). Since (103)

is linear in each argument, we can apply Theorem 10 and immediately obtain that

ui(n) → ũ∗ = C/N + α/β and is therefore quasi-asymptotically stable regardless

of the initial points ui(0) or x(0). Repeating the same argument for all flows i, we

establish their individual convergence.

The necessity of condition 0 < β < 2 directly follows from Theorem 9.

Combining EMKC’s Lyapunov and global quasi-asymptotic stability, we have:

Corollary 5. EMKC is globally asymptotically stable under constant feedback delay

D if and only if 0 < β < 2.



69

3 Performance of EMKC

3.1 Convergence to Efficiency

In this section, we show that EMKC converges to efficiency exponentially fast.

Lemma 16. For 0 < β < 2 and constant delay D, the combined rate X(n) of EMKC

is globally asymptotically stable and converges to X∗ = C + Nα/β at an exponential

rate.

Proof. Since delays do not affect stability of EMKC, assume a constant feedback

delay D and re-write (63):

xi(n) = (1− βp(n−D))xi(n−D) + α, (104)

where p(n) is the undelayed version of (85). Taking the summation of (104) for all N

flows, we get that EMKC’s combined rate X(n) =
∑N

i=1 xi(n) forms a linear system:

X(n) =

(
1− β

X(n−D)− C

X(n−D)

)
X(n−D) + Nα

= (1− β)X(n−D) + βC + Nα. (105)

It is clear that the above linear system is stable if and only if 0 < β < 2. Since

convergence of linear systems implies global asymptotic stability, we conclude that

X(n) is globally stable regardless of individual flow trajectories xi(n).

We next show the convergence speed of X(n). Recursively expanding the last

equation, we have:

X(n) = (1− β)
n
D (X0 −X∗) + X∗, (106)

where X0 is the initial combined rate of all flows and X∗ = C+Nα/β is the combined

stationary rate. Notice that for 0 < β < 2, the first term in (106) approaches zero

exponentially fast and X(n) indeed converges to X∗.
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From (106), notice that the value of β affects the convergence behavior of EMKC.

Specifically, for 0 < β ≤ 1, the system monotonically converges to the stationary

point; however, for 1 < β < 2, the system experiences decaying oscillations before

reaching the stationary point, which are caused by the oscillating term (1 − β)n/D

in (106). Thus, in practical settings, β should be chosen in the interval (0, 1], where

values closer to 1 result in faster convergence to efficiency.

3.2 Convergence to Fairness

We next investigate the convergence rate of EMKC to fairness. To better understand

how many steps EMKC requires to reach a certain level of max-min fairness, we utilize

a simple metric that we call ε-fairness. For a given small positive constant ε, a rate

allocation (x1, x2, . . . , xN) is ε-fair, if:

f =
minN

i=1 xi

maxN
j=1 xj

≥ 1− ε. (107)

Generally, ε-fairness assesses max-min fairness by measuring the worst-case ratio

between the rates of any pair of flows. Given the definition in (107), we have the

following result.

Theorem 12. Consider an EMKC network with N users and a bottleneck link of

capacity C. Assuming that the system is started in the maximally unfair state, ε-

fairness is reached in θM steps, where:

θM =
(C + N α

β
)
(
log N − log ε

)

Nα
+ Θ

(Nα

C

)
. (108)

Proof. Let (x, y) be the pair of initially maximally unfair flows, i.e., the difference

between their initial sending rates ∆(0) = y(0)−x(0), where y(0) > x(0), is maximal

among that of any two flows. Notice that under MKC and the assumption of syn-
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chronization, (x, y) are always maximally unfair during the entire process till certain

fairness threshold is reached. Then we have:

∆(i) = y(i)− x(i)

≈ (
y(0)− x(0)

) (
1− Nα

X∗

)i

= ∆(0)

(
1− Nα

X∗

)i

. (109)

Thus, the fairness index at step i becomes:

f(i) =
x(i)

y(i)
=

y(i)−∆(i)

y(i)
= 1− ∆(0)

(
1− Nα

X∗
)i

y(i)

≥ 1− ∆(0)
(
1− Nα

X∗
)i

y∗
, (110)

since y(i) ≥ y∗. Hence, to achieve ε-fairness, we have:

f(n) ≥ 1− ∆(0)
(
1− Nα

X∗
)n

y∗
≥ 1− ε , (111)

which yields:

θM ≤ log1−Nα
X∗

y∗ε
∆(0)

=
log

(
y∗ε/∆(0)

)

log(1− Nα
X∗ )

≈ −X∗ log(y∗ε/∆0)

Nα
+ Θ

(Nα

C

)
. (112)

Assuming Nα/C ¿ 1 and substituting y∗ = C/N + α/β and X∗ = C + Nα/β in

(112), we get:

θM ≤ −
(C + N α

β
)
(
log( C

N
+ α

β
) + log ε− log ∆(0)

)

Nα

≈
(C + N α

β
)
(
log N + log ∆(0)− log C − log ε

)

Nα

=
(C + N α

β
)
(
log N − log ε

)

Nα
. (113)
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Fig. 16. (a) Verification of model (108) against EMKC simulations (C = 1 mb/s,

α = 10 kb/s, and β = 0.5). (b) Exponential and linear rates of convergence

to fairness for EMKC (ε = 0.1).

Adding the omitted terms on the order of Θ(Nα/C) to (113), we arrive at (108).

A comparison of model (108) to simulation results is shown in Figure 16(a) (note

that in the figure, the model is drawn as a solid line and simulation results are plotted

as isolated triangles). In this example, we use a bottleneck link of capacity C = 1

mb/s shared by two EMKC flows, which are initially separated by the maximum

distance, i.e., x1(0) = 0, x2(0) = C. As seen from the figure, the number of steps

predicted by (108) agrees with simulation results for a wide range of ε.

As noted in the previous section, parameter β is responsible for the convergence

speed to efficiency; however, as seen in (108), it has little effect on the convergence

rate to fairness (since typically Nα ¿ C). In contrast, parameter α has no effect

on convergence to efficiency in (106), but instead determines the convergence rate

to fairness in the denominator of (108). Also observe the following interesting fact

about (108) and the suitability of EMKC for high-speed networks. As C increases,

the behavior of θM changes depending on whether N remains fixed or not. For a
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constant N , (108) scales linearly with C; however, if the network provider increases

the number of flows as a function of C and keeps N = Θ(C), ε-fairness is reached

in Θ(log C) steps. This implies exponential convergence to fairness and very good

scaling properties of EMKC in future high-speed networks. Both types of convergence

are demonstrated in Figure 16(b) for constant N = 2 and variable N = dC/500e (for

the latter case, C is taken to be in kb/s). As the figure shows, both linear and

logarithmic models obtained from (108) match simulations well.

We next compare EMKC’s convergence speed to that of rate-based AIMD. Recall

that rate-based AIMD(α, β) adjusts its sending rate according to the following rules

assuming α > 0 and 0 < β < 1:

x(t) =





x(t−RTT ) + α per RTT

(1− β)x(t−RTT ) per loss

. (114)

Theorem 13. Under the assumptions of Theorem 12, rate-based AIMD reaches ε-

fairness in θA steps, where:

θA =
(C + N α

β
)
(
log N − log ε

)

−Nα log(1− β)/β
+ Θ

(Nα

C

)
. (115)

Proof. Assume that flows are synchronized and reach full link utilization at time

instants τ1, τ2, . . . We again assume that Nα ¿ C and neglect the random amount

of overshoot, which generally fluctuates between 0 and Nα. Analysis below focuses

on two maximally unfair flows x and y (i.e., x(0) = 0, y(0) = C) since these flows

solely determine max-min fairness of the system. After packet loss is detected at

time τj, the immediate rate reduction brings rates x(τj) and y(τj) to (1−β)x(τj) and

(1 − β)y(τj) and the combined rate of all users drops to (1 − β)C. Following this

reduction, the combined rate is then incremented by Nα per RTT until it reaches



74

C at time τj+1. This implies that at the end of interval [τj, τj+1], each flow’s rate is

increased by w = βC/N , meaning that flows x and y climb back to (1− β)x(τj) + w

and (1 − β)y(τj) + w, respectively. Hence, the new rates when the flows hit the

efficiency line for the j-th time are:

x(τj) = (1− β)x(τj−1) +
βC

N
, (116)

y(τj) = (1− β)y(τj−1) +
βC

N
. (117)

It is not difficult to see that the distance between any two flows shrinks expo-

nentially:

∆(τj) = y(τj)− x(τj) = (1− β)
(
y(τj−1)− x(τj−1)

)

= (1− β)∆(τj−1) = ∆(0)(1− β)j. (118)

Using simple manipulations, we have max-min fairness:

f(τj) =
x(τj)

y(τj)
=

y(τj)−∆(τj)

y(τj)
= 1− ∆(τj)

y(τj)

≥ 1− (1− β)j∆(0)

C/N
= 1− q(1− β)j, (119)

where constant q = N∆(0)/C.

The number of packet-loss intervals to reach ε-fairness is no more than log1−β(ε/q),

while the number of increase steps during each packet-loss interval is βC/(Nα). Thus,
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Fig. 17. (a) Verification of model (115) against AIMD simulations (C = 1 mb/s,

α = 10 kb/s, and β = 0.5). (b) Ratio θM/θA for fixed and variable N .

the total number of steps to convergence is:

θA =

(⌈
βC

Nα

⌉)
log1−β

ε

q

≈
(

βC

Nα
+ 1

)
log1−β

Cε

N∆(0)

=
(C + Nα/β)

(
log N + log ∆(0)− log C − log ε

)

−Nα log(1− β)/β

=
(C + N α

β
)
(
log N − log ε

)

−Nα log(1− β)/β
. (120)

Accounting for random overshoot and neglected terms, we get (115).

Figure 17(a) verifies that model (115) is also very accurate for a range of different

ε. Notice from (108) and (115) that the speed of convergence to fairness between

AIMD and EMKC differs by a certain constant coefficient. The following corollary

formalizes this observation.

Corollary 6. For the same parameters N , α, β such that Nα ¿ C, AIMD reaches

ε-fairness θM/θA = − log(1− β)/β times faster than EMKC.
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For TCP and β = 0.5, this difference is by a factor of 2 log 2 ≈ 1.39, which holds

regardless of whether N is fixed or not as demonstrated in Figure 17(b). We should

finally note that as term Θ(Nα/C) becomes large, MKC’s performance improves and

converges to that of AIMD.

3.3 Packet Loss

As seen in previous sections, EMKC converges to the combined stationary point

X∗ = C + Nα/β, which is above capacity C. This leads to constant (albeit usually

small) packet loss in the steady state. However, the advantage of this framework is

that EMKC does not oscillate or react to individual packet losses, but instead adjusts

its rate in response to a gradual increase in p(n). Thus, a small amount of FEC can

provide a smooth channel to fluctuation-sensitive applications such as video telephony

and various types of real-time streaming. Besides being a stable framework, EMKC

is also expected to work well in wireless networks where congestion-unrelated losses

will not cause sudden reductions in the flow rates.

Also notice that EMKC’s steady-state packet loss p∗ = Nα/(Cβ +Nα) increases

linearly with the number of competing flows, which causes problems in scalability

to a large number of flows. However, it still outperforms AIMD, whose increase in

packet loss is quadratic as a function of N [72]. Furthermore, if the network provider

keeps N = Θ(C), EMKC achieves constant packet loss in addition to exponential

convergence to fairness.

Finally, observe that if the router is able to count the number of flows, zero

packet loss can be obtained by adding a constant ∆ = Nα/(βC) to the congestion

indication function [21]. However, this method is impractical, since it needs non-

scalable estimation of the number of flows N inside each router. Hence, it is desirable

for the router to adaptively tune p(n) so that the system is free from packet loss.
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One such method is AVQ (Adaptive Virtual Queue) proposed in [43, 65]. We leave

the analysis of this approach under heterogeneous delays and further improvements

of EMKC for future work.

4 Implementation

We next examine how to implement scalable AQM functions inside routers to provide

proper feedback to MKC flows. This is a non-trivial design issue since the ideal packet

loss in (85) relies on the sum of instantaneous rates xi(n), which are never known

to the router. In such cases, a common approach is to approximate model (85) with

some time-average function computed inside the router. However, as mentioned in

the introduction, this does not directly lead to an oscillation-free framework since

directional delays of real networks introduce various inconsistencies in the feedback

loop and mislead the router to produce incorrect estimates of X(n) =
∑

i xi(n).

In what follows in this section, we provide a detailed description of various AQM

implementation issues and simulate EMKC in ns2 under heterogeneous (including

time-varying) feedback delays.

4.1 Packet Header

As shown in Figure 18, the MKC packet header consists of two parts – a 16-byte

router header and a 4-byte user header. The router header encapsulates information

that is necessary for the router to generate precise AQM feedback and subsequently

for the end-user to adjust its sending rate. The id field is a unique label that identifies

the router that generated the feedback (e.g., its IP address). This field is used by

the flows to detect changes in bottlenecks, in which case they wait for an extra RTT

before responding to congestion signals of the new router. The seq field is a local
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IP header Router header 
id : router ID (4) 
seq : router sequence number (4) 
p : packet loss (4) 
∆ : interval length (4) 

User header 
usr : custom user field (4) 

Data 
 

… 

16 bytes 

4 bytes 

 

Fig. 18. Packet format of MKC.

variable incremented by the router each time it produces a new value of packet loss p

(see below for more). Finally, the ∆ field carries the length of the averaging interval

used by the router in its computation of feedback.

The usr field is necessary for end-flows to determine the rate xi(n−Di) that was

in effect RTT time units earlier. The simplest way to implement this functionality

is to inject the value of xi(n) into each outgoing packet and then ask the receiver to

return this field in its acknowledgments. A slightly more sophisticated usage of this

field is discussed later in this section.

4.2 The Router

Recall that MKC decouples the operations of users and routers, allowing for a scalable

decentralized implementation. The major task of the router is to generate its AQM

feedback and insert it in the headers of all passing packets. However, notice that the

router never knows the exact combined rate of incoming flows. Thus, to approximate

the ideal computation of packet loss, the router conducts its calculation of p(n) on

a discrete time scale of ∆ time units. For each packet arriving within the current
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interval ∆, the router inserts in the packet header the feedback information computed

during the previous interval ∆. As a consequence, the feedback is retarded by ∆ time

units inside the router in addition to any backward directional delays D←
i . Since

MKC is robust to feedback delay, this extra ∆ time units does not affect stability of

the system. We provide more implementation details below.

During interval ∆, the router keeps a local variable S, which tracks the total

amount of data that has arrived into the queue (counting any dropped packets as

well) since the beginning of the interval. Specifically, for each incoming packet k from

flow i, the router increments S by the size of the packet: S = S + si(k). In addition,

the router examines whether its locally recorded estimate p̃ of packet loss (which was

calculated in the previous interval ∆) is larger than the one carried in the packet. If

so, the router overrides the corresponding entries in the packet and places its own

router ID, packet loss, and sequence number into the header. In this manner, after

traversing the whole path, each packet records information from the most congested

link.3

At the end of interval ∆, the router approximates the combined arriving rate

X(n) =
∑N

i=1 xi(n−D→
i ) by averaging S over time ∆:

X̃ =
S

∆
. (121)

Based on this information, the router computes an estimate of packet loss p(n) using

p̃ = (X̃ − C)/X̃, (122)

where C is the capacity of the outgoing link known to the router (these functions are

3Note that multi-path routing is clearly a problem for this algorithm; however,
all existing AQM congestion control methods fail when packets are routed in parallel
over several paths.
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performed on a per-queue basis).

After computing p̃, the router increments its packet-loss sequence number (i.e.,

seq = seq + 1) and resets variable S to zero. Newly computed values seq and p̃

are then inserted into qualified packets arriving during the next interval ∆ and are

subsequently fed back by the receiver to the sender. The latter adjusts its sending

rate as we discuss in the next section.

4.3 The User

MKC employs the primal algorithm (61)-(62) at the end-users who adjust their send-

ing rates based on the packet loss generated by the most congested resources of their

paths. However, to properly implement MKC, we need to address the following issues.

First, most existing congestion control algorithms are window-based, while MKC

is a rate-based method. This means that, instead of sending out a window of packets

at once, each MKC user i needs to properly pace its out-going packets and maintain

its sending rate at a target value xi(n). We implement this mechanism by explicitly

calculating the inter-packet interval δi(k) of each packet k:

δi(k) =
si(k)

xi(n)
, (123)

where si(k) is the size of packet k of user i.

Second, notice that ACKs carrying feedback information continuously arrive at

the end-user and for the most part contain duplicate feedback (assuming ∆ is suf-

ficiently large). To prevent the user from responding to redundant or sometimes

obsolete feedback caused by reordering, each packet carries a sequence number seq,

which is modified by the bottleneck router and is echoed by the receiver to the sender.

At the same time, each end-user i maintains a local variable seqi, which records the

largest value of seq observed by the user so far. Thus, for each incoming ACK with se-
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Fig. 19. Naive EMKC implementation: (a) one ns2 flow (α = 100 kb/s, β = 0.9,

and ∆ = 50 ms) passes through a bottleneck link of capacity 10 mb/s; (b)

inconsistent feedback and reference rate.

quence seq, the user responds to it only when seq > seqi. This allows MKC senders to

pace their control actions such that their rate adjustments and the router’s feedback

occur on the same timescale.

Third, recall from (61)-(62) that MKC requires both the delayed feedback ηi(n)

and the delayed reference rate xi(n−Di) when deciding the next sending rate. Thus,

the next problem to address is how to correctly implement the control equation (61).

We develop two strategies for this problem below.

4.3.1 Naive Implementation

One straightforward option is to directly follow (61) based on the rate that was

in effect exactly Di time units earlier. Since round-trip delays fluctuate, the most

reliable way to determine xi(n − Di) is to carry this information in the usr field of

each packet (see Figure 18). When the receiver echoes the router fields to the sender,

it also copies the usr field into the acknowledgment. We show the performance of
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this strategy via ns2 simulations in Figure 19(a), in which a single MKC flow passes

through a bottleneck link of capacity 10 mb/s. We set α to 100 kb/s, β to 0.9, packet

size to 200 bytes, and router sampling interval ∆ to 50 ms. As seen from Figure

19(a), the sending rate converges to its stationary point in less than 2 seconds and

does not exhibit oscillations in the steady state; however, the flow exhibits transient

oscillations and overshoots C by over 200% in the first quarter of a second. Although

this transient behavior does not affect stability of the system, it is greatly undesirable

from the practical standpoint.

4.3.2 Proper Implementation

To remove the transient oscillations, we first need to understand how they are created.

Notice from (121) that since the router calculates the packet loss based on the average

incoming rate over interval ∆, it is possible that packets of different sending rates

xi(n1) and xi(n2) arrive to the router during the same interval ∆. Denote by Ti(n)

the time when user i receives the n-th non-duplicate feedback p(n). Since the user

responds to each feedback only once, it computes new sending rates xi(n) at time

instances Ti(n). To better understand the dynamics of a typical AQM control loop,

consider the illustration in Figure 19(b). In the figure, the router generates feedback

p(n− 1) and p(n) exactly ∆ units apart. This feedback is randomly delayed by D←
i

time units and arrives to the user at instances Ti(n − 1) and Ti(n), respectively. In

response to the first feedback, the user changes its rate from xi(n − 2) to xi(n − 1);

however, the router observes the second rate only at time Ti(n − 1) + D→
i . At the

end of the n-th interval ∆, the router averages both rates xi(n− 2) and xi(n− 1) to

produce its feedback p(n) as shown in the figure.

When the control loop is completed, the user is misled to believe that feedback

p(n) refers to a single rate xi(n − 1) and forced to incorrectly compute xi(n). This
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Fig. 20. Proper EMKC implementation: (a) graphical explanation of the algorithm;

(b) one ns2 flow (α = 100 kb/s, β = 0.9, and ∆ = 50 ms) passes through a

link of capacity 10 mb/s.

inconsistency is especially pronounced in the first few control steps during which flows

increase their rates exponentially and the amount of error between the actual rate

and the reference rate is large.

Instead of changing the router, we modify the end-users to become more sophis-

ticated in their processing of network feedback. The key is to allow end-users to

accurately estimate their own contribution to X̃ in (121) and determine their average

rates seen by the router during interval ∆. For each outgoing packet k, MKC sender

i places the packet’s sequence number k in the usr field and records in local memory

the size of the packet si(k) and its sequence number k. Upon arrival of the n-th

non-duplicate feedback at time Ti(n), the end-flow extracts the usr field from the ac-

knowledgment and records its value in variable zi(n), which is the sequence number

of the packet that generated feedback p(n). To compute the new rate xi(n), the user

calculates the amount of data that it has transmitted between packets zi(n− 1) and

zi(n)− 1 and normalizes the sum by ∆, which is exactly the average rate used by the
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router in generation of p(n).

To visualize this description, consider Figure 20(a), in which the end-flow is about

to decide its sending rate xi(n) at time Ti(n). Notice in the figure that feedback p(n) is

based on all packets of flow i with sequence numbers between zi(n− 1) and zi(n)− 1.

Through the use of zi(n), we obtain a projection of the time-interval used by the

router in its computation of p(n) onto the sequence-number axis of the end user.4

Given the above discussion, the user computes its average rate as:

x̄i(n) =
1

∆

zi(n)−1∑

k=zi(n−1)

si(k), (124)

and utilizes it in its control equation:

xi(n) = x̄i(n) + α− βηi(n)x̄i(n). (125)

Next, we turn our attention to the ns2 simulation in Figure 20(b) and examine

the performance of this strategy with a single flow. The figure shows that (124)-(125)

successfully eliminates transient oscillations and offers fast, monotonic convergence

to the steady state.

Our next example shows the performance of the new implementation (124)-(125)

with multiple flows. The simulation topology of this example is illustrated in Figure

21(a): four EMKC flows access a common bottleneck link of capacity 500 mb/s. The

round-trip propagation delays of the four flows are, respectively, 10, 100, 500, and

1000 ms. As Figure 21(b) shows, flow x1 starts with an initial rate 100 kb/s and

reaches link utilization in less than 1 second. When flow x2 joins at time 10 seconds,

flow rate of x1 is driven down toward the new stationary rate 261.1 mb/s and 99%

4Note that this approach is robust to random delays, but may be impeded by
severe packet loss at the router.
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Fig. 21. Four EMKC (α = 10 mb/s, β = 0.9, and ∆ = 100 ms) flows in the “dumb

bell” topology.

fairness is achieved in 25 seconds. This behavior repeats as flows x3 and x4 start

respectively at time 40 and 120 seconds, and the system quickly re-stabilizes in the

new equilibrium without any transient oscillations.

4.4 Multi-Link Simulations

After demonstrating EMKC’s single-link performance, we proceed to examine the

multi-link topology illustrated in Figure 22(a). In this topology, capacities of links

C1–C2, C2–C3, and C3–C4 are respectively 300, 200, and 180 mb/s, the corresponding

round-trip propagation delays are 10, 500, and 100 ms, and the sampling intervals ∆

are 100, 100, and 99 ms. In the network, there are three short flows x2–x4 respectively

utilizing links C1–C2, C2–C3, and C3–C4 and one long flow x1 passing through all three

links.

The simulation result of EMKC employing implementation (124)-(125) is plotted

in Figure 22(b). Flow x1 starts first and reaches the utilization of the bottleneck link

C3–C4 in 2 seconds. As flow x2 joins at time 40 seconds, the bottleneck of x1 switches
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to link C1–C2 and both x1 and x2 converge to fairness. Similarly, when x3 starts at

time 80 seconds, link C2–C3 becomes the new bottleneck of x1. As a consequence, x1

and x3 converge toward the new fair rate and x2 climbs up and collects the residual

bandwidth on link C1–C2. The individual sending rates are smooth during the first

120 seconds. However, after flow x4 joins, the system suffers sustained oscillations

during the period from time 124 through 151 seconds. The oscillation is especially

severe for x1, whose sending rate reaches as high as 788.5 mb/s at time 125.7 seconds,

overshooting the bottleneck C3–C4 by over 300%.

We next investigate the underlying reason for this oscillation. Observe that as

the sending rate of x4 increases, the bottleneck of flow x1 switches from link C2–C3 to

C3–C4. Since it is possible for this switching to occur in the middle of the bottleneck

router’s sampling interval, the computed packet loss could be inconsistent with the

end-user’s reference rate. This results in fluctuations in the sending rate and is the

primary reason for the “spike” shown in Figure 22(b). Moreover, this situation could

be exacerbated when multiple resources with close capacities (e.g., 180 and 200 mb/s

in this case) exist in the path of a certain user, since fluctuating input rate at the

routers will cause fluctuating packet loss, which could eventually lead to oscillations of

the bottleneck link and aggravate the rate oscillations of the end-users. This explains

the oscillations after the spike.

We emphasize that these problems do not indicate instability of EMKC, but arise

as the result of discretized implementation of the theoretical model given by (63) and

(85). To properly deal with multi-bottleneck networks, we develop several strategies

to manage bottleneck switching. First, we force the end-user to delay its response to

the ACK for one RTT once a bottleneck switch is detected. By doing this, the packet

loss carried in the next non-duplicate ACK will be consistent with the reference rate

x̄i(n) computed by the user. Second, we damp the bottleneck oscillations resulting
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Fig. 22. (a) “Parking lot” topology; (b) Naive implementation of EMKC (α = 10 mb/s

and β = 0.9) in the “parking lot” topology.

from multiple routers with close capacities by introducing a threshold value δ such

that the end-user authorizes a bottleneck switch if only if the difference between the

old packet loss and the packet loss carried in the ACK is greater than δ.

To examine the effectiveness of this mechanism, we redo the simulation in Figure

22(b) using this new algorithm and plot the result in Figure 23(a). As seen in the

figure, this implementation removes the oscillations that originally occurred when x4

joined the system. Starting from time 160 seconds, flows x4, x3, and x2 terminate

with a 40-second delay, and there is no oscillation in both the transient phase and

the steady state.

We next incorporate randomness into the feedback delay of individual flows and

test EMKC in settings with highly variable delays. To implement time-varying delay,

we maintain a local queue at the receiving end of each flow and force the ACKs to

pass through this queue before being echoed to the sender. For every m successfully

transmitted acknowledgments, the system delays the head packet in the queue by

d seconds and the other packets by 10 µs. Here, time-varying variables d and m
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Fig. 23. Proper implementation of EMKC (α = 10 mb/s, β = 0.9, and δ = 0.01) in

the “parking lot” topology.

are uniformly distributed in [0.5, 1] and [500000, 1000000], respectively. All packets

between the d-second delay spikes are drained at the wire speed of the return path,

which ensures that the queue is completely emptied before the next spike is generated.

We preserve the topology in Figure 22(a) except that the round-trip propagation

delay of each flow is fixed to be 10 ms such that the effect of random delay is more

evident. The simulation result is depicted in Figure 23(b), in which the system

exhibits delay-independent asymptotic stability, fast convergence to the stationary

point, and smooth transitions between the neighboring states.

5 Discussion

This chapter investigated the properties of Internet congestion controls under non-

negligible directional feedback delays. We focused on the class of control methods with

radial Jacobians and showed that all such systems are stable under heterogeneous de-

lays. To construct a practical congestion control system with a radial (symmetric
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in particular) Jacobian, we made three changes to the classic discrete Kelly control

and created a max-min version we call MKC. Combining the latter with a negative

packet-loss feedback, we developed a new controller EMKC and showed in theory

and simulations that it offers smooth sending rate and fast convergence to efficiency.

Furthermore, we demonstrated that EMKC’s convergence rate to fairness is expo-

nential when the network provider scales the number of flows N as Θ(C) and linear

otherwise. From the implementation standpoint, EMKC places very little burden on

routers, requires only two local variables per queue and one addition per arriving

packet, and allows for an easy implementation both in end-to-end environments and

under AQM support. However, EMKC has two key limitations – constant packet

loss in the steady state and slow (linear) convergence rate to fair resource allocation

(i.e., fairness). We next overcome both drawbacks by designing a new protocol called

JetMax.
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CHAPTER VI

JETMAX

1 Introduction

In the light of TCP’s scalability issues in high-speed networks [30], explicit-feedback

congestion control has gained renewed interest in the last several years [56, 74, 114,

115]. Sometimes referred to as Active Queue Management (AQM) congestion control,

these algorithms rely on routers to provide congestion feedback in the form of changes

to the congestion window [56], packet loss [115], single-bit congestion indication [44,

62, 88], queuing delay [49, 107], or link prices [60, 66, 77]. This information helps

end-flows converge their sending rates to some social optimum and achieve a certain

optimization objective.

Unlike some of the largely ineffective AQM aimed at improving the performance

of TCP [20], properly designed explicit congestion control promises to provide scal-

ability to arbitrary bandwidth (i.e., terabits and petabits per second1), tunable link

utilization, low delay, zero loss, oscillation-free steady state, and exponential conver-

gence to fairness/efficiency, all of which suggests that such algorithms, once deployed

in the Internet, may remain in service for many years to come. Note that the purpose

of this work is not to settle the debate of whether or when explicit congestion control

will be adopted by the Internet, but to explore the various properties of existing AQM

methods, propose a new controller we call JetMax, and compare its ns2 and Linux

performance with that of the existing methods.

1If network bandwidth continues to double every year, these speeds will become
mainstream in 10 and 20 years, respectively.
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The first half of this chapter deals with understanding delayed stability and con-

vergence performance of several recently proposed AQM approaches: eXplicit Control

Protocol (XCP) [56], Rate Control Protocol (RCP) [26], Exponential Max-min Kelly

Control (EMKC) [115], and a hybrid method suggested in [115] that combines EMKC

with Adaptive Virtual Queue (AVQ) [66, 65]. We find from this study that both XCP

and RCP are sensitive to RTT estimation and is prone to instability even in single-link

topologies where the average RTT dl estimated by the router is significantly different

from the maximum RTT Dmax of end-flows. Although this issue can be overcome

by utilizing Dmax instead of dl, additional problems may occur under time-varying

delays. Moreover, XCP may become unstable in certain multi-link networks when

the flows receive feedback on different time scales (i.e., under heterogeneous delay).

The root of this problem lies in the oscillatory switching between the bottlenecks (i.e.,

changes in the bottleneck link) and inability of each XCP flow to permanently decide

its most-congested resource in the presence of delayed feedback. This phenomenon in

turn arises from the discontinuous nature and non-monotonic transient properties of

the feedback function used in the control equation of XCP. Discontinuity of feedback

follows from XCP’s algorithm for selecting the most-congested link along its path,

while non-monotonicity is caused by the oscillatory nature of the controller when the

feedback delays of competing flows are heterogeneous.

To further understand the reasons for XCP’s instability in multi-link networks,

we analyze the problem of bottleneck oscillation in more depth and show that only

consistent (i.e., agreed upon by every flow) bottleneck assignment allows one to reduce

stability analysis of max-min protocols in multi-link networks to that of the single-

link case studied in prior work [26, 56, 107, 115]. In all other cases, max-min methods

require a much more complicated analysis not available within the current framework

of congestion control. We additionally observe that feedback that remains monotonic
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when a flow changes its most-congested resource allows the protocol to achieve a

consistent bottleneck assignment and thus remain stable. This partially explains

EMKC’s stability in multi-link networks observed in simulations.

Although EMKC remains stable in multi-link topologies, we find that its transient

and equilibrium properties (such as linear convergence to fairness and steady-state

packet loss) are potential drawbacks for its use in practice. The problem of EMKC’s

equilibrium packet loss can be overcome using EMKC-AVQ; however, the resulting

method exhibits undesirable oscillations and transient overshoot of link’s capacity.

Combined with a large number of flows, transient overshoot leads to long-lasting

packet loss and non-negligible increase in queuing delay, both of which are highly

undesirable.

Our conclusion from the first half of the chapter is that any new designs of max-

min AQM congestion control should decouple feedback delay from control equations

and converge to stationarity monotonically. Thus, the second part of this chapter

designs a new method we call JetMax that satisfies these criteria while offering addi-

tional features:

• Capacity-independent convergence time. The algorithm reaches fairness and

efficiency in the same number of RTT steps regardless of link’s capacity.

• Zero packet loss. Loss-free operation is ensured both in the transient and sta-

tionary state.

• Tunable link utilization. Each router can be independently configured to control

its steady-state link utilization.

• RTT-independent max-min fairness. Resource allocation is max-min fair re-

gardless of end-user delays.

• Global multi-link stability under consistent bottleneck assignment for all types
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of delay. Flows converge to the equilibrium and maintain their steady-state

rates in generic networks regardless of any fluctuation in the RTT as long as

end-users can correctly choose their bottleneck links (see below for more).

• Low overhead. The AQM algorithm requires only three additions per arriving

packet and no per-flow state information inside routers.

We finish the chapter by repeating the same ns2 simulations that earlier high-

lighted the limitations of existing methods and demonstrate that JetMax outperforms

its predecessors using a number of metrics such as multi-link stability, convergence

rate, transient overshoot, and steady-state rate allocation. We also show that Jet-

Max can be easily integrated into the Linux router kernel and present the results

of Linux experiments with JetMax running over 1 gb/s links, both in single- and

multi-bottleneck topologies.

2 Background

We start by describing the notation used throughout the chapter. Assume N users

in the network whose rates at time t are given by {xr(t)}N
r=1. Following notation in

[51], we denote the RTT of each flow by Dr(t) and the forward/backward delays of

user r to/from link l by D→
r,l(t) and D←

r,l(t), respectively. The aggregate arrival rate

of all users at link l is written as yl(t) =
∑

r∈l xr(t), where r ∈ l is the set of flows r

passing through link l. Similarly, notation l ∈ r refers to the set of links l used by

flow r.

Since its appearance in 2002, XCP [56] has become a de-facto standard for ex-

plicit congestion control in IP networks [29]. XCP is a window-based framework, in

which routers continuously estimate aggregate flow characteristics (e.g., arrival rate,

average RTT) and feed back the desired changes to the congestion window to each
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bottlenecked flow through its packet headers. Stability of XCP under heterogeneous

delay is unknown at this time; however, for homogeneous delay Dr(t) = D, the paper

shows that the combined rate yl(t) is stable if 0 < α < π/4
√

2 and β = α2
√

2, where

α and β are constants used in the XCP control equation.

XCP’s design goals [56] include max-min fairness and high link utilization; how-

ever, a recent study of its equilibrium properties [74] shows that XCP does not gen-

erally achieve max-min fairness in multi-link networks and its link utilization may

sometimes be as low as 80%. The paper further demonstrates scenarios where XCP

allocates arbitrarily small (unfair) fractions of bandwidth to certain flows [74]. An-

other study [114] reports experiments with a 10-mb/s XCP Linux router and identi-

fies several implementation issues including uncertainty in accurate selection of link’s

capacity, sensitivity to receiver buffer size, and various problems with partial deploy-

ment.

The recently proposed Rate Control Protocol (RCP) [26] is a rate-based max-

min AQM algorithm in which each link l periodically computes the desired sending

rate rl(t) for flows bottlenecked at l and inserts rl(t) into their packet headers. This

rate is overridden by other links if their suggested rate is less than the one currently

present in the header. Links decide the fair rate rl(t) by implementing a controller

rl(t) = rl(t−∆)
[
1− ∆

dlCl

(
α(yl(t)− Cl)− β

ql(t)

dl

)]
, (126)

where ∆ is the router’s control interval, α and β are constants, dl is a moving average

of RTTs sampled by link l, Cl is its capacity, and ql(t) is its queue length at time t.

Compared to XCP, RCP has lower implementation overhead, offers quicker transient

dynamics, and achieves max-min fairness [26].

Two additional max-min methods are inspired by Kelly’s optimization framework

[60] and aim to improve stability and convergence properties of traditional models of
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additive packet loss [65, 77]. The first approach called MaxNet [107] obtains feedback

fr(t) = maxl∈r pl(t) from the most congested link along each path of user r and applies

an unspecified end-user control function to fr(t) so as to converge the sending rates of

all flows to max-min fairness. To avoid equilibrium packet loss, link prices are driven

by a controller

ṗl(t) =
yl(t)− γCl

Cl

, (127)

where 0 < γ < 1 is the desired link utilization.

The second method is Exponential Max-min Kelly Control (EMKC) [115], which

elicits packet-loss from the most-congested resource along each flow’s path and uses a

modified version of the discrete Kelly equation to achieve delay-independent stability.

End-user rates xr(n) are adjusted using

xr(n) = xr(n−Dr) + α− βpr(n)xr(n−Dr), (128)

where Dr
2 is the RTT of flow r, α > 0 and 0 < β < 2 are constants, and pr(n) ∈

(−∞, 1) is the packet-loss feedback received by flow r at time n. The feedback

function allows negative values and assumes the following shape [115]

pr(n) = max
l∈r

∑
s∈l xs(n−D→

s,l −D←
r,l)− Cl∑

s∈l xs(n−D→
s,l −D←

r,l)
. (129)

We remark that throughout the chapter, we use the same time unit (say, ms) for time

n, delay Dr, and control interval ∆. Therefore, all these metrics are assumed to be

integers.

For a single-link network, system (128)-(129) is locally asymptotically stable for

all time-varying delays. Due to the steady-state overshoot of link’s capacity [115],

2Since all MKC-based methods examined in the chapter and the later introduced
scheme JetMax do not estimate the RTT and are delay-independent, we replace time-
varying delay Dr(t) by its constant version Dr for ease of presentation.
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EMKC does not reach max-min fairness. However, as suggested in [115], EMKC can

be combined with AVQ [66] to guarantee max-min fair rates and zero loss in the

stationary state.

3 Understanding Existing Methods

This section discusses the desired properties of future congestion control and examines

whether the existing methods satisfy these requirements. We focus on such issues as

flow dynamics under heterogeneous (both time-invariant and time-varying) feedback

delay, stability in multi-link scenarios, convergence behavior, and overshoot properties

in transient and equilibrium states.

3.1 Ideal Congestion Control

During the design and analysis of congestion control, many issues are taken into con-

sideration; however, one of the most fundamental requirements on modern congestion

control is its asymptotic stability under heterogeneous (including time-varying) de-

lays. The reason we focus on non-deterministic delay is to understand the various

deployment issues that a protocol may face in real networks, where the forward delay

between the source and each link, as well as the corresponding backward feedback

delay, are dynamic (often random) metrics [84]. Traditional models of congestion

control [56, 65, 77, 100] usually assume a certain “determinism” about the RTT (i.e.,

queuing delays are either fixed or based on fluid approximations) and sometimes pro-

duce results that no longer hold under more realistic conditions [71]. It thus becomes

important to examine how protocols behave in highly heterogeneous environments

and whether fluctuating feedback delay may cause them to oscillate.

Besides stability, ideal congestion control should exhibit fast convergence to both
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efficiency and fairness, avoid overshooting capacity in transient and stationary states,

and converge to the desired link utilization γ. While the first few factors are mostly

important to end-users, the last metric is of interest to network operators, who usually

run their backbones at well below capacity and may not appreciate protocols (such

as [49, 56]) that always try to achieve 100% utilization.

Our results below show that none of the existing methods satisfies all of these

requirements simultaneously. Some protocols exhibit oscillations and instability un-

der heterogeneous RTTs or in certain multi-link topologies, while others demonstrate

undesirable stationary and/or transient properties. As a result of this study, we first

come to understand the need for and then develop a new method that is capable of

simultaneously meeting the design criteria above while admitting a simple implemen-

tation inside routers.

3.2 Methodology

Our main focus in this comparison study is on XCP [56], RCP [26], and EMKC [115]

as completely different approaches to max-min congestion control. At the time of

this writing, MaxNet [107] did not have a publicly available ns2 implementation;

however, we found that a combination of EMKC and AVQ [66] possessed transient

and stationary behavior similar to that of MaxNet. Recall that AVQ dynamically

adjusts the virtual capacity of each link until the arrival rate yl(t) is stabilized at γCl,

where γ is the desired link utilization. This method is similar to the price integrator

(127) in MaxNet with the exception that AVQ is not feedback-specific.

Throughout this section, we use ns2 simulations with AVQ code that comes with

the simulator (version 2.27), and XCP, RCP, and EMKC code used in [56, 26, 115],

respectively. We also experimented with the modified XCP code from ISI [108] and

found it to offer no stability benefits over the original code. We thus limit our XCP
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Fig. 24. XCP, RCP, EMKC, and EMKC-AVQ in topology T1.

discussion to the algorithms used in [56].

We should finally emphasize that simulation scenarios shown below are meant

to highlight the possibility of unstable behavior and demonstrate the undesirable

convergence properties of the studied protocols rather than providing their exhaustive

evaluation under “realistic” Internet conditions.

3.3 Stability under Heterogeneous Delay

We first study how each method handles heterogeneous delay over a single link. We

use topology T1 shown in Fig. 24(a), where two flows x1 and x2 with round-trip delays

220 and 2020 ms, respectively, start with a 5-second delay and share a 10-mb/s link.
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For XCP, we use the parameters suggested in [56] (i.e., α = 0.4 and β = 0.226) and

set the buffer size sufficiently large (i.e., at least Cl × RTT ). As Fig. 24(b) shows,

XCP is stable under heterogeneous delay, even though it exhibits oscillations and

relatively slow (compared to the case of homogeneous D) convergence to fairness.

We next examine RCP with α = 0.4 and β = 1.0, whose simulation result3 is

given in Fig. 24(c). As seen in the figure, RCP exhibits stable behavior and converges

the sending rates to the fair share of the bottleneck bandwidth. However, we can also

observe from the figure the “spike” in x2’s sending rate as it joins the system. This

results in instantaneous overshoot of the link capacity and buildup of queue backlog

in the router. This problem becomes progressively serious in the presence of multiple

arriving flows, in which case any buffer can be overflow by a sufficiently large number

of new users.

For EMKC we set α = 0.2 mb/s, β = 0.5, and control interval ∆ = 100 ms,

and repeat the simulation in T1. The result is plotted in Fig. 24(d), which demon-

strates that EMKC converges to the stationary state much more smoothly than XCP

and RCP; however, it spends over 250 seconds before reaching fairness and even-

tually overshoots link’s capacity by 8%. Although EMKC’s convergence rate can

be improved by increasing α, this leads to more steady-state packet loss and larger

overshoot [115]. We delay further discussion of this issue until later in the section.

The fourth method to examine is the combination of EMKC and AVQ. We

experimented with the default ns2 code of AVQ, but found it to be too noisy due to

the random fluctuations in inter-packet arrival delays and the fact that AVQ estimates

yl(t) on a per-packet basis. To make the method actually converge to its stationary

3For all rate-based methods examined in the chapter (i.e., RCP, EMKC, EMKC-
AVQ, and JetMax), we refer to “rate” as the sending rate. In addition, since JetMax
does not build up queues or drops packets, its sending rate equals the receiving rate.
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state, we modified AVQ to estimate the aggregate input rate yl(n) every ∆ time units

and adjust the virtual capacity C̃l at the end of this interval:

C̃l(n) = C̃l(n−∆) +
τ∆(γCl − yl(n))

Dmax

, (130)

where τ = 0.2 is the gain parameter used throughout this chapter, γ is the desired

link utilization, Dmax is the maximum RTT of end-flows, and Cl is the true capacity

of the link.4 It is not difficult to notice that (130) is in fact an Integral controller [113]

on virtual capacity C̃l(n) and converges combined rate yl(n) to its target value γCl.

The final step of EMKC-AVQ is to limit C̃l to the range (−∞, γCl] and then apply

its value in (129) to compute the feedback. Using this implementation, we repeat the

above simulation and plot the result in Fig. 24(e), which indicates that EMKC-AVQ

is indeed max-min fair in the steady state (i.e., both flows achieve 5 mb/s) as well as

stable under heterogeneous delays; however, the convergence rate to fairness remains

painfully slow (i.e., over 200 seconds).

3.4 Sensitivity to RTT Estimation

The situation can become complicated by slight modifications of topology T1, in which

flow x1 is replaced by a group of 99 flows x1-x99. Simulation results of these methods

in this new topology T2 are given in Fig. 25.

As seen from Fig. 25(d) and 25(e), both EMKC and EMKC-AVQ are stable

in this scenario and converge their sending rates to the expected stationary values.

On the contrary, neither XCP nor RCP is stable and XCP even exhibits a denial-of-

service effect on flow x100. Instability of these two protocols arises when the average

4All delays are computed using XCP’s smoothed EWMA estimator with the de-
fault weight 0.4 and (130) is normalized by Dmax to ensure stability of the resulting
system under delayed feedback [65].
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Fig. 25. XCP, RCP, EMKC, and EMKC-AVQ in topology T2.
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RTT dl significantly deviates from the maximum RTT Dmax of all flows. Notice that

in topology T2, the average delay measured by the bottleneck router is only 200 ms,

while the “slowest” flow x100 receives feedback with a 2-second delay. This results in

unstable oscillations shown in Fig. 25(b) and 25(c).

An obvious solution to this problem is to utilize Dmax instead of dl in XCP and

RCP’s control equations. We changed ns2 packet headers to carry the smoothed

RTT of each end-flow and adapted XCP and RCP’s router code to use the maximum

RTT observed in any control interval instead of dl . The resulting systems did in fact

exhibit expected performance and were stable in T2 (results not shown for brevity).

Nevertheless, this change does not solve all XCP and RCP’s problems related to delay.

3.5 Time-Varying Delay

Although using the maximum RTT Dmax is effective under fixed heterogeneous delays,

it may have problems when the RTT is time-varying. This can be demonstrated with

the help of topology T3 illustrated in Fig. 26(a), where we generate random feedback

delays by forcing the receiver to pass its acknowledgments through a local queue,

which randomly delays the packets before sending them to the source. The algorithm

applies a random d-second delay-spike to the head packet of the queue every m

successfully transmitted acknowledgments and delays the remaining m − 1 packets

by 10 µs, where d and m are uniformly distributed in [0.5, 1.0] and [5000, 10000],

respectively. This delay pattern ensures that the queue is completely emptied before

the next spike and approximates periodic congestion in the Internet caused by flash

crowds, routing changes, and oscillatory behavior of cross-traffic flows.

From Fig. 26, we can see that EMKC is the only stable method in this variable-

delay scenario since it does not rely on RTT estimation and its stability is delay-

independent. Instability of XCP, RCP and EMKC-AVQ (all of which use Dmax in the
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Fig. 26. XCP, RCP, EMKC, and EMKC-AVQ in topology T3.
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Fig. 27. XCP, RCP, EMKC, and EMKC-AVQ in multi-link topology T4.

router equations) arises from delay fluctuation, since by the time the router “learns”

the new Dmax, it may become out-dated in the next control interval and the system

is already unstable. Additional filters and fixes may make these methods stable in

this scenario; however, our next set of simulations show that a more fundamental

problem prevents XCP (and potentially other max-min methods) from operating well

in highly heterogeneous networks.

3.6 Multi-link Stability

Our next stability issue is to examine the performance of these protocols in multi-link

networks where bottlenecks shift over time and there exists a possibility for incorrect
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inference of the most-congested link. For the purpose of this section, we study the

four-bottleneck case T4 shown in Fig. 27(a), where four flows x1, . . . , x4 are routed over

a grid-type network. We customize the routing rules at nodes R1 and R4 to always

route their traffic (including any ACKs) in the clockwise direction. This ensures that

acknowledgments of flow x1 travel together with flow x3 and vice versa. At the same

time, the acknowledgments of flows x2 and x4 are routed along their corresponding

shortest paths (i.e., R2−R1 and R3−R4). Flows start in sequence from x1 to x4 with

a 30-second delay. Given this order of user join, flow x1 should originally converge

to 17 mb/s and shifts its bottleneck to accommodate flow x2. The same expected

behavior also applies to flows x3 and x4. The final max-min assignment of rates is 10

mb/s for each flow.

Fig. 27(b) shows the behavior of XCP in T4. Notice in the figure that the protocol

not only oscillates for over 200 seconds, but also denies service to flow x3, which never

obtains its share of the link even in the average sense. The reason for oscillation can be

traced to the fact that both x1 and x3 continuously switch between their bottlenecks

and are unable to settle down in the selection of their most-congested link. This is

caused by non-monotonicity of feedback at each link, discontinuous control actions of

end-users, and random fluctuation of the RTT that forces XCP to become unstable on

small timescales. In contrast, RCP in Fig. 27(c), EMKC in Fig. 27(d), and EMKC-

AVQ in Fig. 27(e) have no visible stability problems and converge their sending rates

exactly as expected.

3.7 Convergence Speed

Besides stability, another metric we evaluate is the convergence speed to stationarity.

XCP generally converges quickly over links with homogeneous delay; however, its

convergence rate may be compromised by heterogeneity of delay and oscillations of
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the controller inside routers. One example of this behavior is shown in Fig. 24(b),

where it takes XCP over 1.5 minutes to reach fairness on a 10 mb/s link. At the

time of this writing, there are no known expressions for XCP’s convergence rate to

efficiency or fairness and future analysis of these metrics appears difficult due to the

complex behavior of the controller under delay.

As to the best of our knowledge, there does not exit an explicit expression of

RCP’s convergence speed. However, we can empirically observe that RCP, in its

stable cases, exhibits the best convergence properties among all methods studied in

this section. In both Fig. 24(c) and 27(c), it takes RCP around 30 seconds (i.e., 15

RTTs) to reach the stationarity.

For EMKC and small Nα ¿ C, [115] shows that flows reach fairness in Θ(C log N/(Nα))

steps, which scales linearly with resource capacity C. In Fig. 24(c), for instance, it

takes two EMKC flows over 4 minutes to reach fairness on a 10-mb/s link. Further-

more, the major problem with EMKC’s convergence rate to fairness is the tradeoff

between convergence speed and stationary packet loss in the network. For small fixed

α, EMKC’s linear rate of convergence is clearly undesirable, especially in high-speed

networks. To achieve capacity-independent convergence, α must be on the order of

C, which results in large stationary packet loss since the amount of steady-state over-

shoot Nα/β is now comparable to C [115]. In general, there is no algorithmic way

for end-flows to select their α so as to keep loss low and convergence to fairness quick.

This is one of the main drawbacks of EMKC.

Similar arguments apply to EMKC-AVQ. Even though it does not suffer from

steady-state packet loss, as we show next, EMKC-AVQ’s transient packet loss that is

proportional to α keeps the protocol from quickly converging to fairness.
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Fig. 28. Transient overshoot of EMKC-AVQ (α = 2 mb/s, β = 0.5 and τ = 0.2).

3.8 Overshoot Properties

Another issue to consider when designing congestion control is the amount of over-

shoot and oscillation before the stationary state is reached. For discussion purposes

below, we semantically equate overshoot of network capacity with packet loss, even

though small overshoots (in terms of amount and/or duration) can often be absorbed

by buffers and do not necessarily lead to packet loss. Nevertheless, we aim to stress

that any overshoot (especially by 10000 concurrent flows) leads to stressful conditions

at the router and, in the least, increases the queuing delay. In addition, depending on

how long the feedback is delayed on the way to the sender, any “innocent” overshoot

of C may lead to substantial packet loss and create a hostile environment for other

flows.

Among the four controllers in this comparison study, XCP, according to the

simulations, does not encounter a severe challenge imposed by transient overshoot.

In contrast, EMKC has the worst equilibrium properties since its combined stationary

rate y∗ = C+Nα/β is strictly above the bottleneck capacity C. Moreover, this packet
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Fig. 29. Transient overshoot of RCP (α = 0.4 and β = 1).

loss scales linearly with the number of connections and becomes worse if one increases

α to accelerate the convergence rate to fairness.

EMKC’s problem of steady-state packet loss can be overcome by AVQ; however,

the latter may exhibits transient overshoot before settling in its max-min fair station-

ary state. To understand this effect in detail, we repeat the simulation in topology

T1 and increase α to 2 mb/s. As Fig. 28(a) shows, the instantaneous rate reaches 13

mb/s and the transient overshoot lasts for over 50 seconds. Moreover, this situation

becomes even worse when the number of competing flows increases. As seen in Fig.

28(b), where 20 EMKC-AVQ users share the same 10-mb/s link in T1, the transient

overshoot reaches 400% and lasts for tens of seconds. This situation is a consequence

of the steady-state dynamics inherited from EMKC and the same term Nα/β re-

sponsible for the overshoot, which is a linear function of the number of flows N and

parameter α. This leads to a similar tradeoff between packet loss and convergence

rate as in EMKC.

As mentioned in Section 3.3, RCP also suffers transient overshoot. This is be-
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cause when a new flow joins the network, it simply sets its sending rate to the current

rate rl(t) at the bottleneck link l. For a link that is already in its equilibrium (i.e.,

yl(t) = Cl), this immediately leads to overflow of the link and a sudden surge in

the queue size (relevant plots are omitted for brevity). In addition, the amount of

overshoot is proportional to the number of arriving flows and its effect becomes pro-

gressively severe when many flows simultaneously join the system. To better see this,

consider the following simulation, where a single link, whose capacity is 100 mb/s,

RTT is 100 ms, and buffer size equals the bandwidth-delay product (i.e., 1.25 MB), is

shared by 51 RCP flows with homogeneous RTT. For ease of reference, we denote this

topology by T5. One flow starts first and the other fifty flows join after 30 seconds.

We monitor at the bottleneck link the packet loss rate, which is calculated using

the ratio between the numbers of dropped and received packets every link’s control

interval, i.e., min(dl, 10 ms). As illustrated in Fig. 29(a), when the fifty flows arrive

into the system, the combined incoming rate at the bottleneck immediately overflows

the router buffer, resulting in transient packet loss as high as 98% and up to 66

MB dropped data. Thus, in highly dynamic scenarios, such as the Internet, where

multiple flows frequently join and leave the network, RCP may experience significant

packet loss (unless unrealistically large buffers are provisioned inside routers). This

situation is demonstrated in the simulation given in Fig. 29(b), in which every 10

seconds ten RCP flows arrive at a 100-mb/s link and each flow has a random lifetime

between 1 and 15 seconds. As seen from the figure, the bottleneck link suffers periodic

packet loss high as 72%. This packet loss may further lead to drastic rate reductions,5

retransmissions, slow convergence, and even instability.

5Note that RCP does not specify how flows react to packet loss or recover dropped
packets ([26] uses very large buffers for all simulations to prevent packet loss). How-
ever, a common technique [56] is to use TCP’s recovery mechanism (i.e., reducing
rate in half) until all lost packets are recovered.
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4 Max-Min Bottleneck Assignment

This section highlights the importance of analyzing discontinuous stability of max-

min congestion control and explains some of the phenomena observed in the previous

section.

4.1 General Stability Considerations

One of the most overlooked issues in the analysis of max-min feedback systems is insta-

bility arising from bottleneck oscillations and/or inconsistent bottleneck assignment

(i.e., when flows incorrectly infer their bottlenecks). Analysis of max-min stability in

multi-router networks is difficult (if not intractable) within the literature of modern

congestion control as it involves non-linear systems that may switch between station-

ary points corresponding to different bottleneck assignments. Traditional switching

theory [24] usually assumes that 1) the stationary point is preserved between the

discontinuous jumps and 2) each subsystem corresponding to a fixed bottleneck as-

signment has only one stationary point. Under max-min feedback, both conditions

may be violated since not only does each subsystem have a different stationary point,

but it also may exhibit multiple equilibrium states or be unstable altogether.

Due to the complexity of the problem, the goal of this section is not to rigorously

derive max-min stability of the existing methods, but to uncover the conditions that

lead to instability and understand how to design stable max-min controllers in the

future.

4.2 Why Bottleneck Assignment Is Important

We start with the following definition of bottleneck.

Definition 6 (Bertsekas-Gallager [9]). A link is a bottleneck of flow r, if it is fully



111

utilized and the rate of flow r is no less than that of any other flow accessing the link.

Under max-min feedback [56, 115], it is usually assumed that each flow xr has a

fixed bottleneck br, which does not change over time. It is further assumed that flows

not bottlenecked by br do not contribute to feedback pr generated by br. In multi-link

topologies, this is certainly not the case since each flow xs bottlenecked at some other

link and passing through br clearly affects the value of pr and thus the rate of flow

xr. If it also happens that xr in turn affects xs at bottleneck bs, the system forms a

closed loop that may become unstable. We study the formation of such loops in the

context of MKC (Max-min Kelly Control) [115]; however, a similar question arises in

other max-min feedback systems.

Assume that N users share M links in the network and suppose that R ∈ RN×M

is the routing matrix of end-flows (i.e., Rrl = 1 if user r uses link l and 0 otherwise).

Similarly, we define bottleneck assignment B ∈ RN×M of this multi-link system as an

N ×M matrix, where entry Brl = 1 if user r is bottlenecked at link l and Brl = 0

otherwise. Define br to be the bottleneck resource of user r and re-write the general

form of MKC [115] as follows:

xr(n) =
(
1− βpr(n−D←

r,br
)
)
xr(n−Dr) + α, (131)

where

pr(n) = p
( N∑

s=1

Rsbrxs(n−D→
s,br

)
)
. (132)

Notice that the sum in (132) includes the users bottlenecked by br (which we

call responsive with respect to br), as well as any additional flows (which we call

unresponsive) passing through the link. Even though each flow’s feedback in (131)-

(132) is still delayed by only one backward delay D←
r = D←

r,br
, each flow s may affect

other flows through as many as M forward delays D→
s,1, . . . , D

→
s,M . This presents
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Fig. 30. Example that shows the effect of unresponsive flows.

a problem in stability analysis since the z-transform of the delay matrix and the

Jacobian of the system are no longer block-diagonal and the proof in [115] does not

hold.

Analysis below uses notation xs → xr to represent the fact that an unresponsive

flow xs passes through bottleneck br and affects flow xr through feedback pr(n).

For the example in Fig. 30(a) and max-min assignment of bottlenecks, we have

b1 = 1, b2 = b3 = 2, b4 = 3 and the corresponding dependency graph is shown in Fig.

30(b).

Lemma 17. For any system with max-min feedback that can stabilize its bottleneck

assignment b1, . . . , bN , the resulting dependency graph of (131)-(132) is acyclic.

Proof. Suppose that the bottleneck assignment does not change over time and the

dependency graph has a directed cycle xi1 → . . . → xik → xi1 for some k ≥ 2.

Notice that since flow xi1 is unresponsive with respect to flow xi2 , its stationary

feedback p∗i1 must be larger than p∗i2 (otherwise, xi1 would have switched its bottleneck

to bi2). Generalizing this to the entire cycle, we immediately get a contradiction

p∗i1 > p∗i2 > . . . > p∗ik > p∗i1 . Assuming a consistent tie-breaking rule obeyed by all

flows, the above argument applies to cases where multiple links have equal steady-
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state loss.

Generalizing this lemma, we define a bottleneck assignment as consistent if it

has an acyclic dependency graph. Then, we have the following result.

Lemma 18. System (131)-(132) with a consistent bottleneck assignment b1, . . . , bN

contains at least one router that has no unresponsive flows.

Proof. Assume in contradiction that each link l has some unresponsive flow ul passing

through it and that this situation persists over time. Take the first unresponsive flow

u1 and notice that it is affected by some other unresponsive flow, which we label u2,

passing through u1’s bottleneck bu1 . This leads to u1 ← u2. Repeating this reasoning

for u2, we get u1 ← u2 ← u3, for some unresponsive flow u3 at bottleneck bu2 . This

process continues and creates an infinite sequence u1 ← u2 ← u3 ← . . . Since the

number of unresponsive flows is finite, there is a point k when the sequence repeats

itself (i.e., uk = uj, j < k) and we obtain a cycle in the dependency graph.

Equipped with Lemmas 17 and 18, we next prove MKC’s stability under any

time-invariant bottleneck assignment.

Theorem 14. Under any bottleneck assignment B that does not change over time,

MKC (131)-(132) is locally asymptotically stable regardless of delay if and only if

for each link l, the subsystem composed of link l and flows {xr|Brl = 1} is stable

regardless of delay.

Proof. Since bottlenecks do not shift and MKC relies on max-min feedback, Lemma 17

implies that the dependency graph is acyclic and bottleneck assignment is consistent.

Using Lemma 18, there exists at least one link l1 with no unresponsive flows. Then,

it follows that all flows passing through l1 are bottlenecked by l1 and their stability

is independent of the dynamics of the remaining flows. After the users bottlenecked
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by l1 converge to their stationary rates, we can remove l1 and all of its (constant-

rate) flows from the system. The new network still exhibits max-min bottleneck

assignment and thus contains some link l2 that has no unresponsive flows. Repeating

this argument for all links l1, . . . , lM , we obtain that the local dynamics of the entire

system can be viewed as a system of linear block-diagonal equations with matrix A =

diag(A1, . . . , AM), where Al ∈ RNl×Nl is the Jacobian matrix of Nl flows bottlenecked

at link l (
∑M

l=1 Nl = N). Thus, we arrive at the conclusion that the entire system

achieves delay-independent stability if and only if the individual bottlenecks do.

While the general issue of bottleneck oscillation still remains open, this section

shows that as long as flows can properly select their most-congested links and avoid

dependency cycles, the dynamics of multi-link systems are in fact described by those

of individual links. Also notice that if flows converge their feedback monotonically

for any bottleneck assignment, all cycles in the dependency graph are self-correcting

(i.e., they eventually lead to a contradiction similar to the one in Lemma 17). This

is schematically shown in Fig. 31(a), where two flows x1 and x2 sample monotonic

feedback p1 and p2 from two links common to both flows. While their initial inference

of bottlenecks may be inconsistent, the situation is eventually self-correcting and both

flows agree that feedback p2 should be applied to their equations.

On the other hand, when feedback oscillates there is a possibility of having a

directed cycle xi1 → . . . → xik → xi1 that persists over time. This can be shown

using the example of two flows. Suppose cycle x1 → x2 → x1 exists and is not self-

correcting. This implies that flow x2 affects x1 at bottleneck b1 and x1 affects x2 at link

b2. Since the two flows sample feedback p1 and p2 from their respective bottlenecks

at different times, the apparent contradiction p1 > p2 > p1 is actually a perfectly

legitimate set of two independent conditions: p1(n1) > p2(n1) and p2(n2) > p1(n2) for
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Fig. 31. Types of multi-router feedback.

some time instants n1 6= n2. Therefore, as long as p1 and p2 oscillate, it is possible

that x1 at time n1 infers that p1 > p2, while x2 at time n2 infers the opposite (i.e.,

p2 > p1). An example of this is illustrated in Fig. 31(b), where both p1 and p2 are

individually (i.e., without the max function) stable, but create a cyclic dependency

graph with potential for instability.

As the XCP examples show, non-monotonic feedback allows flows to continuously

switch between bottlenecks and maintain persistent cycles in the dependency graph,

which eventually leads to instability. It thus becomes imperative that flows correctly

choose their bottlenecks, which is what EMKC achieves in practice due to its more

predictable (i.e., monotonic) evolution of feedback at each link. We summarize the

conclusion of this section in the following corollary.

Corollary 7. Max-min congestion control that converges its feedback pl(n) at each

link l monotonically to some stationary point, regardless of the bottleneck assignment,

is stable over multi-link topologies if and only if the corresponding bottlenecks are.

Note that EMKC in general does not satisfy this requirement (i.e., there are delay

patterns that create small disturbances to the ideal convergence behavior); however,

out of the studied methods, it has the best control over delay and exhibits dynamics

that can be deemed monotonic in many practical cases.
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5 JetMax

In this section, we present JetMax and provide an analytical study of its properties.

The next section discusses implementation and performance details of this protocol.

5.1 Design

Consider link l at time n. Assume that Nl(n) is the number of responsive flows in

this router at time n and wl(n) is their combined rate. Also, assume that ul(n) =

yl(n)−wl(n) is the aggregate rate of unresponsive flows at the router and 0 < γl ≤ 1

is its desired utilization level. The main idea of JetMax is to equally divide the

residual bandwidth γlCl − ul(n) between all flows bottlenecked by the router and

then provide this average rate to all responsive users. Knowing ul(n) and Nl(n)

(methods of computing these are discussed later in Sections 6.1 and 6.2), the router

periodically (i.e., every ∆l time units) calculates and feeds back to the senders the

fair rate gl(n):

gl(n) =
γlCl − ul(n)

Nl(n)
. (133)

which is later utilized by end-users in their control equations:

xr(n) = (1− τ)xr(n−Dr) + τgl(n−D←
r ), (134)

where constant τ > 0. Clearly, xr(n) is in fact an exponential weighted moving

average of gl(n) with weight τ . An alternative interpretation of (134) can be obtained

by rewriting it as xr(n) = xr(n − Dr) − τ(xr(n − Dr) − gl(n − D←
r )). In this view,

equation (134) is actually an Integral controller of signal xr(n) with a time-varying

set point gl(n−D←
r ). Note that utilizing classical PID control theory, Blanchini et al.

[14] proposed another method that is robust to delay. However, these two schemes

are developed based on different theoretical foundations. In addition, in contrast to
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this method, JetMax does not monitor queue length in the router or estimate the

maximum RTT to achieve stability.

Besides the end-user equation, another important issue is the bottleneck switch-

ing mechanism. A straightforward solution is that each user chooses the link along its

path with the smallest gl(n) as the bottleneck resource. However, as the bottleneck

assignment shifts (i.e., flows migrate from one link to another), both Nl(n) and ul(n)

change accordingly. Thus, the value of gl(n) experiences sudden changes, making

the system susceptible to transient oscillations during bottleneck switchings. We also

observe this phenomenon in simulations and omit the corresponding plots for brevity.

This issue can be overcome by replacing gl(n) with packet loss rate pl(n), which is a

function of the combined ingress rate yl(n) = wl(n) + ul(n), i.e.,

pl(n) =
yl(n)− γlCl

yl(n)
. (135)

Then, the bottleneck link of a given flow is the one with the largest pl(n) in the

path. Since yl(n) remains the same immediately after a bottleneck shift and so does

pl(n), JetMax, as shown in both ns2 simulations (Section 7) and Linux experiments

(Section 8), exhibits smooth transition during bottleneck switching. We note that

JetMax is a combined framework, which employs a rate-based scheme at end-users

to adjust their sending rates and queue-based method inside routers to decide the

bottleneck router. We refer interested readers to [23] for an in-depth discussion of

the relationship between rate- and queue-based congestion controls.

In the rest of this section, we prove JetMax’s delay-independent stability, max-

min fairness in the steady state, and ideal convergence speed to stationarity.

5.2 Delay-Independent Stability

We start by deriving the stationary rate of each flow.
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Lemma 19. Given that flow r is bottlenecked by a resource l of capacity Cl together

with Nl(n)− 1 other flows, its stationary sending rate is x∗r = (γlCl − u∗l )/N
∗
l , where

u∗l and N∗
l are the steady-state values of ul(n) and Nl(n) at link l.

In the steady state, we have xr(n) = xr(n−Dr) = x∗r and ul(n) = u∗l . Combining

this with JetMax’s end-user equation (134) immediately yields x∗r = (γlCl − u∗l )/N
∗
l .

We next show that, under any consistent bottleneck assignment, stability analysis

of system (133)-(134) can be reduced to that of EMKC.

Theorem 15. Under any consistent bottleneck assignment, JetMax (133)-(134) is

stable regardless of delay if and only if 0 < τ < 2.

Proof. First, consider an undelayed JetMax system with a single link l. Since the

bottleneck assignment is given, Nl(n) is fixed, i.e., Nl(n) = N∗
l . Then, Jacobian

matrix Al of the subsystem corresponding to link l is simply Al = diag(1− τ), which

is stable if and only if ρ(Al) = |1 − τ | < 1, or in other words, 0 < τ < 2. Next,

combining the fact that Al is symmetric and using Theorem 1 in [115], we obtain that

single-link JetMax is stable for all types of directional and time-varying delay under

the same condition on τ . Finally, invoking Theorem 14, we arrive at the conclusion

that JetMax achieves delay-independent stability in any multi-link network with a

consistent bottleneck assignment if and only if its individual bottlenecks do, i.e.,

0 < τ < 2.

It is worth noting that in the above proof and the following analysis of JetMax’s

convergence properties, Nl(n) is assumed to be known to the router. This assumption

is realized by the estimation technique described in Section 6.1. As demonstrated later

in the chapter, this proposed method is very accurate in both ns2 simulations and

Linux experiments.
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Fig. 32. Spectral radius ρ(A) of system (133)-(134) with τ = 0.6 under 2000 random

bottleneck assignments.

To better understand Theorem 15, we set τ = 0.6 and generate 2000 random

bottleneck assignments in random topologies with 10 routers and 50 flows. For each

case, we decide whether the topology is consistent or not by applying DFS (depth-first

search) to the corresponding dependency graph. As predicted by Theorem 15, the

system under any consistent bottleneck assignment is stable and has a spectral radius

ρ(A) = |1 − τ | = 0.4, which perfectly aligns with the simulation result illustrated in

Fig. 32(a). At the same time, as Fig. 32(b) demonstrates, ρ(A) under inconsistent

bottleneck assignments may exceed 1, in which case even the undelayed system is

unstable.

5.3 Max-Min Fairness

From Lemma 19, notice that the stationary packet loss p∗l of all congested links is

zero. Thus, if there are multiple links with zero packet loss in the path of a flow r,

it will be uncertain which link should be chosen such that the resulting bottleneck
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assignment is max-min fair. To deal with this situation, we introduce a simple tie-

breaking rule based on the average rate of the responsive flows at each link. Assuming

that several links tie in zero packet loss, the user prefers the link with the smallest

value of gl = (γlCl − ul)/Nl, i.e., it sets

br = arg min
l∈r:p∗l =0

gl(n). (136)

To maintain stability, switching based on the largest packet loss (135) may be

performed at any time n; however, that based on (136) is conducted only when flow r’s

sending rate reaches the ε-neighborhood of stationarity under the current bottleneck

assignment. We next prove max-min fairness of the resulting system.

Theorem 16. The stationary resource allocation of JetMax (134)-(136) is max-min

fair.

Proof. Suppose in contradiction that JetMax is not max-min fair in its steady state.

Then, using max-min results in Bertsekas-Gallager [9, pp. 527], there must exist flow

r that is not bottlenecked by any link in its path. Let l ∈ r be the link that provides

feedback to flow r. Then, from Lemma 19 we must have that link l is fully utilized

and stationary rate x∗r = (γlCl − u∗l )/N
∗
l . According to Definition 6, flow r is not

bottlenecked by this link if and only if there exists a flow s accessing l such that

x∗r < x∗s. (137)

Let flow s be constrained by link k where k 6= l. Then, we have x∗s = (γkCk −
u∗k)/N

∗
k , which translates (137) into

γlCl − u∗l
N∗

l

<
γkCk − u∗k

N∗
k

. (138)

According to (136), however, the last inequality must force the bottleneck of
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flow s to shift from link k to l, thus contradicting the assumption that the system

has reached stationarity.

5.4 Capacity-Independent Convergence Rate

For the analysis of convergence rate, we focus on single-link behavior of JetMax as

it generally serves as a good indicator of multi-link performance of this method. To

formalize the metric “convergence rate,” consider the following definition.

Definition 7. A protocol converges to (1 − ε)-efficiency in ne steps if the system

starts with y(0) = 0 and ne is the smallest integer satisfying

∀n ≥ ne :
y(n)

γC
≥ 1− ε (139)

Similarly, (1− ε)-fairness is reached in nf steps if the system starts in the maximally

unfair state (i.e., ∃r, xr(0) = γC and ∀i 6= r, xi(0) = 0) and nf is the smallest integer

satisfying

∀n ≥ nf :
|xr(n)− x∗r|

x∗r
≤ ε, ∀r. (140)

The following result derives capacity-independent convergence time of JetMax.

Theorem 17. On a single link, JetMax reaches both (1 − ε)-efficiency and (1 − ε)-

fairness in dlog|1−τ | εe RTTs.

Proof. Without loss of generality, assume homogeneous feedback delay for each flow,

consider any consistent bottleneck assignment, and focus on link l. Next, combine

the sending rate (134) of all flows bottlenecked by l into the aggregate rate yl(n) =
∑

r∈l xr(n). Solving the resulting recurrence on yl(n), we obtain that the combined

rate at time n can be written as

y(n) = (1− τ)n/D(y(0)− γC) + γC, (141)
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where D is the RTT of end-flows and y(0) = 0 is the initial total rate of all flows.

Combining the last equation with (139) and writing ne in terms of RTT steps, we get

|1− τ |ne ≤ ε, which yields

ne = dlog|1−τ | εe. (142)

Next, assume that the system starts in the maximally unfair state (i.e., one flow

takes all bandwidth) and that unresponsive flows are stabilized. Therefore, controller

(134) becomes

xr(n) = (1− τ)xr(n−Dr)− τxr(n−Dr). (143)

Solving this recurrence, we get

xr(n) = (1− τ)n/Dr(x(0)− x∗r) + x∗r, (144)

which shrinks to (1−ε)-fairness in nf = dlog|1−τ | εe RTT steps following the technique

we used to obtain (142).

This theorem indicates that JetMax reaches full utilization and converges to

fairness over links of any capacity in the same number of steps (verification of this

result using simulations and experiments follows later). Also observe from (141) and

(144) that 0 < τ < 1 is required to guarantee monotonicity of the controller. Thus,

all JetMax experiments in this chapter use τ = 0.6 unless otherwise specified.

Next, we provide implementation details of JetMax and evaluate its performance

via both ns2 simulations and Linux experiments.
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6 Implementation

6.1 Estimating Number of Flows

The first issue encountered by a JetMax router l is how to estimate the current number

of responsive flows Nl(n). Dynamic tracking of active flow population Nl(n) has been

actively studied in ATM networks [6, 36, 104]. Specifically, as suggested in [6, 36],

Nl(n) can be simply approximated by the ratio between wl(n) and gl(n). However,

similar to RCP discussed in Section 3.8, this method may result in significant transient

overshoot of the bottleneck link when new flows join the system. Another scheme

introduced in [104] is in spirit similar to our method presented below. However, it

assumes a constant cell (packet) size for all connections and is not suitable for the

current Internet where packet sizes may be different between flows and over time.

Our solution to this problem is based on the following observations. For a given

flow r, assume that δk is the inter-packet departure delay between packets k and

k + 1 at the source and δ′k is the corresponding inter-packet arrival delay at link l.

Fig. 33(a) illustrates this notation and shows that the router’s control interval ∆l

generally starts and ends in-between two arriving packets. We therefore have the

following relationship between the router’s control interval and the combined delay

of all packets from flow r observed during the interval

k+m−1∑

i=k+1

δ′i ≤ ∆l ≤
k+m∑

i=k

δ′i, (145)

where k+m is the packet that arrives immediately after the end of this interval. This

further yields

lim
∆l→∞

∑k+m
i=k δ′i
∆l

= lim
∆l→∞

∑k+m−1
i=k+1 δ′i
∆l

= 1. (146)

Generalizing this relation to all Nl flows bottlenecked by l and taking the sum-
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Fig. 33. (a) The relationship between control interval ∆l and inter-packet interval δk;

(b) JetMax (τ = 0.6 and γ = 1) with the naive bottleneck switching scheme

in T1.

mation of inter-packet delays over all such flows, we have

lim
∆l→∞

∑Nl

r=1

∑k+m
i=k δ′i

∆l

= Nl. (147)

Even though in general δk does not equal to δ′k, sums of these two metrics

over a large number of packets are asymptotically equal, i.e., limm→∞
∑k+m

i=k δi =

limm→∞
∑k+m

i=k δ′i. This, combined with (147), leads to

lim
∆l→∞

∑Nl

r=1

∑k+m
i=k δi

∆l

= Nl. (148)

Using the last equation, we next develop a mechanism for estimating Nl. Each

user r includes in every packet k its inter-packet departure delay δk = sk/xr(n), where

sk is the size of the packet and xr(n) is the current sending rate. The router then

sums up this field over all packets of all responsive flows and averages this value over

interval ∆l. From (148), we have that the value Ñl =
∑Nl

r=1

∑m
i=0 δk+i/∆l converges

to the true number of flows Nl as ∆l grows to infinity. Note that this method does
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not maintain state information about individual flows and requires only one addition

per arriving packet and one division per interval ∆l.

We finally remark that choosing a large interval ∆l improves accuracy of esti-

mating Nl, but may reduce the router’s responsiveness to dynamics of the incoming

traffic. In practice, the above scheme works very well with small ∆l (say, 100 ms).

Thus, throughout the chapter we set ∆l = 100 ms unless otherwise specified. As

demonstrated later via ns2 simulations and Linux experiments, this mechanism is

very effective and delivers accurate estimations of Nl in diverse scenarios (including

those with “mice” traffic and random packet loss).

6.2 Maintaining Membership of Flows

JetMax relies on the existence of an effective mechanism for the routers to identify its

responsive flows. To implement this functionality, we allocate three one-byte router-

ID fields in the packet header: RT , RC , and RS. All IDs are in terms of hop count

from the source. The first field RT records the router ID of the true (i.e., currently

known to the source) bottleneck link br for a given flow r; the second field carries the

hop number of the packet (which we call the current router-ID) and is incremented

by each router; and the last field contains the suggested resource ID that is modified

by the routers that perceive their congestion to be higher than that experienced by

the flow at the preceding routers.

Upon each packet arrival, link l increments RC by one and then examines its

local packet loss pl(n) and the one carried in the packet. If both packet-loss values

are zero, the router checks if its local average rate gl(n) is less than the one carried

in the header. If either case is true, the router overwrites the packet loss and average

rate in the packet header and additionally sets the packet’s field RS to the value of

RC obtained from the header. At the sending side, if the suggested router RS carried
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in the acknowledgment is different from the true router RT , the source notices that a

bottleneck switch is suggested and initiates a switch to RS.

Calculations of responsive rate wl(n) and unresponsive rate ul(n) at router l can

also be easily implemented. At the beginning of each control interval ∆l, router l resets

wl(n) and ul(n) to zero. For each incoming packets, the router, after incrementing

RC by one, checks whether RC and RT are equal. If they are, the packet is counted

as responsive and its size s is added to wl(n); otherwise, the packet is considered

unresponsive and its size is added to ul(n). Then, at the end of interval ∆l, the

router obtains the responsive and unresponsive rates by normalizing wl(n) and ul(n)

by ∆l. Clearly, the combined incoming rate yl(n) is simply wl(n) + ul(n).

6.3 Managing Bottleneck Switching

The above scheme in itself is insufficient to eliminate all undesirable transient effects

associated with bottleneck switching. To demonstrate this, we simulate the algo-

rithms developed so far in ns2 using the single-link topology T1, where we change the

join order of users to highlight some of the issues arising in the naive implementation

of JetMax. Specifically, flows x2 and x1 join at time 0 and 30 seconds, and experience

round-trip delay 2020 and 220 ms, respectively. The simulation result is plotted in

Fig. 33(b), in which x2 initially overflows the link’s capacity by 500% and then main-

tains non-zero packet loss for over 15 seconds. As we discuss below, this phenomenon

arises as the result of improper management of bottleneck switching.

For the illustration in Fig. 34(a) that explains this situation, assume that user

r changes its bottleneck to link l at time n and the first packet carrying this new

membership arrives into link l at time t = n + D→
r,l, which is in the middle of the

router’s control interval ∆l. Notice that flow r is counted as unresponsive prior to

time t and responsive after that. This inconsistent inference of membership results in
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Fig. 34. (a) The scenario where the bottleneck switching occurs in the middle of the

router’s control interval; (b) JetMax (τ = 0.6 and γ = 1) with the proper

bottleneck switching scheme in T1.

an incorrect estimation of both Nl and ul(n). Consequently, the resulting feedback

does not reflect the actual situation inside the router and leads to oscillations in the

transient phase.

Fortunately, this inconsistency exists only in the first interval ∆l after the switch.

Thus, to properly manage bottleneck switching, the end-user simply ignores the first

non-duplicate ACK after each switch and reacts to the following ones as shown in

Fig. 34(a). We can also see from the figure that, using this mechanism, the end-user

delays its response to ACKs by 1 RTT and 1 + k (where 0 ≤ k ≤ 1) ∆l after each

switching. Simulation of the resulting JetMax is illustrated in Fig. 34(b), in which

the initial “spike” present in Fig. 33(b) is eliminated and x2 monotonically converges

to efficiency. However, notice in the figure that JetMax exhibits transient packet loss

reaching as high as 33% when flow x1 joins the network. We explain and resolve this

issue in the next subsection.
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6.4 Eliminating Transient Packet Loss

The reason of the transient packet loss shown in Fig. 34(b) lies in the fact that flow

x2 with a large RTT does not release bandwidth quickly enough and is not aware of

the presence of any competing flows until after the overshoot has happened.

Proper implementation of JetMax that avoids this issue relies on the concept of

“proposed rate.” Suppose a JetMax flow decides to increase its sending rate; however,

it does not know if the other flows in the system have released (or are planning to

release) enough bandwidth for this increase not to cause packet loss. To resolve

this uncertainty, the flow that plans to increase its rate first “proposes” the new

rate in its packet header and waits for the router’s approval/rejection decision based

on the aggregate proposed rate at the router. Flows not interested in rate increase

continuously propose their current sending rates and ignore the decisions they may be

receiving. Furthermore, flows planning to decrease their rates can do so immediately

as such actions can only reduce the traffic at the bottleneck and improve the fairness

of the system.

This strategy can be easily realized in practice. Assuming that the k-th packet

transmitted by the source has packet size sk bits, the flow can convey its proposed

rate x+
r (n) to the router by including a virtual packet size s+

k in each header such

that

s+
k = sk

x+
r (n)

xr(n)
. (149)

For each incoming packet during interval ∆l, the router increments w+
l (n) and u+

l (n)

by virtual packet size s+
k based on the membership of the packet. At the end of

each interval, the router normalizes w+
l (n) and u+

l (n) by interval duration ∆l and

gets the responsive and unresponsive proposed rates. The combined proposed rate

y+
l (n) = w+

l (n) + u+
l (n) =

∑
r∈l x

+
r (n). Then, the router accepts y+

l (n) if it is less



129

0 50 100
0

5

10

15

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

(a)

z 
Source port # Dest port # 

Flags 
 

   

User sequence # 

Packet loss:  
 

Fair rate:  
 

Proposed size:  
 

Inter-packet interval:                    

32 bits 

 

   

 

 

 

(b)

Fig. 35. (a) JetMax (τ = 0.6 and γ = 1) with proposed rate in T1; (b) format of the

JetMax packet header.

than γlCl and decline it otherwise. Note that when computing gl(n) in (133) and

pl(n) in (135) at the end of each control interval, the router simply replaces ul(n) and

yl(n) with their corresponding proposed values u+
l (n) and y+

l (n):

p+
l (n) = 1− γlCl

y+
l (n)

g+
l (n) =

γlCl − u+
l (n)

Nl

. (150)

Clearly, no extra latency is introduced by this mechanism and each approved rate

adjustment takes exactly one RTT (instead of two RTTs if (133)-(135) were based on

actual rates). The result of this implementation is shown in Fig. 35(a), in which the

system never overflows the link and converges to fairness monotonically.

6.5 Calculating Reference Rate

Intuitively, when applying control equation (134), the end-user can directly use the

most recently proposed rate x+
r (n−Dr) (if approved by the router) as the next actual
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rate xr(n) and apply x+
r (n − Dr) to computation of the next proposed rate x+

r (n).

However, this may incur problems when bottleneck switching occurs in the middle

of the bottleneck router’s control interval. In this case, the average incoming rate

computed by the router is a function of previous and current proposed rates. As

a consequence, the router may erroneously approve a proposed rate that is actually

above the link’s capacity or reject one even when the link is under-utilized, both of

which may further lead to transient rate, or even bottleneck, oscillations. Leveraging

the fact that this inconsistency exists only in the first control interval after the switch,

we solve this problem by letting the end-user ignore the first non-duplicate ACK

after the switch and respond to the remaining ones. Also note that, analogous to the

discussion in Section 6.3, time for each rate adjustment becomes RTT + (1 + k)∆l

where 0 ≤ k ≤ 1.

6.6 Packet Format

The header format of a JetMax packet is illustrated in Fig. 35(b). Besides the two-

byte fields for port numbers, we allocate a one-byte field to each of flags, RT , RC ,

and RS. Then, we use four-byte numbers to record the user sequence numbers to

deal with out-of-order packets, packet loss p+
l , fair rate g+

l , user-proposed packet size

s+
k , and the inter-packet interval δk = sk/xr(n). Note that only δk uses the actual

sending rate of the flow.

Thus, the total size of a JetMax packet header is 28 bytes, which is 4 bytes

smaller than XCP’s 32 (12 XCP-specific bytes and 20 bytes of the TCP header). In

addition, JetMax’s per-packet processing inside the router takes only three additions

for responsive flows (to calculate RC , w+
l , and Nl) and two additions for unresponsive

flows (to compute RC and u+
l ), as opposed to XCP’s three multiplications and six

additions [56].
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7 Simulations

7.1 Behavior in T2, T3, T4, and T5

We first repeat the ns2 simulations that earlier presented stability and equilibrium

problems to existing methods and then examine how JetMax handles additional sce-

narios. Simulation code used in this work is available in [48].

Performance of JetMax in T2, T3, T4, and T5 is shown in Fig. 36, in which

the protocol demonstrates monotonic convergence, max-min allocation of bottleneck

resource in the equilibrium, effective handling of bottleneck selection, and loss-free

operation in both the transient phase and steady state. Numerical data from the

simulations also show that the system never overshoots the link’s capacity or loses any

packets. Simulations in a dozen of additional (more complex) multi-link topologies

combined with both fixed and random feedback delay produce similar results and are

omitted for brevity. It is also worthwhile to note that the flat regions in Fig. 36(a)

when both flows start consume three RTTs (i.e., 2.6 seconds) and are necessary for

the flows to deal with initial router assignment and bottleneck selection.
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Fig. 36. Performance of JetMax (τ = 0.6 and γ = 1) in ns2.
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7.2 Effect of Mice Traffic

All of our simulations so far have been performed in environments with long-lived

flows. However, the real Internet traffic is composed of a mixture of connections with

a wide range of transfer sizes, packet sizes, and RTTs [34]. Thus, to obtain a better

understanding of JetMax, we next test it in more diverse scenarios.

Toward this end, we first consider a simple “dumb bell” topology, where 2 long

and 500 short JetMax flows share a single link of capacity 100 mb/s.The inter-arrival

time of short flows follows an exponential distribution with mean λ = 0.2 seconds

and the duration of each flow is drawn from a log-normal distribution [83] with mean

ω = 10 seconds. From basic queuing theory, we can infer that the expected number

of active short flows at any instant is L = ω/λ = 50, while the instantaneous flow

population is bursty as illustrated in Fig. 37(a). Moreover, we set the packet sizes

of the short flows to be uniformly distributed in [800, 1300] bytes and their RTTs are

selected uniformly randomly in [40, 1040] ms.
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Fig. 37. Single-link performance of JetMax (τ = 0.6 and γ = 1) in the presence of

mice flows.
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As seen in Fig. 37(b), one long flow starts first and quickly reaches link utiliza-

tion. After the second long flow joins 5 seconds later, the first flow is forced to release

some of its bandwidth, allowing both flows to converge to the fair share of the link’s

capacity (i.e., 50 mb/s). At time 15 seconds, mice flows start joining and leaving

the network. Since on average there are 50 short and 2 long flows in the system, the

expected fair rate is 100/52 = 1.92 mb/s per flow. This prediction is confirmed in Fig.

37(b), where the sending rates of the long flows remain within [1.7, 2.0] mb/s during

the period between [30, 120] seconds. It is worth noting that the small rate oscilla-

tions during this interval are not due to instability, but the time-varying number of

mice flows and changes to the stationary point of the system.

To understand the throughput obtained by the short flows, Fig. 37(c) shows the

average rate of mice traffic. As seen in the figure, the short flows also manage to obtain

their fair share (despite the short duration) and achieve rates close to the expected

1.92 mb/s. This also confirms the effectiveness of the JetMax router in estimating the

number of locally congested flows Nl. As the number of active connections decreases

after time 120 seconds, sending rates of the remaining short flows climb up and take

over the bandwidth of the departed flows.

We also plot the queue length distribution of the bottleneck link in Fig. 37(d),

in which we sample the instantaneous queue size every 10 ms. The bin size of the

histogram is one packet. As can be seen from the plot, for 64% of the time the queue

has less than two packets and 99% of the time less than 10 packets. Thus, JetMax

is successful in maintaining small buffers and, as a consequence, does not lose any

packets or increase queuing delays in practice.

We next test JetMax’s multi-link performance in the presence of mice flows.

Consider a “parking lot” topology where a long flow traverses two links R1 and R2 of

capacities 400 and 100 mb/s, each of which is accessed by 500 short flows. In addition,
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Fig. 38. Multi-link performance of a long JetMax flow (τ = 0.6 and γ = 1) in the

presence of mice traffic.

we set ∆l to be uniformly random in [100, 300] ms to test JetMax’s performance when

routers have heterogeneous control intervals. As shown in Fig. 38(b), the long flow

starts first and converges to the capacity of R2. Short flows accessing R1 start joining

the system after 15 seconds. Since R1 becomes more congested than R2, the long flow

switches the bottleneck to R1 and maintains its sending rate within the neighborhood

of the average fair rate 400/52 = 7.7 mb/s. At time 80 seconds, 500 short flows start

arriving at R2. This compels the long flow to change its bottleneck to R2 and converge

to the new fair rate. Finally, after all mice flows terminate, the long flow re-stabilizes

its sending rate at the capacity of R2. It can also be seen from Fig. 38(b) that the

queue length of link R1 is kept very small.

7.3 Effect of Random Packet Drops

In this subsection, we examine the performance of JetMax in lossy environments (e.g.,

wireless networks) with random non-congestion-related packet drops. We first note
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that JetMax is not sensitive to packet loss in the return path since out of the ACKs

generated in the same ∆l interval, only one is utilized by the end-user to adjust its

sending rate and all others are ignored since they carry duplicate information. We

verified this in ns2 simulations, where the performance of JetMax in T1 with 90%

packet loss in its return path was almost identical to that in the loss-free environment

previously shown in Fig. 35(a). We omit the plot of this simulation for brevity and

focus on more interesting cases of forward-path loss.

To better see the effect of random loss in the forward path, consider the ns2

simulation illustrated in Fig. 39(a), where we use T1 and create 10% and 20% packet

loss in the forward paths of flows x1 and x2, respectively. As shown in the figure,

both fairness and stability are not affected by the forward-path random loss; however,

the stationary rates are. To explain this phenomenon, assume 1 − αr,l is the total

(long-term average) packet loss suffered by flow r along its path to router l. Using

Lemma 19, it is not difficult to obtain that

x∗r =
γlCl − u∗l

αlNl

, (151)

where αl is given by

αl =

∑
r∈Sl

αr,l

Nl

, (152)

and Sl is the set of responsive flows with respect to link l. Accordingly, we have

that the stationary rate x∗1 before the second flow joins the network is 10/0.8 =

12.5 mb/s, while afterwards both x∗1 and x∗2 are 5/0.85 = 5.82 mb/s, all of which

matches simulation results perfectly. Since only fraction αr,l of flow r’s packets survive

before arriving into link l, the actual input rate x∗r,l of flow r at l is x∗r,l = αr,lx
∗
r.

This, combined with (151)-(152), leads to y∗l = γlCl − u∗l . Simply put, although the

combined sending rate perceived by the end-users may exceed the link’s capacity, the



138

0 50 100
0

5

10

15

time (sec)

ra
te

 (
m

b
/s

)

combined rate

individual rate

(a)

0 50 100 150 200
0

20

40

60

80

100

120

140

time (sec)

ra
te

 (
m

b
/s

)

(b)

Fig. 39. JetMax (τ = 0.6 and γ = 1) under random packet loss: (a) T1 with 10%

forward-path loss; (b) “parking lot” topology with mice flows and random

loss.

bottleneck link is ideally utilized and free from congestion-related packet loss.

In the next simulation, we test JetMax in the “parking lot” topology used in Fig.

38(b) with 500 mice flows per link, 10% random loss on each link in the forward path,

and 50% loss in the backward path. Fig. 39(b) shows the dynamics of the long flow

and confirms that JetMax is stable and convergent to the equilibrium as expected.

7.4 Utilization

We next study the effect of link capacity C and round-trip delay on bottleneck utiliza-

tion of JetMax. We use a single-link topology with 50 flows in the forward direction

and 50 flows in the reverse direction. Round-trip propagation delays of these 100

flows are uniformly distributed between [20, 220] ms. We set the target utilization

level γ to 1. We also neglect the first 20 seconds of the simulations to avoid transient

phase effects and bottleneck switching, and compute efficiency statistics by averaging
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Fig. 40. Utilization of the bottleneck in JetMax (τ = 0.6 and γ = 1) under different

link capacities and round-trip delays in ns2.

the instantaneous link utilization sampled every 100 ms in the router.

First, we fix the bottleneck link delay to be 20 ms and vary its capacity from

16 mb/s to 16 gb/s. As Fig. 40(a) shows, JetMax achieves ideal utilization and

never overshoots C. Next, we fix the bottleneck capacity to be 1024 mb/s and vary

round-trip delays between 10 ms and 2560 ms. From Fig. 40(b), one can observe that

JetMax is able to sustain high utilization that does not depend on the RTT. We also

note that variance of the instantaneous bottleneck utilization is less than 10−3 in all

simulations presented in this subsection.

7.5 Convergence Speed

In this subsection, we measure the convergence time of JetMax to (1 − ε)-efficiency

and (1− ε)-fairness in a single-link topology. We set control gain τ to 0.6, round-trip

delay D of all flows to 220 ms, and control interval ∆l of the bottleneck router to

100 ms. Notice that as discussed in Section 6.5, proper calculation of the reference



140

16 64 256 1024 4096 16384
0

1

2

3

4

5

bandwidth (mb/s)

c
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

s
e

c
)

2.52

1.92

predicted time range
simulation results

(a) 99%-efficiency

16 64 256 1024 4096 16384
0

1

2

3

4

5

bandwidth (mb/s)

c
o
n

v
e

rg
e
n

c
e

 t
im

e
 (

s
e
c
)

2.52

1.92

predicted time range
simulation results

(b) 99%-fairness

Fig. 41. Convergence time of JetMax (τ = 0.6 and γ = 1) as a function of bottleneck

capacity C in ns2.

rate takes RTT + (1 + k)∆l time units, where k ∈ [0, 1]. According to Theorem 17,

JetMax converges to 99%-efficiency and 99%-fairness both in dlog|1−τ | εe = 6 steps,

which corresponds to a time range of [1.92, 2.52] seconds. This prediction is confirmed

by simulation results illustrated in Fig. 41, where end-users spend around 2.4 seconds

before reaching both efficiency and fairness over a wide range of link bandwidths.

Additionally, Theorem 17 indicates that the convergence rate of JetMax is inde-

pendent of the number of flows in the system. We also examine this result via ns2

simulations and verify that, as illustrated in Fig. 42, under different numbers of flows

(from 1 to 1024), it takes JetMax the same 6 steps to enter the 1%-neighborhood of

both efficiency and fairness.

8 Linux Performance

We finish the chapter by examining performance and implementation overhead of

JetMax in Linux software routers. The main goal of this study is to advance beyond
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Fig. 42. Convergence time of JetMax (τ = 0.6 and γ = 1) as a function of the number

of users n in ns2.

10 mb/s cases studied in the literature [114] and achieve true gigabit speeds where

AQM algorithms would have the most impact in practice. For the experiments re-

ported in this chapter, we use two Linux routers shown in Fig. 43(a), where R1 is a

single Pentium 4 running at 3.4 GHz and R2 is a dual-Xeon box running at 3 GHz.

Propagation delays of links R1 − R2 and R2 − A are both 10 ms. Transmit and re-

ceive queue lengths of R1 and R2 are both set to 2000 packets. All network cards are

1 gb/s full-duplex 1000BaseT Ethernet utilizing PCI-X slots in the their respective

computers. Network capacity in the figure is in terms of transport-layer rates and

is configured independently for each link at 600 and 940 mb/s using different target

utilization levels γl.

We implemented JetMax in Linux 2.6.9 and built a separately loadable Jet-

Max module that was invoked by netfilter hooks upon each packet queuing event.

This module was a standalone application that could be compiled, loaded, and un-

loaded without rebooting the system. During our investigation, we found that recent
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Fig. 43. Single-router Linux experiments with JetMax (τ = 0.6).

Linux kernels do in fact support floating-point operations (despite a popular belief

to the contrary [114]) and that kernel timers are scheduled with remarkable accuracy

(i.e., 100 µs), both of which provide significant benefit to AQM algorithms as they

often require computation of feedback with high precision and accurate ∆-interval

timing.

For the first test, we run five flows from host B to A in Fig. 43(a) to ex-

amine the ability of JetMax to utilize high-bandwidth links and support multiple

senders/receivers per end-host. Each flow starts with a 15-second delay and lasts

for 75 seconds. The performance of JetMax for this setup is shown in Fig. 43(b).

Notice in the figure that the first flow converges to 99% of 940 mb/s in 1.3 seconds

and maintains its steady-state rate without oscillations. As subsequent flows arrive,

they take 1.2 seconds (which is 6 control steps of ∆ = 200 ms units each) to achieve

0.99-fairness, where transitions between the neighboring states take place monotoni-

cally and the system’s combined rate never exceeds 940 mb/s. Similar performance

is observed when flows depart, where the system takes approximately 1.2 seconds to
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Fig. 44. Dual-router Linux experiments with JetMax (τ = 0.6).

re-stabilize each time.

We next test JetMax’s capability of managing bottleneck switching in multi-link

scenarios. We start flows x1 and x2 in Fig. 43(a) with a 20-second delay. Notice that

x1 should first converge to 600 mb/s, then shift its bottleneck to R2, and eventually

settle down at 470 mb/s. This is shown in Fig. 44(a), where the flows perform

precisely as expected. When flow x1 departs at t = 40, x2 quickly converges to 940

mb/s.

In our final setup, we repeat the same experiment except that flow x3 joins at

time t = 40 seconds. This allows the bottleneck of flow x1 to shift twice during its

stay in the system. The corresponding simulation result is illustrated in Fig. 44(b),

where x1 and x2 first converge to 470 mb/s each and maintain this rate until t = 40.

When x3 joins, it quickly settles down with x1 at 300 mb/s and x2 takes the remaining

bandwidth (i.e., 640 mb/s). Once x1 departs at t = 60, x2 converges to 940 mb/s

and x3 to 600 mb/s. Notice that in this experiment router R2 delivers over 1.5 gb/s

combined throughput to end-flows without losing any packets.
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9 Discussion

This chapter examined several max-min AQM congestion controllers and found that

all of them exhibited undesirable properties under certain criteria. A bigger prob-

lem, however, discovered in this work was the susceptibility of XCP and potentially

other max-min systems with non-monotonic feedback to oscillation between bottle-

necks and unstable behavior in multi-router topologies. We proposed a new method

JetMax that was able to overcome the identified issues with existing methods and

admitted multi-link stability (to the extent examined in this study), fast convergence

to efficiency/fairness, loss-free dynamics, adjustable link utilization, and simple im-

plementation. We note that multi-link stability analysis conducted in this chapter is

limited in scenarios where bottleneck assignments are consistent and time-invariant.

We leave a rigorous study of the bottleneck-switching problem in generic max-min

methods for the future. In addition, performing a more extensive experimental eval-

uation of JetMax and designing its simplifications form other lines of our planned

work.
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CHAPTER VII

ADAPTIVE BUFFER SIZING (ABS)

1 Motivation

While a comprehensive modeling of Internet traffic and its relationship with buffer

size b remains open, we show in this subsection that there are strong indications that

there exists a monotonic relationship between b and two key performance metrics,

loss rate p and utilization u. Due to the extreme difficulty of the problem, we do

not seek to present a rigorous proof of this monotonic relationship, but provide an

intuitive explanation experimentally via ns2 simulations and analytically using a

simple congestion control model. This monotonic relationship serves as motivation

and foundation of our adaptive buffer sizing scheme proposed in the following section.

1.1 Simulation Illustration

We next empirically examine the impact of the buffer size on the performance of

different congestion control protocols using ns2 simulations. To accomplish this goal,

we utilize the framework developed in [101], which incorporates into ns2 the Linux-

2.6.16.3 implementations of several proposed TCP variants, including newReno [32],

BIC [110], CUBIC [89], HSTCP [30], HTCP [69], STCP [61], Westwood [38], and

TCP-LP [67]. The simulation setup is composed of one bottleneck link of capacity

100 mb/s and ten sources with packet size 1500 bytes and RTTs uniformly distributed

in [30, 50] ms. We set buffers of access links to be 2500 packets and verify that no

packet is lost at these links in all simulations. The plots of loss rate p and utilization

u under different bottleneck buffer sizes are given in Figure 45. As expected, both p



146

2 16 128 2048

10
−1

10
0

10
1

10
2

buffer size (pkt)

lo
s
s
 r

a
te

 (
%

)
HSTCP

STCP

HTCP

TCP−LP

Westwood

newReno

BIC

CUBIC

(a) loss rate

2 16 128 2048
10

0

10
1

10
2

buffer size (pkt)

u
ti
liz

a
ti
o
n
 (

%
)

HSTCP

STCP

HTCP

TCP−LP

Westwood

newReno

BIC

CUBIC

(b) utilization

Fig. 45. Effect of buffer size b on loss rate p and utilization u of several TCP variants.

and u are monotonic functions of b. Note that the loss curves of CUBIC and STCP

in Figure 45(a) appear to be flat when b is between 64 and 1024 packets; however, we

verified numerically that they are actually monotonically decreasing.

1.2 Intuition

This monotonic relationship is not surprising. It is intuitive clear that a larger buffer

can absorb more bursts in packet arrivals, thereby reducing the frequency of packet

drops. In addition, assuming the buffer is always depleted between events of packet

drops, it takes longer time for sources to saturate a larger buffer so that to experience

the next packet loss. Thus, the average loss rate is a decreasing function of the buffer

size. At the same time, a larger buffer can hold more packets and thus maintain the

bottleneck link at full utilization for a longer time when senders back off in response

to congestion. Therefore, the average utilization level proportionally scales with the

buffer size. However, the above reasonings assume a depleted queue after each packet

loss and may not be obvious otherwise. Thus, it is desirable if we can obtain a more

generic explanation with less restrictive assumptions.
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1.3 Exogenous Traffic

In this subsection, we consider two popular traffic models, Poisson and self-similar

packet arrivals. It has been shown in [17] that with increase in the link capacity and

number of flows accessing the router, packet arrivals tend to be a Poisson process,

i.e., packet inter-arrival time is exponentially distributed. Thus, assuming packet

sizes are also exponentially distributed, the queuing process can be modeled by an

M/M/1/b queue. Then, loss probability is expressed by p = (1−u)ub/(1−ub+1), where

u = λ/C [90]. Noticing that 1 − ub+1 = (1 − u)
∑b

i=0 ui, we obtain p = 1/
∑b

i=0 u−i,

which, combined with the fact that u is a constant, immediately implies that p is

monotonically decreasing in b.

The relationship between buffer size b and loss probability p under self-similar

input traffic has been studied by Gong et al. [40] in ATM networks. Specifically,

consider a single router with buffer size b and N independent traffic sources. The

arrival process of each traffic source is modeled as an Interrupted Bernoulli Process.

Then, the system can be modeled as a discrete-time Markov chain with state [Xi, Yi],

where, at time i, Xi denotes the number of cells in the buffer and Yi denotes the

number of active sources. Then, cell loss probability can be calculated as follows:

p =

∑
(m,n)∈S(m + n− b)+Pr{X = m,Y = n}∑

(m,n)∈S mPr{X = m,Y = n} , (153)

where S is the state space of the Markov chain and (x)+ = max(x, 0). From the last

equation, it is evident that cell loss rate p monotonically decreases as buffer size b

increases. A similar result under a different self-similar traffic model is later obtained

by Likhanov et al. [70].
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1.4 Endogenous Traffic

We note that the goal of this section is not to present a comprehensive congestion

control model that is able to formulate generic Internet traffic, but to intuitively

explain results observed in the previous section using a simple, but illustrative, model.

We start with the definition of p and u in mathematical terms. Consider a scenario

where traffic passes through a single-channel FIFO queue of capacity b and service rate

C. Let L(t) and A(t) respectively denote the number of lost and admitted packets by

time t. Then, p is defined as the long-term average loss rate p = limt→∞ L(t)/(L(t)+

A(t)), u = limt→∞ A(t)/Ct as the average utilization, and λ = limt→∞ A(t)/t as the

average input rate.

Using these definitions, we next examine the effect of buffer size on traffic that

reacts to congestion using a simple model. Denoting by Wi(n) the congestion win-

dow size of flow i during the n-th RTT, we can model a generic congestion control

algorithm as following1:

Wi(n) =





Wi(n− 1) + αi

(
Wi(n− 1)

)
no loss

Wi(n− 1)− βi

(
Wi(n− 1)

)
loss

, (154)

where αi(·) and βi(·) are non-negative functions and each discrete time step corre-

sponds to one RTT. We note that this model is capable of describing the start-up

and congestion-avoidance behavior of responsive flows and keep in mind that traffic

that is unresponsive to congestion can be modeled as exogenous as discussed in the

preceding subsection.

In particular, framework (154) subsumes a wide spectrum of loss-based conges-

tion control protocols, including AIMD (e.g., Reno [1] and Westwood [38]), MIMD

1We assume Wi(n) are rounded to integers during calculations and omit the cor-
responding ceiling function for brevity.
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(e.g., Scalable TCP [61]), and many other existing TCP variants (e.g., BIC [110],

TCP-LP [67], and HSTCP [30]). Note that delay-based schemes (e.g., FAST [49] and

Vegas [15]) generally are not sensitive to buffer size b as long as it is kept larger than

the stationary queue length q∗ of the system. However, when b < q∗ these methods

experience packet losses and their responses can also be modeled by (154). Moreover,

since (154) allows different response functions αi(·) and βi(·) for different flows i, this

model applies to scenarios where the traffic is generated by a mixture of protocols.

Assuming N sources with homogeneous RTTs access a single link of capacity C

and letting q(n) be the queue length at time n, we can model the queuing dynamics

using recurrence:

q(n) = min
(
(q(n− 1) + X(n)− C)+ , b

)
, (155)

where b is the buffer size and X(n) =
∑N

i=1 Wi(n) is the total number of arrivals

during the n-th RTT. Assuming that Wi(n) of each source i is bounded above by

Wmax, the system dynamics can be represented by a discrete Markov chain with state

Sn = [W1(n), W2(n), . . . , WN(n)] and state space O : [1, 2, . . . , Wmax]
N .

Let Z(n) be the number of dropped packets during the n-th RTT: Z(n) =
(
q(n−

1) + X(n) − C − b
)+

. Define v(n) = Z(n)/X(n) as the average loss rate during

this RTT. Assuming packet loss rate of each flow is independent of each other, we

have Pr{Wi(n + 1) = Wi(n) + αi(Wi(n))} = (1 − v(n))Wi(n) and Pr{Wi(n + 1) =

Wi(n)−βi(Wi(n))} = 1− (1− v(n))Wi(n). Based on this, we can derive the transition

probability between any pair of states. Furthermore, it is clear that the transition

probability depends only on the previous state, which implies that series {Sn} is a

Markov chain. Then, the following result is easy to obtain.

Theorem 18. The Markov chain defined by (154)-(155) always converges to a sta-

tionarity distribution.
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According to Theorem 18, for any fixed N and starting from any initial state,

the Markov chain defined by (154)-(155) always converges to its steady state. Thus,

we omit the transient phase in the rest of the section and only examine the queuing

process under traffic generated by a stationary Markov chain. In such a scenario, the

following result shows that packet loss rate p scales inversely proportionally to the

buffer size b.

Theorem 19. Loss probability p in a finite queue fed by traffic governed by a sta-

tionary Markov chain defined by (154)-(155) monotonically decreases in queue size

b.

Proof. Under the stationary Markov chain defined by (154)-(155), denote by Sn the

state at time n, by M the number of states, and by π = [π1, π2, . . . , πM ] the stationary

probability vector of each state (i.e., πi = Pr{Sn = i}). Further let Ai,j(k) be the

probability that the chain goes from state i to j and the next arrival has k packets,

i.e., Ai,j(k) = Pr{X(n+1) = k, Sn+1 = j|Sn = i}. Then, define Ak as the probability

matrix whose (i, j)-th element is Ai,j(k). Using these variables, we can represent the

traffic density ρ as ρ = π
∑∞

k=1 kAke, where e is a column vector with all elements

equal to one.

We next express loss probability of a finite buffer of size b in terms of the queue

length distribution of an infinite buffer, whose queuing process q′(n) is given by:

q′(n) = (q′(n− 1) + X(n− 1)− c)
+

. (156)

Consider the steady-state probability matrix ∆ of the infinite buffer, where the (k, i)-

th element ∆k,i is:

∆k,i = lim
n→∞

Pr{X(n) = k, Sn = i}. (157)

Then, according to [46, Theorem 4], under arrivals governed by the same stationary
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Markov chain, loss probability p of a finite buffer of size b is represented by:

p =
(1− ρ)

∑∞
k=b+1 ∆kA0e

ρ
∑b

k=0 ∆kA0e
, (158)

where ∆k is the k-th row vector of ∆. Since the Markov chain is stationary, all vari-

ables in the last equation are constant. Thus, it follows that loss rate p monotonically

decreases as buffer size b increases.

As an example of Theorem 19, we examine the relationship between b and p of

TCP. Analytical modeling of TCP has been an active research topic since the last

decade [13, 78, 81, 105]. Specifically, it is derived in [105] that loss probability p is

given as follows:

p =
8N2

3(CR + b)2
. (159)

A similar result is obtained in [13] for geostationary satellite networks:

p =
128N2

27(CR + b)2
. (160)

Both results indicate that p monotonically decreases as b grows. We also note that

Theorem 19 assumes homogeneous RTTs. As verified later in simulations, the same

result holds for heterogeneous RTTs.

Moreover, it is clear that utilization u scales inversely to loss rate p according to

a general TCP model of the form r = c/pd, where r is the throughput and c and d

are constants [110]. This holds for various TCP flavors including Reno, BIC, HSTCP,

and STCP. Further notice that according to Theorem 19, loss rate p scales inversely

to b. This implies that utilization u monotonically increases in b. Thus, in the rest

of this chapter we assume the monotonic relationship between u and b.

In addition, it is worth noting that although system (154) is generic enough

to represent the increase/decrease behavior of a wide class of congestion control al-
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gorithms, it is by no means comprehensive. To make the model more complete,

one should additionally consider factors such as slow-start, timeouts, and retrans-

missions. To maintain a proper scope of the chapter, we leave further investigation

of this problem for future work and next demonstrate via ns2 simulations that the

obtained properties indeed exist in various current congestion control protocols.

2 Adaptive Buffer Sizing (ABS)

In this section, we describe a dynamic buffer sizing framework that is adaptive to

dynamics and uncertainties of input traffic while maintaining the system under target

performance constraints such as loss rate p∗ and utilization u∗. As an example of this

framework, we start with a simple mechanism, progressively identify and overcome

its underlying drawbacks, and eventually arrive at the final controller that we call

ABS.

2.1 General Consideration

To design a buffer sizing mechanism, first it is necessary to understand how buffers

are managed in current commercial routers. The memory system in a Cisco 3600

series router [91], for instance, is composed of the main processor memory, shared

(packet) memory, flash memory, nonvolatile random access memory (NVRAM), and

erasable programmable read only memory (EPROM). Among them, we are particu-

larly interested in shared (packet) memory, which is used for packet buffering by the

router’s network interfaces. Specifically, each interface is associated with an input

hold buffer (IHB), which resides in the system buffer of shared memory and is used

to store packets for transfer between fast switching and process switching code. For

each packet arriving into an interface, the interface driver writes it into an IHB. An
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incoming packet is immediately dropped if the IHB reaches its maximum size, which

is static and does not grow or shrink based on demands. Our goal in this section is

redesign IHB such that its size adapts to dynamics of the incoming traffic.

We note that it is important to distinguish the framework of dynamic buffer

sizing from the large class of AQM algorithms (e.g., RED [33], REM [4], and PI

[44]). These methods operate within a given buffer size bl and aim to stabilize the

queue occupancy (or queuing delay) at a certain target level, which is a portion of the

selected buffer size bl. Thus, AQM is unable to solve issues associated with incorrectly

sized router buffers.

To better see this, we test several TCP variants under REM using ns2 simu-

lations. Recall that an REM-enabled router dynamically updates its packet drop-

ping/marking probability by monitoring the discrepancy between the aggregate in-

put rate y(t) and link capacity C and the difference between the current queue length

q(t) and its target value q∗. In the steady state, the system achieves y(t) = C and

q(t) = q∗. In our simulations, we use a simple “dumbbell” topology with a single

REM (q∗ = 50 pkts) link of capacity C = 10 ms/b shared by 20 TCP sessions. We

use marking at the REM router and enable ECN at end-users. As seen from Table I, if

we set buffer size of the bottleneck link to b = 100 pkts, which is greater than REM’s

target queue size q∗ = 50 pkts, REM successfully maintain the queue size close to q∗

while achieving 100% utilization and 0% packet loss for all TCP variants. However,

if we set buffer size b below q∗, the bottleneck link suffers significant under-utilization

and prohibitively high loss rate.

In contrast, dynamic buffer-sizing mechanisms focus on determining the optimal

size of the physical buffer. This way, the router can efficiently allocate its available

buffers among different memory-sharing interfaces, hereby achieving pre-agreed QoS

requirements, shrinking the required space of the main memory, and reducing the
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Table I. Performance of different TCP variants with REM (q∗ = 50 pkts) under dif-

ferent buffer sizes.

b = 100 pkts b = 10 pkts

q (pkts) p (%) u (%) q (pkts) p (%) u (%)

Reno 56.14 0.00 100.00 5.41 9.88 84.78

BIC 52.88 0.00 100.00 5.27 9.04 86.52

CUBIC 52.48 0.00 100.00 4.92 7.84 87.22

HSTCP 56.73 0.00 100.00 4.96 9.60 86.59

STCP 54.38 0.00 100.00 5.40 12.48 83.74

HTCP 57.77 0.00 100.00 4.60 8.20 87.46

Westwood 54.61 0.00 100.00 4.99 10.08 84.50

system cost and board space. Dynamic buffer sizing schemes can overcome the prob-

lem of improper buffer sizing that AQM is unable to solve or may be combined with

AQM methods to achieve desired performance. In existing Internet routers where

memory is already fixed, the proposed approach is also valuable since it guarantees

the minimum queuing delay in each interface under predetermined performance con-

straints. Additionally, ABS lends ISPs and router manufactures great freedom in

choosing preferred constraints when configuring their routers.

2.2 Controller Design

Although the underlying differential/difference equations describing the effect of router

buffer size on Internet traffic remain unknown, it follows from the last section an im-

portant property of this relationship – monotonicity. This implies that for any given

feasible loss rate p∗ (or utilization u∗) under stationary input traffic, there exists a
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unique buffer size b∗ such that the resulting system achieves p∗ (or u∗). In addition,

this monotonic relationship gives us a hint of the correct direction in which we should

adjust the buffer size. Specifically, assuming target loss rate p∗ and its actual value

p(n) measured at time n, the router buffer size b(n) should increase if p(n) > p∗ and

decrease otherwise. Analogously, given u∗ and u(n), b(n) should decrease if u(n) > u∗

and increase otherwise. This result allows us to develop simple yet robust controllers

to adaptively size router buffers to satisfy given system constraints.

One natural candidate for achieving this goal is the Integral controller. First,

consider the controller under the loss rate constraint, in which case bp(n) denotes the

buffer size at time n and ep(n) = p(n) − p∗. Then, the Integral controller can be

represented by its z-domain transfer function Gp(z):

Gp(z) =
Bp(z)

Ep(z)
=

IpT

1− z−1
, (161)

where Bp(z) and Ep(z) are respectively z-transforms of bp(n) and ep(n), integral gain

Ip is a positive constant, and T is the sampling interval. Rewriting (161) in the time

domain, we arrive at the following difference equation:

bp(n) = bp(n− 1) + IpT
(
p(n)− p∗

)
, (162)

where T is the sampling interval and Ip is the integral gain. Similarly, we obtain the

control equation of bu(n) under the utilization constraint:2

bu(n) = bu(n− 1)− IuT
(
u(n)− u∗

)
, (163)

where Iu is the integral gain. It is noteworthy to point out that since p(n) monoton-

2Additional constraints, such as queuing delay, can be easily adopted in our
method. For ease of presentation, we only concentrate on loss rate and link uti-
lization in this chapter.
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ically decreases with b(n) while u(n) increases with b(n), controllers (162) and (164)

have opposite signs before their respective integral gain.

However, the last controller invites a serious problem if deployed in non-bottleneck

routers. This is because a non-bottleneck router is always under-utilized regardless

of its buffer size. Thus, if u∗ is set to be above the maximally achievable utilization

level of the link, the router always have u(n) < u∗ and drives its buffer size to infinity.

We overcome this problem by modifying (163) as follows:

bu(n) = bu(n− 1)− IuT
(
u(n)− u(n− 1)

)(
u(n)− u∗

)
. (164)

Compared to (163), the extra term u(n)− u(n− 1) in (164) is to damp the effect of

(u(n)−u∗). Specifically, in the steady state of a non-bottleneck router, we must have

u(n) − u(n − 1) = 0, which forces the second term of (164) to converge to zero and

prevents bu(n) from diverging to infinity.

Now, we have two buffer sizes bu(n) and bp(n) based on the utilization and loss

rate constraints, respectively. Similar to BSCL [25] , the minimum buffer size b(n)

satisfying both requirements should be the larger of bp(n) and bu(n), i.e.,

b(n) = max
(
bu(n), bp(n)

)
. (165)

We call the hybrid controller (162)-(165) Adaptive Buffer Sizing (ABS) scheme

and sub-controllers (162) and (164) ABSp and ABSu, respectively. In practice, these

two controllers can be used together or separately. Note that ABS does not rely

on comprehensive prior knowledge of the system being controlled, but adapts the

controller according to errors of the output signals u(n) and p(n). As a consequence,

ABS is expected to work in practical network settings and be robust to real Internet

traffic (more on this below).

This controller works very well in many cases. However, its main limitation lies
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Fig. 46. ABS (Iu = Ip = 3000 and T = 200 ms) without parameter training in a

network with a single link of capacity 10 mb/s and 20 TCP flows.

in the difficulty in choosing the optimal gain parameters Iu and Ip. Specifically, if

they are chosen too small, the system may suffer from a sluggish convergence rate to

the equilibrium; however, if they are set too large, the system may exhibit exceedingly

aggressive adaptation behavior and persistently oscillate around, instead of converging

to, the stationary point. This phenomenon is illustrated in Figure 46, where 20 TCP

flows share an ABS-equipped bottleneck link of capacity 10 mb/s. We set integral

gains Ip = Iu = 3000 and control interval T = 200 ms. As seen in the figures, ABS is

stable and converges the buffer size to 1200 packets when u∗ = 95% and p∗ = 0.5%.

However, when u∗ = 70% and p∗ = 5% the system becomes unstable and the buffer

size periodically oscillates between 1 and 2700 packets.

Due to the lack of the knowledge of the differential equations describing the

system, it is unlikely that any off-line pre-training of the controller’s parameters

Iu and Ip can be effective. Even if such a method could exist, parameters trained

for a particular system setting may immediately become inappropriate as the traffic

dynamics evolve. We next seek to overcome this issue by designing a parameters
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tuning mechanism that is able to adaptively converge the control parameters to their

optimal values for the current system configuration.

2.3 Adaptive Parameters Training

It is clearly a non-trivial task to find the optimal parameters for controlling such a

complex system as the Internet, which is especially the case provided that the system

has an unknown underlying model and dynamically changes over time. However,

we manage to achieve this goal using a simple scheme, which combines the output

error [2] method and the gradient descent [93] technique. In what follows, we explain

our method in the context of ABSu and note that the mechanism for ABSp can be

obtained similarly.

Denote by Iu(n) the instantaneous value of integral gain Iu at time n. Then,

rewrite ABSu’s control equation (164) as:

bu(n) = fu

(
u∗, bu(n− 1), u(n), Iu(n)

)
, (166)

where function fu(.) is given by the right-hand side of (164). Suppose that the router,

at the end of the n-th control interval, sets its buffer size to bu(n) based on (166) and

observes that link utilization becomes u(n + 1) during the next interval. Then, we

know that if we set u∗ = u(n + 1) as the target utilization, bu(n) must be the optimal

output of controller (166) under the same traffic pattern and given buffer size bu(n−1)

and utilization u(n). This is equivalent to saying that under the optimal control gain

I∗u, we must have the following equation:

bu(n) = fu

(
u(n + 1), bu(n− 1), u(n), I∗u

)
. (167)

Thus, at every control step, we get the exact value of the inverse function of

the controlled plant [2]. Hence, it remains to adaptively adjust Iu(n) to achieve its
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Fig. 47. ABS with parameter training in a network with a single link of capacity 10

mb/s and 20 TCP flows.

optimal value I∗u, which translates into the following optimization problem.

First, define b′u(n) = fu

(
u(n+1), bu(n−1), u(n), Iu(n)

)
as the actual controller’s

output under the current integral gain Iu(n). This value is not used to decide the

buffer size, but is applied to the following calculation: Fu(n) = b′u(n)− bu(n), which

is the difference between the actual and optimal outputs. Then, the optimal control

gain I∗u under the current traffic is the one that minimizes Fu(n). To find this optimal

parameter, we use the gradient-descent algorithm.

According to the gradient-decent method, since function Fu(n) is differentiable

at Iu(n), it decreases fastest along the direction of its gradient 5Fu(Iu(n)), which

is the derivative of Fu(n) with respect to Iu(n). Thus, at every control step, if the

router updates parameter Iu(n) as follows:

Iu(n + 1) = Iu(n)− γ 5 Fu

(
Iu(n)

)
, (168)

with step size γ (which is set to 1 in all simulations presented here), then we have

that sequence Fu(Iu(1)) ≥ Fu(Iu(2)) ≥ . . . , which eventually converges to zero. In
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this case, Iu(n) reaches I∗u.

Invoking (164), we simply have:

5Fu(Iu(n)) =
dFu(n)

dIu(n)
= T

(
u(n + 1)− u∗

)
. (169)

Combining the last two equations, we arrive at the following parameter tuning rule

for Iu(n):

Iu(n + 1) = Iu(n)− γT
(
u(n + 1)− u∗

)
. (170)

Following the above techniques, we can derive the following parameter training rule

for Ip(n) in ABSp:

Ip(n + 1) = Ip(n)− γT
(
p∗ − p(n + 1)

)
. (171)

Thus, we have finished the design process of ABS, which now consists of two basic

Integral controllers (162)-(164) and two parameter training components (170)-(171).

Note that the resulting system is independent of the exact model of the controlled

plant and highly adaptive to the plant’s changing system dynamics. In addition, the

proposed parameter training mechanism is not limited to our particular case, but

applicable to other systems with multiple parameters to be optimized.

To examine performance of the resulting controller, we rerun simulations in Fig-

ure 46. The simulation results are illustrated in Figure 47, from which we can see

that in both cases ABS successfully converges the buffer size to its stationary value

and exhibits much faster convergence speed compared to its original version shown in

Figure 46. We note that since traffic loads at Internet routers change slowly over time,

buffer sizing schemes are able to utilize long sampling intervals to filter out noise in

measurements and achieve more accurate approximation of the systems average be-

havior. Thus, the convergence rate of ABS should not be confused with that of a
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congestion control or AQM protocols, whose control actions are usually performed at

the time-scale of milliseconds. However, as we demonstrate later, ABS is in fact very

responsive and works well under highly bursty Internet traffic. Finally, we observe in

both simulations that gain parameters Iu and Ip indeed converge to their respective

optimal value.

3 Performance

We next demonstrate via ns2 simulations performance of ABS under a wide range

of flow populations and link capacities, dynamically changing traffic loads, synthetic

web traffic, and mixture of TCP and non-TCP flows.

3.1 Implementation

ABS admits a very simple implementation and incurs minimal computational over-

head. Specifically, the router maintains two counters S1 and S2 to respectively record

the amount of data enqueued and dropped by the router during the current sampling

interval. For each incoming packet k with size sk, either S1 or S2 is incremented

by sk depending on whether the packet is admitted. Thus, there is only one addi-

tion per packet. At the end of the n-th interval, the router computes loss rate using

p(n) = S1/(S1 + S2) and utilization using u(n) = (S1 + S2)/(CT ) where C is the

link’s capacity. Then, the router calculates the gain parameters based on (170)-(171)

and decides its buffer size according to (162)-(165). Since these operations are per-

formed once every control interval (which is set to 20 seconds in our simulations), the

incurred overhead is negligible.

In practice, dynamic buffer sizing may encounter some implementation issues.

For instance, one such problem is memory fragmentation, which occurs when the
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router frequently allocates and releases differently sized memory blocks and as a

result the memory space contains a lot of small unused pieces. This problem can be

mitigated by increasing granularity of memory allocation, i.e., allocating in fixed-size

chunks of memory. Sizes of chunks can be 2048 bytes, 4096 bytes, or other values

depending on the system. However, for purpose of demonstration, we do not include

this mechanism in simulations shown below.

3.2 Scalability

In this subsection, we compare performance of existing buffer sizing mechanisms

(i.e., BDP, Stanford model, BSCL, and ABS) under different link capacities C and

flow populations N . Note that due to lack of publicly available implementation

and unspecified control parameter K, we do not include ADT in this comparison

study. We use a “dumbbell” topology with N long-lived TCP flows, whose RTTs are

randomly distributed in [30, 30 + 2N ] ms. As suggested in [25], we use the harmonic

average RTT Re for the BDP rule. For the Stanford model, we use equation b =

2ReC/
√

N . In BSCL, we set the loss synchronization factor α to 0.6. In both BSCL

and ABS, we set u∗ = 98% and p∗ = 2%.

We first fix link capacity C = 16 mb/s and vary N between [2, 1024]. The

simulation results are illustrated in Table II, in which data are averaged over the

second half of each simulation to eliminate initial transient effects. As shown in

the table, when the number of flows is small, both the BDP and Stanford rules are

not very successful in achieving their design goal (i.e., high link utilization). As N

becomes large, both methods do achieve high utilization, but in the expense of high

loss rates. This is especially evident in the Stanford model, whose loss rate is 13.45%

when there are 1024 flows. Capability of controlling loss rate is improved in BSCL;

however, it still cannot achieve the target loss rate p∗ = 2% and suffer from low link
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utilization when the number of flows is small. In contrast, ABS achieves its design

goal under all flow populations. Specifically, when N ≤ 32 and utilization is the

primary constraint, ABS successfully maintains link utilization at close to its target

value u∗ = 98%. As N grows and the loss rate constraint becomes dominant, ABS is

still able to effectively allocate buffer such that the average loss rate is within a close

neighborhood of p∗ = 2%.

It is worth noting that as seen from Table II, when N = 1024, ABS converges

the buffer size to 8613 packets. This buffer size translates into a queuing delay of

10 seconds, which is prohibitively high for most applications. However, this is not

a problem of ABS, but a consequence of an unrealistic choice of p∗. In practice,

router manufactures and ISPs are free to adjust u∗ and p∗ according to the type of

service they agree to provide and the actual traffic situation. To avoid exceedingly

large queuing delay, they can increase the link capacity or enforce a predetermined

upper bound of buffer size to prevent queuing delay from growing beyond a certain

threshold value.

We next set N = 16 and examine scalability of these methods to link capacities.

As seen from Table III, the BDP and Stanford rules result in significant packet loss

under small link capacities (C ≤ 4 mb/s). Although they achieve both low loss

rate and high utilization when C is large (e.g., C ≥ 256 mb/s), the allocated buffer

sizes are over provisioned compared to those of ABS. BSCL experiences less loss rate

than the BDP and Stanford models, but it still does not lead to a buffer size that

satisfies the target loss rate and utilization constraints. ABS again demonstrates the

best performance among all these methods, maintaining buffer size within the target

performance constraints for all link capacities.
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Fig. 48. ABS under changing traffic loads (u∗ = 90% and p∗ = 2%).

3.3 Response to Load Changes

The volume of traffic perceived by any Internet router is not constant, but exhibits

burstiness at different time-scales due to various reasons such as users’ demand, route

changes, and load balancing. Thus, stability and responsiveness in the presence of

load changes is crucial for any buffer sizing scheme purported to operate in practical

routers. Hence, we next examine ABS in such a scenario. We still use a “dumbbell”

topology where a single bottleneck link of capacity 10 mb/s is shared by 60 hetero-

geneous TCP flows. The target utilization u∗ = 90% and loss rate p∗ = 2%. As

shown in Figure 48, after all flows start simultaneously at the beginning, both b(n)

and p(n) are quickly brought to a close neighborhood of their respective stationary

value. At time 48 seconds, 20 flows depart from the system. As a consequence of the

reduced traffic load, packet loss rate p(n) immediately drops to 1.1%, which allows

the router to release memory space to meet p∗ in this new scenario. After another

48 seconds, 20 more flows left and again ABS quickly shrinks the buffer. At time

144 and 192 seconds, these two sets of departed flows respectively rejoin the system

and ABS is forced to increase the buffer size. It can be observed from the plots
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that during the entire simulation, b(n) demonstrates quick responses to load changes,

experiences small oscillations in both the transient and steady states, and exhibits

smooth transitions between neighboring states.

3.4 Web Traffic

All scenarios considered so far have only long-lived TCP flows. However, the real

Internet traffic is composed of a mixture of connections with a wide range of transfer

lengths, packet sizes, and RTTs [34]. Thus, to obtain a better understanding of ABS,

we next test it in more diverse scenarios.

Consider a network with a single link of capacity 10 mb/s shared by 20 persistent

FTP flows in the presence of background web traffic generated by 100000 HTTP

sessions. Each HTTP session downloads np pages with inter-page time tp seconds,

where np is uniformly distributed in [10, 2000] and tp is exponentially distributed with

mean 1 second. Each page contains no objects where no is uniformly distributed in

[1, 5]. The inter-object time to is exponentially distributed with mean 0.01 seconds.

Sizes of objects follow the Pareto distribution with mean µ = 10 KB and shape

parameter α = 1.2. We set the target utilization u∗ = 95% and loss rate p∗ = 1%.

The simulation results are shown in Figure 49. As observed from Figure 49(a),

ABS’s behavior in this scenario differs from that of previous simulations in that

the buffer size does not converge to a particular value, but fluctuates between 120

and 210 packets due to bursty ingress traffic. Note that this phenomenon does not

indicate that ABS is incapable of effectively controlling short-lived web-like traffic,

but actually demonstrates that this mechanism is adaptive and responsive in highly

dynamic scenarios. This can be clearly seen from Figure 49(b), where utilization p(n)

is maintained within a close neighborhood of its target value p∗ = 95%.
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Fig. 49. ABS in a single link of capacity 10 mb/s shared by 20 FTP and 100000 HTTP

flows (u∗ = 95% and p∗ = 1%).

3.5 Mixture of TCP and Non-TCP Traffic

Recall that analysis of real Internet traffic traces has demonstrated that although

TCP is the predominant transport protocol, a non-eligible portion of Internet traffic

is contributed by non-TCP protocols [35]. Thus, in this subsection we examine ABS

in a more diverse environment with 20% UDP background traffic. Consider a scenario

where 20 FTP, 20 HTTP, and 20 UDP flows compete for resources of a single link

of capacity 10 mb/s. Traffic parameters of HTTP flows are the same as the last

subsection and each UDP flow transmits packets at a constant rate 0.1 mb/s. We set

reference values of the bottleneck router to be u∗ = 90% and p∗ = 2%. The simulation

result is shown in Figure 50, where ABS is dominated by the loss constraint and p(n)

quickly reaches and subsequently remains in a close neighborhood of p∗.

According to Section 1, the monotonic effects of buffer size b(n) on loss rate p(n)

and utilization u(n) should also hold for traffic generated by a set of different con-

gestion control protocols. Thus, we next test ABS under a mixture of TCP variants.

Specifically, we preserve values of p∗ and u∗, increase the link capacity to 100 mb/s,
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Fig. 50. ABS in a single link of capacity 10 mb/s shared by 20 FTP, 20 HTTP, and

20 UDP flows (u∗ = 90% and p∗ = 2%).

and synthesize the ingress traffic with 10 Reno, 10 HSTCP, 10 STCP, 10 HTCP, and

10 Westwood flows with RTTs uniformly distributed within [40, 60] ms. As illustrated

in Figure 51, ABS successfully maintains u(n) around its target value u∗.

Thus, examples provided in this and the preceding subsections clearly demon-

strate ABS’s excellent capability of regulating the buffer size under different traffic

patterns and transport protocols, making the concept of an ABS-like dynamic scheme

a highly versatile and appealing buffer sizing mechanism for real Internet routers.

3.6 Multi-Link Topology

We next extend out study to multi-link networks and see whether interactions between

multiple ABS routers can produce undesirable effects. Towards this end, consider a

two-link “parking lot” topology with three sets of flows. Each set is composed of 20

FTP, 10 HTTP, and 10 UDP (with constant rate 0.1 mb/s) flows. These three sets of

flows respectively pass through the first link, second link, and both links. Capacities

of these two links are respectively 50 and 20 mb/s. Constraint values are u∗1 = 95%
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Fig. 51. ABS in a single link of capacity 100 mb/s shared by 10 Reno, 10 HSTCP, 10

STCP, 10 HTCP, and 10 Westwood flows (u∗ = 90% and p∗ = 2%).

and p∗1 = 1% for the first link and u∗2 = 75% and p∗2 = 5% for the second link. As

seen from Figure 52, two ABS routers do not intervene each other and successfully

maintain utilization at their respective target level.

Based on simulations conducted in this subsection, we have demonstrated that

ABS achieves its design goal – regulating buffer size b(n) to satisfy the pre-specified

performance constraints. Furthermore, ABS is shown to be stable in the presence of

dynamically changing loads and robust to a diverse mixture of long and short TCP

flows and even non-TCP traffic. All of these properties make ABS a highly appealing

buffer sizing scheme for real Internet routers.

4 Discussion

In this chapter, we designed and implemented a dynamic buffer sizing scheme, called

ABS, that stabilizes the buffer size to its minimum value satisfying given utilization

and/or loss constraints. ABS is composed of two Integral controllers ABSu and ABSp,

each of which is equipped with a parameter training component using a gradient-based



171

0 10 20 30
0

95

time (sec)

u
ti
liz

a
ti
o

n
 (

%
)

(a) link one

0 10 20 30
0

75

time (sec)

u
ti
liz

a
ti
o

n
 (

%
)

(b) link two

Fig. 52. ABS in a “parking lot” topology (p∗1 = 95% and p∗2 = 75%).

technique to achieve the optimal control gains. Besides stability and optimality, an

appealing feature of ABS is its robustness to generic Internet traffic composed of

long, short, and non-TCP flows. Thus, ABS can significantly benefit router manufac-

tures and ISPs by improving their routers’ performance, reducing system cost, and

providing QoS guarantees.

We finally note that the emphasis of this chapter is not demonstrating superiority

of a particular controller, but advocating a new buffer management methodology and

presenting the possibility of optimally sizing router buffers using a simple yet robust

controller without comprehensive knowledge of Internet dynamics. This controller

actually may be replaced by more advanced candidates (e.g., nonlinear PID and

variable structure control). Our future work involves designing simpler ABS-like

mechanisms, analyzing ABS in its transient phase, studying its stability in more

complicated congestion control models, and implementing and testing it in hardware

routers under real Internet traffic.
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CHAPTER VIII

SUMMARY AND FUTURE WORK

1 Summary

Our work in this dissertation can be divided into two parts. In the first part, we

conducted a thorough study on designing stable congestion control protocols under

heterogeneous feedback delays. We started with a preliminary investigation of the

relationship between delay and stability for existing congestion control protocols pro-

posed for the current and future Internet and concluded that none of these methods

was able to offer stable performance under nontrivial end-to-end communication de-

lays. Motivated by this finding, we set our goal to gaining a deeper understanding of

the effect of delay on a system’s stability and thereby designing practical congestion

control methods with provable delayed stability. Towards this end, instead of focus-

ing on a particular controller, we raised our vision to a higher horizon and sought to

understand the properties of any control system to be stable under delay. We suc-

cessfully solved this problem by finding a tight sufficient condition (whose necessity

is confirmed by simulations) for any system to be stable regardless of delay. Employ-

ing this result and the obtained techniques, we were able to identify several sets of

systems whose delayed stability were automatically established if there were stable

under no delay. In addition to shedding a new light on the theoretical understanding

of delay and stability, this result created an avenue to developing new congestion

control systems whose stability was independent of delay.

As applications of this method, we proposed a series of congestion control mech-

anisms that offered delay-independent stability as well as many other appealing prop-
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erties. Specifically, we first introduced three novel modifications to the classic Kelly

control such that the Jacobian matrix of the resulting system satisfied the condition

of delay-independent stability. We called this new controller Max-min Kelly Control

(MKC) and demonstrated that MKC achieved stability under heterogeneous time-

varying delay, converged to efficient link utilization exponentially fast, were free from

oscillations in both the steady state and transient phase, and admitted a low-overhead

implementation. MKC has received a fair amount of attention from the research com-

munity since its introduction in 2004. For instance, it has been extended by Miller

et al. [79] in their development of two new congestion control schemes, eXtended

MKC (XMKC) and Utility MKC (UMKC). However, we further identified that MKC

suffered from persistent packet loss in the equilibrium and slow convergence rate to

fair resource allocation. We successfully overcome these two drawbacks by proposing

a new congestion control protocol called JetMax, which achieved zero packet loss

during the entire lifetime of a flow, constant convergence time to both efficiency and

fairness, and delay-independent stability. These properties have been confirmed by

our extensive ns2 simulations and Linux experiments.

In the second part of this dissertation, we sought to address the problem of

optimal buffer sizing. Our motivation was driven by the fact that all existing buffer

sizing rules were based a simplistic single-TCP model, which did not capture the

characteristics of traffic encountered by routers in the real Internet. As a consequence,

these methods were subject to over- or under-provisioning of router buffers, leading

to unacceptably long queue lengths (and therefore queuing delays) or high packet

lost rates. This problem cannot be solved by traditional AQM methods (e.g., RED,

PI, and REM). This is because these methods aimed to stabilize the queuing delay

(or queue length) at certain target value and would exhibit unpredictable behavior

and became simply unstable when this target value was above the provisioned buffer
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size. This problem is further complicated by the fact that the required buffer size is

a time-varying metric as the traffic load changes over time. A natural remedy to this

problem is to dynamically adapt the buffer size according its current incoming traffic.

Towards this end, we proposed a buffer management scheme called Adaptive

Buffer Sizing (ABS), which based on dynamics of the input traffic adaptively allocated

the optimal amount of buffer under given performance constraints, utilization and

packet loss. ABS is composed of two sub-system ABSu and ABSp for the utilization

and loss constraints, respectively. Each sub-system is a PI controller, whose gain

parameters are intelligently tuned using a gradient-based controller. This way, these

two sub-controllers are able to adaptively set their control gains to their optimal

values under dynamically changing incoming traffic. We also introduced additional

mechanisms to differentiate bottleneck and non-bottleneck routers and balance the

tradeoff between packet loss and delay. Our extensive ns2 simulations demonstrated

that ABS were robust to generic Internet traffic, scalable to a large flow population,

and responsive to traffic load changes.

2 Future Work

There are several problems remaining open in this work. First, as identified in our

comparison study of existing explicit congestion control methods, XCP is subject to

the bottleneck oscillations in certain multi-link topologies. As we mentioned earlier,

this problem applied to all congestion control protocols that relied on single-link

feedback. Even though we could not simulation scenarios in which MKC or JetMax

exhibited bottleneck oscillations and became unstable, we at the same time could

not provide a rigorous proof of their stability/instability in such cases. Therefore,

our future work involves developing a generic framework for modeling the bottleneck
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oscillation problem and understanding the properties required by a congestion control

protocol to be stable in multi-link topologies. Our ultimate goal is to design a new

protocol that satisfies all properties required by an ideal congestion, i.e., topology-

independent, delay-independent stability, exponential convergence to both efficiency

and fairness, and zero packet loss in both the steady state and transient phase.

In our future work in the area of buffer sizing, we plan to implement ABS in

Linux routers and conduct a comprehensive experimental study of it. We are also

interested in investigating the result of coupling ABS with other traditional AQM

methods and developing mechanisms that can be utilized by end-users to take better

advantage of ABS. Exploring the possibility of incorporating ABS into the framework

of PERT [12] forms another line of my future research.
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