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Abstract—Recent research efforts to design better Internet
transport protocols combined with scalable Active Queue Man-
agement (AQM) have led to significant advances in congestion
control. One of the hottest topics in this area is the design of dis-
crete congestion control algorithms that are asymptotically stable
under heterogeneous feedback delay and whose control equations
do not explicitly depend on the RTTs of end-flows. In this paper,
we first prove that single-link congestion control methods with
a stable radial Jacobian remain stable under arbitrary feedback
delay (including heterogeneous directional delays) and that the
stability condition of such methods does not involve any of the
delays. We then extend this result to generic networks with
fixed consistent bottleneck assignments and max–min network
feedback. To demonstratethe practicality of the obtained result,
we change the original controller in Kelly et al.’s work [“Rate
Control for communication networks: Shadow prices, propor-
tional fairness and stability,” Journal of the Operational Research
Society, vol. 49, no. 3, pp. 237–252, March 1998] to become robust
under random feedback delay and fixed constants of the control
equation. We call the resulting framework Max–min Kelly Control
(MKC) and show that it offers smooth sending rate, exponential
convergence to efficiency, and fast convergence to fairness, all of
which make it appealing for future high-speed networks.

Index Terms—Asymptotic stability, congestion control, hetero-
geneous delay.

I. INTRODUCTION

OVER the last 15 years, Internet congestion control has
evolved from binary-feedback methods of AIMD/TCP

[2], [33] to the more exciting developments based on opti-
mization theory [22], [23], game theory [11], [19], and control
theory [10], [11], [24], [26]. It is widely recognized that TCP’s
congestion control in its current shape is inadequate for very
high-speed networks and fluctuation-sensitive real-time multi-
media. Thus, a significant research effort is currently under way
(e.g., [5], [6], [9], [12], [15], [16], [19], [29], and [32]) to better
understand the desirable properties of congestion control and
develop new algorithms that can be deployed in future AQM
(Active Queue Management) networks.

One of the most important factors in the design of congestion
control is its asymptotic stability, which is the capability of the
protocol to avoid oscillations in the steady-state and properly
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respond to external perturbations caused by the arrival/depar-
ture of flows, variation in feedback, and other transient effects.
Stability proofs for distributed congestion control become pro-
gressively more complicated as feedback delays are taken into
account, which is especially true for the case of heterogeneous
delays where each user receives its network feedback delayed
by a random amount of time . Many existing papers (e.g.,
[4], [10]–[12], [17], [18], [19], and [23]) model all users with
homogeneous delay and do not take into account the
fact that end users in real networks are rarely (if ever) synchro-
nized. Several recent studies [20], [24], [27] successfully deal
with heterogeneous delays; however, they model as a de-
terministic metric and require that end flows (and sometimes
routers) dynamically adapt their equations based on feedback
delays, which potentially leads to RTT unfairness, increased
overhead, and other side effects (such as probabilistic stability).

In this paper, we set our goal to build a discrete congestion
control system that maintains both stability and fairness under
heterogeneously delayed feedback, allows users to use fixed pa-
rameters of the control equation, and admits a low-overhead im-
plementation inside routers. We solve this problem by showing
that any single-link max–min fair system with a stable radial Ja-
cobian remains asymptotically stable under arbitrary directional
delays, extend this result to multilink networks under fixed bot-
tleneck assignments, and apply it to the original controller pro-
posed by Kelly et al. [15]. We call the result of these efforts
Max–min Kelly Control (MKC) and demonstrate that its stability
and fairness do not depend on any parameters of the network
(such as delay, path length, or the routing matrix of end users).
We also show that with a proper choice of AQM feedback, MKC
converges to efficiency exponentially fast, exhibits stability and
fairness under random delays, converges to fairness almost as
quickly as AIMD, and does not require routers to estimate any
parameters of individual flows.

By isolating bottlenecks along each path and responding only
to the most-congested resource, the MKC framework allows
for very simple stability proofs, which we hope will lead to a
better understanding of Kelly’s framework in the systems com-
munity and eventually result in an actual implementation of
these methods in real networks. Our initial thrust in this direc-
tion includes ns2 simulations of MKC, which show that finite
time-averaging of flow rates inside each router coupled with a
naive implementation of end-user functions leads to undesirable
transient oscillations, which become more pronounced when di-
rectional delays and to/from each router increase. We
overcome this drawback with simple changes at each end user
and confirm that the theoretically predicted monotonic conver-
gence of MKC is achievable in real networks, even when the
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routers do not know the exact combined rate of end-flows at
any time instant . We also show that our algorithms inside the
router incur low overhead (which is less than that in XCP [12]
or RED [7]) and require only one addition per arriving packet
and two variables per router queue.

The rest of this paper is organized as follows. In Section II, we
review related work. In Section III, we study delayed stability
and steady-state resource allocation of the classic Kelly con-
trols. In Section IV, we present MKC and prove its delay-inde-
pendent stability. In Section V, we evaluate convergence prop-
erties and steady-state properties of MKC. In Section VI, we
discuss various implementation issues of MKC and examine its
performance under highly variable delays through ns2 simula-
tions. In Section VII, we conclude our work and suggest direc-
tions for future research.

II. BACKGROUND

A. Delay-Dependent Congestion Control

Recently, a large amount of theoretical and experimental
work has been conducted on designing robust congestion
controls. One direction is to model the network from an opti-
mization or game-theoretic point of view [11], [17]–[19], [23].
The original work by Kelly et al. [14], [15] offers an economic
interpretation of the resource–user model, in which the entire
system achieves its optimal performance by maximizing the
individual utility of each end user. To implement this model in
a decentralized network, Kelly et al. describe two algorithms
(primal and dual) and prove their global stability in the absence
of feedback delay. However, if feedback delay is present in the
control loop, stability analysis of Kelly controls is nontrivial
and currently forms an active research area [4], [10], [20], [24],
[27], [29].

Recall that in Kelly’s framework [15], [24], each user
is given a unique route that consists of one or more

network resources (routers). Feedback delays in the network are
heterogeneous and directional. The forward and backward de-
lays between user and resource are denoted by and ,
respectively. Thus, the round-trip delay of user is the sum-
mation of its forward and backward delays with respect to any
router . Under this framework,
Johari et al. discretize Kelly’s primal algorithm as follows [10]:

(1)

where is a strictly positive gain parameter, can be inter-
preted as the willingness of user to pay the price for using the
network, and the network feedback

(2)

of user is the aggregate price of all resources in its path
. Here, is a function of the combined rate of all

incoming flows at router :

(3)

where represents the set of users sharing resource . Note that
we use a notation in which means immediate (i.e., most
recent) feedback and implies delayed feedback.

Next, recall that for a homogeneous delay , system (1) is
locally stable if [10]

(4)

where is the stationary point of user and is assumed
to be differentiable at .

For heterogeneous delays, a combination of conjectures made
by Johari et al. [10], derivations in Massoulié [24], and the
proofs of Vinnicombe [27] suggest that delay in can be simply
replaced with individual delays to form a system of sta-
bility equations; however, the proof exists only for the contin-
uous version of (1) and leads to the following sufficient stability
condition [27]:

(5)

Inspired by Kelly’s optimization framework, one addi-
tional method called MaxNet is proposed in [31] and is
aimed at improving convergence properties [30] of traditional
models of additive feedback. In MaxNet, each user obtains
feedback from the most congested
router in its path and applies to an unspecified control law

. Based on the technique developed in [26], the
authors prove that MaxNet is locally stable in generic networks
with fixed bottleneck assignments if ,
where and are, respectively, the equilibrium rate and
stationary feedback of flow .

B. Delay-Independent Congestion Control

To the best of our knowledge, the first delay-independent sta-
bility condition is due to Vinnicombe, who proposes and ex-
amines the following continuous fluid model of a network with
sources operating TCP-like algorithms [28]:

(6)

where
are constants, is the network feedback, and link price

is an approximation of packet loss at link
of capacity and buffer size . It is proven in [28] that the

above controller is locally stable if

(7)

Setting and , the resulting system achieves
delay-independent stability.

An additional result is available from [34], where Ying et al.
consider the following variant of controller (6):

(8)

where is a constant. The authors prove that (8) is globally
stable regardless of delay in general network topologies if

. This work is similar in spirit to ours; however, the
analysis and proposed methods are different.
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III. CLASSIC KELLY CONTROL

In this section, we discuss intuitive examples that explain the
cryptic formulas in the previous section and demonstrate in sim-
ulation how delays affect the stability of Kelly controls (1). We
then show that the original Kelly control [15], or any mechanism
that relies on the sum of feedback functions from individual
routers, exhibits a tradeoff between linear convergence to ef-
ficiency and persistent stationary packet loss. We subsequently
overcome both limitations in Section IV.

A. Delayed Stability Example

The following example illustrates stability problems of (1)
when feedback delays are large. We assume a single-source,
single-link configuration and utilize a congestion indication
function that computes the estimated packet loss using instan-
taneous arrival rates:

(9)

where is the link capacity and is the flow rate at dis-
crete step . We note that the price function in the orig-
inal Kelly control is nonnegative; however, as shown in [35],
this results in slow linear AIMD-like probing for link capacity
until the slowest link in the path is fully utilized, which is gener-
ally considered too slow for high-speed networks. Thus, under
AQM feedback assumed throughout this paper, we allow nega-
tive values in (9), which signals the flow to increase its sending
rate when . In Section V-A, we show that the nega-
tive component of packet loss (9) improves convergence to effi-
ciency from linear to exponential.

Applying (9) to Kelly control (1) yields a linear end-flow
equation

(10)

Next, assume a particular set of parameters: 10
mb/s, and mb/s. Solving the condition in (4), we
have that the system is stable if and only if delay is less than
four time units. As illustrated in Fig. 1(a), delay keeps
the system stable and monotonically convergent to its stationary
point. Under larger delays and in Fig. 1(b) and (c),
the flow exhibits progressively increasing oscillations before en-
tering the steady state. Eventually, as soon as becomes equal
to four time units, the system diverges as shown in Fig. 1(d).

Using the same parameter and reducing to 20 kb/s, we ex-
amine (10) via ns2 simulations, in which a single flow passes
through a link of capacity 50 mb/s. We run the flow in two net-
work configurations with the round-trip delay equal to 90 and
120 ms, respectively. As seen in Fig. 2, the first flow reaches its
steady state after decaying oscillations, while the second flow
exhibits no convergence and periodically overshoots capacity

by 200%.
Since Kelly controls are unstable unless condition (4) is satis-

fied [10], a natural strategy to maintain stability is for each end
user to adaptively adjust its gain parameter such
that (4) is not violated. However, this method depends on reli-
able estimation of round-trip delays and leads to unfairness
between the flows with different RTTs.

Fig. 1. Stability of Kelly control under different feedback delays (� = 1=2;
! = 10 mb/s, and C = 1000 mb/s). (a) D = 1, (b) D = 2, (c) D = 3, and
(d) D = 4.

Fig. 2. Simulation results of the classic Kelly control under different delays
(� = 1=2; ! = 20 kb/s, C = 50 mb/s). (a) D = 90 ms and (b) D = 120.

B. Stationary Rate Allocation

As mentioned in the previous subsection, price function (9)
should allow negative values such that the convergence speed of
Kelly control is improved from linear to exponential. However,
we show next that this modification presents a problem in the sta-
tionary resource allocation. Consider a network of resources
and homogeneous users (i.e., with the same parameters and

). Further assume that resource has capacity , user utilizes
route of length (i.e., ), and packet loss fed
back to user is the aggregate feedback from all resources in path

. We further assume that there is no redundancy in the network
(i.e., each user sends its packets through at least one resource and
all resources are utilized by at least one user). Thus, we can define
routing matrix such that if user passes through
resource (i.e., ) and otherwise. Further denote
the th column of by vector . Clearly, identifies the set

of flows passing through router .
Let

be the vector of sending rates of individual users observed at



ZHANG et al.: DELAY-INDEPENDENT STABILITY AND PERFORMANCE OF DISTRIBUTED CONGESTION CONTROL 841

router at time instant . In the spirit of (9), the packet loss of
resource at instant can be expressed as

(11)

where the dot operator represents vector multiplication. Then,
we have the following result.

Lemma 1: Let be the stationary rate
allocation of Kelly control (1) with packet-loss function (11).
Then satisfies

(12)

Proof: In the steady state, we can write the control equation
of user as follows:

(13)

where denotes the stationary feedback seen by user . Using
simple manipulations in (13), we have

(14)

Taking a summation of (14) for all users, we get

(15)

Assuming no redundant users or resources, we can rewrite (15)
as follows:

(16)

which completes the proof.
Lemma 1 provides a connection between the stationary re-

source allocation and the path length of each flow. Note that
according to (12), the stationary rates are constrained by the
capacity of all resources instead of by that of individual bot-
tlenecks. In fact, this observation shows an important difference
between real network paths, which are limited by the slowest re-
source, and the model of proportional fairness augmented with
(11), which takes into account the capacity of all resources in
the network. As demonstrated in [35], this difference leads to
significant overflow of slow routers and underutilization of fast
routers along a given path.

In the next section, we propose a new controller that over-
comes both drawbacks of controller (1) (i.e., instability under
delay and linear convergence to efficiency).

IV. STABLE CONGESTION CONTROL

A. Max–Min Kelly Control

We start our discussion with the following observations. First,
we notice that in the classic Kelly control (1), the end user
decides its current rate based on the most recent rate

and delayed feedback . Since the latter
carries information about , which was in effect RTT
time units earlier, the controller in (1) has no reason to involve

in its control loop. Thus, the sender quickly becomes
unstable as the discrepancy between and
increases. One natural remedy to this problem is to retard the
reference rate to become instead of and
allow the feedback to accurately reflect network conditions with
respect to the first term of (1).

Second, to avoid unfairness1 between flows, one must fix the
control parameters of all end users and establish a uniform set of
equations that govern the system. Thus, we create a new notation
in which and discretize Kelly control as
follows:

(17)

where is the congestion indication function of user .
Next, to overcome the problems of proportional fairness

described in the previous section and utilize negative network
feedback, we combine (17) with max–min fairness (this idea
is not new [12], [30]), under which the routers only feed back
the packet loss of the most congested resource instead of the
combined packet loss of all links in the path, as follows:

(18)

where is the congestion indication function of individual
routers that depends only on the aggregate arrival rate of
end users.

We call the resulting controller (17) MKC and emphasize that
flows congested by the same bottleneck receive the same feed-
back and behave independently of the flows congested by the
other links (see below for a justification of this). Therefore, in
the rest of this paper, we study the single-bottleneck case since
each MKC flow is always congested by only one router. Imple-
mentation details of how routers should feed back function (18)
and how end flows track the changes in the most congested re-
source are presented in the simulation section.

B. Delay-Independent Stability

Before restricting our analysis to MKC, we examine a wide
class of delayed control systems, whose stability directly fol-
lows from that of the corresponding undelayed systems. We sub-
sequently show that MKC belongs to this category and obtain a
very simple proof of its stability. We start by introducing the fol-
lowing definition of induced matrix norms, which is used later
in the paper.

1While “fairness” is surely a broad term, we assume its max–min version in
this paper.
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Definition 1 [8]: Matrix norm is induced by a given
vector norm if

(19)

For instance, the spectral norm (where
is the conjugate transpose of ) is induced by the vector

norm . Using this definition, we intro-
duce the class of radial matrices as follows.

Definition 2: Matrix is radial (also called normaloid in the
context of operator norms) if .

It is not difficult to see that radial matrices include symmetric
, skew-symmetric , Hermitian

, skew-Hermitian , unitary , and
circulant matrices (see below for the definition). Then, we have
the following theorem.

Theorem 1: Assume an undelayed linear system with
flows, as follows:

(20)

If coefficient matrix is radial, then the following
system with arbitrary heterogeneous directional delays
and

(21)

is asymptotically stable if and only if is stable.
Proof: We start with proving the sufficient condition. As-

sume that is stable, i.e., . Applying -transform to
system (21), we obtain

(22)

where and are the diag-
onal matrices of directional delays and , and is
the vector of -transforms of each flow rate :

(23)

Notice that system (21) is stable if and only if all poles of its
-transform are within the unit circle in the -plane [13].

To examine this condition, reorganize the terms in (22), as
follows:

(24)

Next, notice that the poles of are simply the roots of

(25)

Thus, ensuring that all roots of (25) are inside the open unit
circle will be both sufficient and necessary for system (21) to
be stable. Bringing in the notation ,
we can rewrite as follows:

(26)

Noticing that and are strictly nonzero for non-
trivial , we can reduce (25) to

(27)

where and .
To prove that all roots of (27) lie in the open unit circle, we

suppose in contradiction that there exists a root such
that . Denote by matrix . Following [25]
and using basic matrix algebra, notice that there exists a nonzero
vector such that . Since matrix is radial and in-
voking Definitions 1 and 2, we can write and

(28)

Since is diagonal with is simply a
vector . This leads to

(29)

Thus, we get that both and must be
satisfied simultaneously, which is a contradiction. This means
that no can be a root of and that any heterogenous
system with a radial stable matrix is stable under arbitrary
delay. Proof of the necessary condition is obvious and omitted
for brevity.

Theorem 1 opens an avenue for inferring stability of delayed
linear systems based on the coefficient matrices of the corre-
sponding undelayed systems. Moreover, it is easy to see that
Theorem 1 applies to nonlinear systems as stated in the fol-
lowing corollary.

Corollary 1: Assume an undelayed -dimensional nonlinear
system :

(30)

where is the set of nonlinear functions
defining the system. If the Jacobian matrix of this system is
radial, system with arbitrary directional delays and

(31)

is locally asymptotically stable in the stationary point if and
only if is stable in .

Based on the above principles, we next prove local stability
of MKC under heterogeneous feedback delays.

C. Single-Link Stability of MKC

Consider an MKC system with a generic feedback function
in the form of (18), which we assume is differentiable in

the stationary point and has the same first-order partial deriva-
tive for all end users. Our goal is to derive sufficient and neces-
sary conditions for the stability of (17) and (18) under arbitrarily
delayed feedback.

We first prove MKC’s stability in a single-link network
containing users with corresponding delays
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to/from the bottleneck router given by and . Then, we
can simplify (17)–(18) by dropping index of the bottleneck
resource and expanding in (17), as follows:

(32)

where

(33)

is the packet-loss function of the bottleneck router. Notice that
in (32) can be represented as

and that controller (32)–(33) has the same shape as that in (31).
To invoke Theorem 1, our first step is to show stability of the

following undelayed version of (32) and (33):

(34)

Theorem 2: Undelayed -dimensional system (34) with
feedback that is common to all users has a symmetric
Jacobian and is locally asymptotically stable if and only if

(35)

(36)

where is the fixed point of each individual user, vector
is the fixed point of the entire system, and

is the steady-state packet loss.
Proof: We first derive the stationary point of each indi-

vidual user. Since all end users receive the same feedback and
activate the same response to it, all flows share the bottleneck re-
source fairly in the steady state, i.e., for all . Using
simple manipulations in (34), we get the stationary individual
rate as follows:

(37)

Linearizing the system in

(38)

(39)

where . Since packet loss depends
on the aggregate rate of all users, has the same first partial
derivative evaluated in the fixed point for all users, which im-
plies that for any users and , we have

(40)

This observation leads to a simple Jacobian matrix for MKC:

...
...

. . .
...

(41)

where

(42)

Clearly, Jacobian matrix is circulant2 and thus its th eigen-
value is given by [1]

(43)

where is one of the th
roots of unity. We only consider the case of ; otherwise,
the only eigenvalue is simply . Then, it is not difficult to get
the following result:

(44)

where the last transition holds since for all .
Next, recall that nonlinear system (34) is locally stable if and

only if all eigenvalues of its Jacobian matrix are within the
unit circle [13]. Therefore, we get the following necessary and
sufficient local stability conditions:

(45)

To ensure that each lies in the unit circle, we examine the
two conditions in (45) separately. First, notice that

, which immediately leads to the following:

(46)

Applying the same substitution to the second inequality in (45),
we obtain

(47)

Thus, system (34) is locally stable if and only if both (46) and
(47) are satisfied.

According to the proof of Theorem 2, Jacobian of the un-
delayed system (34) is symmetric and therefore is radial. Com-
bining this property with Corollary 1, we arrive at the following
result.

Corollary 2: Heterogeneously delayed MKC (32)–(33) is
locally asymptotically stable if and only if (35) and (36) are
satisfied.

Corollary 2 is a generic result that is applicable to MKC (17)
with a wide class of congestion-indicator functions . Fur-
ther note that for a given bottleneck resource with pricing func-
tion and the set of its users, conditions (35) and (36) are
easy to verify and do not depend on feedback delays, the number
of hops in each path, or the routing matrix of all users. This is
in contrast to many current studies [10], [24], [27], [29], whose
results are dependent on individual feedback delays and the
topology of the network.

D. Multi-Link Stability of MKC

As discussed in [36], rigorous global stability analysis of
max–min systems under general conditions (e.g., dynamically
changing bottlenecks) is a very complicated issue. We leave
this problem for future work and instead show MKC’s stability
in networks with certain types of fixed bottleneck assignments.
Specifically, for a given bottleneck assignment ,
where is the link from which flow receives its feedback,
let denote the fact that flow passes through flow ’s

2A matrix is called circulant if it is square and each of its rows can be obtained
by shifting (with wrap-around) the previous row one column right [1].
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bottleneck while being restricted at some other link .
In this case, we call flows and , respectively, unresponsive
and responsive with respect to link . Then, we can construct
a directed dependency graph based on relationship and
prove the following property of under max–min feedback.

Lemma 2: For any system with max–min feedback (18) that
can stabilize its bottleneck assignment , the resulting
dependency graph is acyclic.

Proof: Suppose that the bottleneck assignment does not
change over time and the dependency graph has a directed cycle

for some . Notice that since flow
is unresponsive with respect to flow , its stationary packet

loss must be larger than (otherwise, would have
switched its bottleneck to ). Generalizing this to the entire
cycle, we immediately get a contradiction

. Assuming a consistent tie-breaking rule obeyed by
all flows, the above argument applies to cases where multiple
routers have equal steady-state loss.

Generalizing this lemma, we define a bottleneck assignment
as consistent if it has an acyclic dependency graph. Then, we
have the following result.

Lemma 3: MKC with a consistent bottleneck assignment
contains at least one link that has no unresponsive

flows.
Proof: Assume in contradiction that each router has some

unresponsive flow passing through it and that this situation
persists over time. Take the first unresponsive flow and no-
tice that it is affected by some other unresponsive flow, which
we label , passing through ’s bottleneck . This leads
to . Repeating this reasoning for , we get

, for some unresponsive flow at bottleneck .
This process continues and creates an infinite sequence

. Since the number of unresponsive flows is
finite, there is a point when the sequence repeats itself (i.e.,

), and we obtain a cycle in the dependency
graph.

Equipped with Lemmas 2 and 3, we next prove MKC’s sta-
bility under any time-invariant bottleneck assignment.

Theorem 3: Under any stationary bottleneck assignment with
feedback (18), MKC is locally asymptotically stable regardless
of delay if and only if individual bottlenecks are.

Proof: Since bottlenecks do not shift and MKC relies
on max–min feedback, Lemma 2 implies that the dependency
graph is acyclic and bottleneck assignment is consistent. Using
Lemma 3, there exists at least one router with no unrespon-
sive flows. Then, it follows that all flows passing through
are bottlenecked by and their stability is independent of the
dynamics of the remaining flows. After the users bottlenecked
by converge to their stationary rates, we can remove
and all of its (constant-rate) flows from the system. The new
network still exhibits max–min bottleneck assignment and
thus contains some router that has no unresponsive flows.
Repeating this argument for all routers , we obtain
that the local dynamics of the entire system can be viewed
as a system of linear block-diagonal equations with matrix

, where is the Jacobian
matrix of flows bottlenecked at router .
We conclude that the entire system achieves delay-independent
stability if and only if the individual bottlenecks do.

E. Exponential MKC

To understand the practical implications of the derivations
above, consider a particular packet-loss function in (33):

(48)

where we again assume a network with a single link of capacity
and users. This is a rather standard packet-loss function

with the exception that we allow it to become negative when
the link is underutilized. As we show in the next section, (48)
achieves exponential convergence to efficiency, which explains
why we call the combination of (32) and (48) Exponential MKC
(EMKC).

Theorem 4: Heterogeneously delayed single-link EMKC
(32), (48) is locally asymptotically stable if and only if

.
Proof: We first derive the fixed point of EMKC. Notice

that in the proof of Theorem 2, we established the existence of a
unique stationary point for each flow. Then assuming
EMKC packet-loss function (48), we have

(49)

Combining (49) and (37), we get the stationary point of each
end user:

(50)

Denoting by the combined rate of all
end users at time , the corresponding combined stationary

rate is:

(51)

Next, recall from Theorem 2 that stability conditions
(35)–(36) must hold for the delayed system to be stable. Conse-
quently, we substitute pricing function (48) into (36) and obtain
with the help of (51):

(52)

Thus, condition (36) becomes

(53)

Notice that in the steady state, packet-loss probability is no
larger than one. Hence, the last condition is more conservative
than (35), which allows us to conclude that when ,
all eigenvalues of Jacobian matrix are inside the unit circle.
Applying Corollary 2, heterogeneously delayed EMKC defined
by (32) and (48) is also locally asymptotically stable if and only
if .

EMKC’s multilink stability follows from Theorem 3.
Corollary 3: Under any stationary bottleneck assignment

with feedback (18) and (48), EMKC is locally asymptotically
stable regardless of delay if and only if .

We additionally note that global asymptotic stability of
EMKC under homogeneous delay has been proved in [37]
and simulations suggest that EMKC is also globally stable
under heterogeneous (or even random) delays. All these results
support our earlier conclusion that EMKC is a stable and fair
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controller regardless of delays, which is a requirement for any
practical method in the current Internet.

V. PERFORMANCE OF EMKC

A. Convergence to Efficiency

In this section, we show that EMKC converges to efficiency
exponentially fast.

Lemma 4: For and constant delay , the com-
bined rate of EMKC is globally asymptotically stable and
converges to at an exponential rate.

Proof: Since delays do not affect the stability of EMKC,
assume a constant feedback delay and rewrite (32), as
follows:

(54)

where is the undelayed version of (48). Taking the sum-
mation of (54) for all flows, we get that EMKC’s combined
rate forms a linear system:

(55)

It is clear that the above linear system is stable if and only if
. Since convergence of linear systems implies global

asymptotic stability, we conclude that is globally stable
regardless of individual flow trajectories .

We next show the convergence speed of . Recursively
expanding the last equation, we have:

(56)

where is the initial combined rate of all flows and
is the combined stationary rate. Notice that for

, the first term in (56) approaches zero exponentially fast
and indeed converges to .

From (56), notice that the value of affects the convergence
behavior of EMKC. Specifically, for , the system
monotonically converges to the stationary point; however, for

, the system experiences decaying oscillations before
reaching the stationary point, which are caused by the oscillating
term in (56). Thus, in practical settings, should
be chosen in the interval , where values closer to 1 result
in faster convergence to efficiency.

B. Convergence to Fairness

We next investigate the convergence rate of EMKC to fair-
ness. To better understand how many steps EMKC requires to
reach a certain level of max–min fairness, we utilize a simple
metric that we call -fairness. For a given small positive con-
stant , a rate allocation is -fair, if

(57)

Generally, -fairness assesses max–min fairness by mea-
suring the worst-case ratio between the rates of any pair of
flows. Given the definition in (57), we have the following result.

Theorem 5: Consider an EMKC network with users and
a bottleneck link of capacity . Assuming that the system is

started in the maximally unfair state, -fairness is reached in
steps, where

(58)

Proof: Let be the pair of initially maximally un-
fair flows, i.e., the difference between their initial sending
rates , where , is maximal
among that of any two flows. Notice that under MKC and the
assumption of synchronization, are always maximally
unfair during the entire process till certain fairness threshold is
reached. Then we have

(59)

Thus, the fairness index at step becomes

(60)

since . Hence, to achieve -fairness, we have

(61)

which yields

(62)

Assuming and substituting and
in (62), we get

(63)

Adding the omitted terms on the order of to (63), we
arrive at (58).

A comparison of model (58) to simulation results is shown in
Fig. 3(a) (note that in the figure, the model is drawn as a solid
line and simulation results are plotted as isolated triangles). In
this example, we use a bottleneck link of capacity 1 mb/s
shared by two EMKC flows, which are initially separated by the
maximum distance, i.e., . As seen from
the figure, the number of steps predicted by (58) agrees with
simulation results for a wide range of .

As noted in the previous section, parameter is responsible
for the convergence speed to efficiency; however, as seen in (58),
it has little effect on the convergence rate to fairness (since typ-
ically ). In contrast, parameter has no effect on
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Fig. 3. (a) Verification of model (58) against EMKC simulations (C = 1 mb/s,
� = 10 kb/s, and � = 0:5). (b) Exponential and linear rates of convergence to
fairness for EMKC (" = 0:1).

convergence to efficiency in (56), but instead determines the
convergence rate to fairness in the denominator of (58). Also
observe the following interesting fact about (58) and the suit-
ability of EMKC for high-speed networks. As increases, the
behavior of changes depending on whether remains fixed
or not. For a constant , (58) scales linearly with ; how-
ever, if the network provider increases the number of flows as
a function of and keeps -fairness is reached in

steps. This implies exponential convergence to fair-
ness and very good scaling properties of EMKC in future high-
speed networks. Both types of convergence are demonstrated in
Fig. 3(b) for constant and variable (for
the latter case, is taken to be in kb/s). As the figure shows,
both linear and logarithmic models obtained from (58) match
simulations well.

We next compare EMKC’s convergence speed to that of rate-
based AIMD. Recall that rate-based AIMD adjusts its
sending rate according to the following rules assuming
and

per RTT
per loss.

(64)

Theorem 6: Under the assumptions of Theorem 5, rate-based
AIMD reaches -fairness in steps, where

(65)

Proof: Assume that flows are synchronized and reach full
link utilization at time instants . We again assume that

and neglect the random amount of overshoot, which
generally fluctuates between 0 and . Analysis below focuses
on two maximally unfair flows and (i.e.,

) since these flows solely determine max-min fairness of the
system. After packet loss is detected at time , the immediate
rate reduction brings rates and to
and and the combined rate of all users drops to

. Following this reduction, the combined rate is then
incremented by per RTT until it reaches at time .
This implies that at the end of interval , each flow’s
rate is increased by , meaning that flows and
climb back to and , respec-

Fig. 4. (a) Verification of model (65) against AIMD simulations (C = 1 mb/s,
� = 10 kb/s, and � = 0:5). (b) Ratio � =� for fixed and variable N .

tively. Hence, the new rates when the flows hit the efficiency
line for the th time are

(66)

(67)

It is not difficult to see that the distance between any two flows
shrinks exponentially, as follows:

(68)

Using simple manipulations, we have max–min fairness

(69)

where constant .
The number of packet-loss intervals to reach -fairness is

no more than , while the number of increase steps
during each packet-loss interval is . Thus, the total
number of steps to convergence is

(70)

Accounting for random overshoot and neglected terms, we get
(65).

Fig. 4(a) verifies that model (65) is also very accurate for a
range of different . Notice from (58) and (65) that the speed of
convergence to fairness between AIMD and EMKC differs by a
certain constant coefficient. The following corollary formalizes
this observation.

Corollary 4: For the same parameters such that
, AIMD reaches -fairness

times faster than EMKC.
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For TCP and , this difference is by a factor of
, which holds regardless of whether is fixed or

not as demonstrated in Fig. 4(b). We should finally note that as
term becomes large, MKC’s performance improves
and converges to that of AIMD.

C. Packet Loss

As seen in previous sections, EMKC converges to the com-
bined stationary point , which is above ca-
pacity . This leads to constant (albeit usually small) packet
loss in the steady state. However, the advantage of this frame-
work is that EMKC does not oscillate or react to individual
packet losses, but instead adjusts its rate in response to a gradual
increase in . Thus, a small amount of FEC can provide
a smooth channel to fluctuation-sensitive applications such as
video telephony and various types of real-time streaming. Be-
sides being a stable framework, EMKC is also expected to work
well in wireless networks where congestion-unrelated losses
will not cause sudden reductions in the flow rates.

Also notice that EMKC’s steady-state packet loss
increases linearly with the number

of competing flows, which causes problems in scalability to a
large number of flows. However, it still outperforms AIMD,
whose increase in packet loss is quadratic as a function of
[21]. Furthermore, if the network provider keeps ,
EMKC achieves constant packet loss in addition to exponential
convergence to fairness.

Finally, observe that if the router is able to count the number
of flows, zero packet loss can be obtained by adding a constant

to the congestion indication function [3]. How-
ever, this method is impractical, since it needs nonscalable esti-
mation of the number of flows inside each router. Hence, it is
desirable for the router to adaptively tune so that the system
is free from packet loss. One such method is AVQ (Adaptive Vir-
tual Queue) proposed in [17] and [20]. We leave the analysis of
this approach under heterogeneous delays and further improve-
ments of EMKC for future work.

VI. IMPLEMENTATION

We next examine how to implement scalable AQM functions
inside routers to provide proper feedback to MKC flows. This is
a nontrivial design issue since the ideal packet loss in (48) relies
on the sum of instantaneous rates , which are never known
to the router. In such cases, a common approach is to approx-
imate model (48) with some time-average function computed
inside the router. However, as mentioned in the introduction,
this does not directly lead to an oscillation-free framework since
directional delays of real networks introduce various inconsis-
tencies in the feedback loop and mislead the router to produce
incorrect estimates of .

In what follows in this section, we provide a detailed de-
scription of various AQM implementation issues and simulate
EMKC in ns2 under heterogeneous (including time-varying)
feedback delays.

A. Packet Header

As shown in Fig. 5, the MKC packet header consists of two
parts—a 16-byte router header and a 4-byte user header. The

Fig. 5. Packet format of MKC.

router header encapsulates information that is necessary for the
router to generate precise AQM feedback and subsequently for
the end user to adjust its sending rate. The field is a unique
label that identifies the router that generated the feedback (e.g.,
its IP address). This field is used by the flows to detect changes in
bottlenecks, in which case they wait for an extra RTT before re-
sponding to congestion signals of the new router. The field is
a local variable incremented by the router each time it produces
a new value of packet loss (see below for more). Finally, the

field carries the length of the averaging interval used by the
router in its computation of feedback.

The field is necessary for end flows to determine the rate
that was in effect RTT time units earlier. The sim-

plest way to implement this functionality is to inject the value
of into each outgoing packet and then ask the receiver to
return this field in its acknowledgments. A slightly more sophis-
ticated usage of this field is discussed later in this section.

B. The Router

Recall that MKC decouples the operations of users and
routers, allowing for a scalable decentralized implementation.
The major task of the router is to generate its AQM feedback
and insert it in the headers of all passing packets. However,
notice that the router never knows the exact combined rate of
incoming flows. Thus, to approximate the ideal computation
of packet loss, the router conducts its calculation of on a
discrete time scale of time units. For each packet arriving
within the current interval , the router inserts in the packet
header the feedback information computed during the previous
interval . As a consequence, the feedback is retarded by

time units inside the router in addition to any backward
directional delays . Since MKC is robust to feedback delay,
this extra time units does not affect stability of the system.
We provide more implementation details below.

During interval , the router keeps a local variable , which
tracks the total amount of data that has arrived into the queue
(counting any dropped packets as well) since the beginning
of the interval. Specifically, for each incoming packet from
flow , the router increments by the size of the packet:

. In addition, the router examines whether its
locally recorded estimate of packet loss (which was calculated
in the previous interval ) is larger than the one carried in the
packet. If so, the router overrides the corresponding entries in
the packet and places its own router ID, packet loss, and se-
quence number into the header. In this manner, after traversing
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the whole path, each packet records information from the most
congested link.3

At the end of interval , the router approximates the com-
bined arriving rate by averaging
over time

(71)

Based on this information, the router computes an estimate of
packet loss using

(72)

where is the capacity of the outgoing link known to the router
(these functions are performed on a per-queue basis).

After computing , the router increments its packet-loss se-
quence number (i.e., ) and resets variable to
zero. Newly computed values and are then inserted into
qualified packets arriving during the next interval and are sub-
sequently fed back by the receiver to the sender. The latter ad-
justs its sending rate as we discuss in the next section.

C. The User

MKC employs the primal algorithm (17)–(18) at the end users
who adjust their sending rates based on the packet loss gener-
ated by the most congested resources of their paths. However,
to properly implement MKC, we need to address the following
issues.

First, most existing congestion control algorithms are
window-based, while MKC is a rate-based method. This means
that, instead of sending out a window of packets at once, each
MKC user needs to properly pace its outgoing packets and
maintain its sending rate at a target value . We implement
this mechanism by explicitly calculating the interpacket interval

of each packet

(73)

where is the size of packet of user .
Second, notice that ACKs carrying feedback information

continuously arrive at the end user and, for the most part,
contain duplicate feedback (assuming is sufficiently large).
To prevent the user from responding to redundant or sometimes
obsolete feedback caused by reordering, each packet carries
a sequence number , which is modified by the bottleneck
router and is echoed by the receiver to the sender. At the same
time, each end user maintains a local variable , which
records the largest value of observed by the user so far.
Thus, for each incoming ACK with sequence , the user
responds to it only when . This allows MKC senders
to pace their control actions such that their rate adjustments and
the router’s feedback occur on the same timescale.

3Note that multipath routing is clearly a problem for this algorithm; however,
all existing AQM congestion control methods fail when packets are routed in
parallel over several paths.

Fig. 6. Naive EMKC implementation: (a) one ns2 flow (� = 100 kb/s, � =

0:9, and � = 50 ms) passes through a bottleneck link of capacity 10 mb/s;
(b) inconsistent feedback and reference rate.

Third, recall from (17) and (18) that MKC requires both the
delayed feedback and the delayed reference rate

when deciding the next sending rate. Thus, the next problem
to address is how to correctly implement the control (17). We
develop two strategies for this problem below.

1) Naive Implementation: One straightforward option is to
directly follow (17) based on the rate that was in effect exactly

time units earlier. Since round-trip delays fluctuate, the most
reliable way to determine is to carry this informa-
tion in the field of each packet (see Fig. 5). When the re-
ceiver echoes the router fields to the sender, it also copies the

field into the acknowledgment. We show the performance of
this strategy via ns2 simulations in Fig. 6(a), in which a single
MKC flow passes through a bottleneck link of capacity 10 mb/s.
We set to 100 kb/s, to 0.9, packet size to 200 bytes, and
router sampling interval to 50 ms. As seen from Fig. 6(a),
the sending rate converges to its stationary point in less than 2
s and does not exhibit oscillations in the steady state; however,
the flow exhibits transient oscillations and overshoots by over
200% in the first quarter of a second. Although this transient be-
havior does not affect stability of the system, it is greatly unde-
sirable from the practical standpoint.

2) Proper Implementation: To remove the transient oscilla-
tions, we first need to understand how they are created. Notice
from (71) that since the router calculates the packet loss based
on the average incoming rate over interval , it is possible that
packets of different sending rates and arrive to
the router during the same interval . Denote by the time
when user receives the th nonduplicate feedback . Since
the user responds to each feedback only once, it computes new
sending rates at time instances . To better under-
stand the dynamics of a typical AQM control loop, consider the
illustration in Fig. 6(b). In the figure, the router generates feed-
back and exactly units apart. This feedback
is randomly delayed by time units and arrives to the user
at instances and , respectively. In response to
the first feedback, the user changes its rate from to

; however, the router observes the second rate only at
time . At the end of the th interval , the
router averages both rates and to produce
its feedback as shown in the figure.

When the control loop is completed, the user is misled to be-
lieve that feedback refers to a single rate and
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Fig. 7. Proper EMKC implementation: (a) graphical explanation of the algo-
rithm; (b) one ns2 flow (� = 100 kb/s, � = 0:9, and � = 50 ms) passes
through a link of capacity 10 mb/s.

forced to incorrectly compute . This inconsistency is es-
pecially pronounced in the first few control steps during which
flows increase their rates exponentially and the amount of error
between the actual rate and the reference rate is large.

Instead of changing the router, we modify the end users to
become more sophisticated in their processing of network feed-
back. The key is to allow end users to accurately estimate their
own contribution to in (71) and determine their average rates
seen by the router during interval . For each outgoing packet

, MKC sender places the packet’s sequence number in the
field and records in local memory the size of the packet
and its sequence number . Upon arrival of the th nondu-

plicate feedback at time , the end flow extracts the
field from the acknowledgment and records its value in variable

, which is the sequence number of the packet that generated
feedback . To compute the new rate , the user calcu-
lates the amount of data that it has transmitted between packets

and and normalizes the sum by , which
is exactly the average rate used by the router in generation of

.
To visualize this description, consider Fig. 7(a), in which the

end flow is about to decide its sending rate at time .
Notice in the figure that feedback is based on all packets of
flow with sequence numbers between and .
Through the use of , we obtain a projection of the time
interval used by the router in its computation of onto the
sequence-number axis of the end user.4 Given the above discus-
sion, the user computes its average rate as

(74)

and utilizes it in its control equation

(75)

Next, we turn our attention to the ns2 simulation in Fig. 7(b)
and examine the performance of this strategy with a single flow.

4Note that this approach is robust to random delays but may be impeded by
severe packet loss at the router.

Fig. 8. Four EMKC (� = 10 mb/s, � = 0:9, and � = 100 ms) flows in the
“dumb bell” topology.

The figure shows that (74) and (75) successfully eliminate tran-
sient oscillations and offer fast, monotonic convergence to the
steady state.

Our next example shows the performance of the new im-
plementation (74)–(75) with multiple flows. The simulation
topology of this example is illustrated in Fig. 8(a): four EMKC
flows access a common bottleneck link of capacity 500 mb/s.
The round-trip propagation delays of the four flows are, respec-
tively, 10, 100, 500, and 1000 ms. As Fig. 8(b) shows, flow
starts with an initial rate 100 kb/s and reaches link utilization
in less than 1 s. When flow joins at time 10 s, a flow rate of

is driven down toward the new stationary rate 261.1 mb/s,
and 99% fairness is achieved in 25 s. This behavior repeats as
flows and start, respectively, at time 40 and 120 s, and
the system quickly restabilizes in the new equilibrium without
any transient oscillations.

D. Multi-Link Simulations

After demonstrating EMKC’s single-link performance,
we proceed to examine the multilink topology illustrated in
Fig. 9(a). In this topology, capacities of links – – ,
and – are respectively 300, 200, and 180 mb/s, the corre-
sponding round-trip propagation delays are 10, 500, and 100
ms, and the sampling intervals are 100, 100, and 99 ms. In
the network, there are three short flows – , respectively,
utilizing links – – , and – and one long flow

passing through all three links.
The simulation result of EMKC employing implementation

(74)–(75) is plotted in Fig. 9(b). Flow starts first and reaches
the utilization of the bottleneck link – in 2 s. As flow
joins at time 40 s, the bottleneck of switches to link –
and both and converge to fairness. Similarly, when
starts at time 80 s, link – becomes the new bottleneck of

. As a consequence, and converge toward the new fair
rate and climbs up and collects the residual bandwidth on
link – . The individual sending rates are smooth during the
first 120 s. However, after flow joins, the system suffers sus-
tained oscillations during the period from time 124 through 151
s. The oscillation is especially severe for , whose sending rate
reaches as high as 788.5 mb/s at time 125.7 s, overshooting the
bottleneck – by over 300%.

We next investigate the underlying reason for this oscillation.
Observe that as the sending rate of increases, the bottleneck
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Fig. 9. (a) “Parking lot” topology; (b) Naive implementation of EMKC (� =

10 mb/s and � = 0:9) in the “parking lot” topology.

of flow switches from link – to – . Since it is pos-
sible for this switching to occur in the middle of the bottleneck
router’s sampling interval, the computed packet loss could be
inconsistent with the end user’s reference rate. This results in
fluctuations in the sending rate and is the primary reason for
the “spike” shown in Fig. 9(b). Moreover, this situation could
be exacerbated when multiple resources with close capacities
(e.g., 180 and 200 mb/s in this case) exist in the path of a cer-
tain user, since fluctuating input rate at the routers will cause
fluctuating packet loss, which could eventually lead to oscilla-
tions of the bottleneck link and aggravate the rate oscillations of
the end users. This explains the oscillations after the spike.

We emphasize that these problems do not indicate instability
of EMKC, but arise as the result of discretized implementation
of the theoretical model given by (32) and (48). To properly deal
with multibottleneck networks, we develop several strategies to
manage bottleneck switching. First, we force the end user to
delay its response to the ACK for one RTT once a bottleneck
switch is detected. By doing this, the packet loss carried in the
next nonduplicate ACK will be consistent with the reference rate

computed by the user. Second, we damp the bottleneck
oscillations resulting from multiple routers with close capaci-
ties by introducing a threshold value such that the end user
authorizes a bottleneck switch if only if the difference between
the old packet loss and the packet loss carried in the ACK is
greater than .

To examine the effectiveness of this mechanism, we redo the
simulation in Fig. 9(b) using this new algorithm and plot the
result in Fig. 10(a). As seen in the figure, this implementation
removes the oscillations that originally occurred when joined
the system. Starting from time 160 s, flows , and ter-
minate with a 40-s delay, and there is no oscillation in both the
transient phase and the steady state.

We next incorporate randomness into the feedback delay of
individual flows and test EMKC in settings with highly variable
delays. To implement time-varying delay, we maintain a local
queue at the receiving end of each flow and force the ACKs to
pass through this queue before being echoed to the sender. For
every successfully transmitted acknowledgments, the system
delays the head packet in the queue by seconds and the other
packets by 10 s. Here, time-varying variables and are
uniformly distributed in [0.5, 1] and [500000, 1000000], re-
spectively. All packets between the -second delay spikes are

Fig. 10. Proper implementation of EMKC (� = 10 mb/s, � = 0:9, and � =

0:01) in the “parking lot” topology. (a) Constant delay; (b) random delay.

drained at the wire speed of the return path, which ensures that
the queue is completely emptied before the next spike is gener-
ated. We preserve the topology in Fig. 9(a) except that the round-
trip propagation delay of each flow is fixed to be 10 ms such that
the effect of random delay is more evident. The simulation re-
sult is depicted in Fig. 10(b), in which the system exhibits delay-
independent asymptotic stability, fast convergence to the sta-
tionary point, and smooth transitions between the neighboring
states.

VII. CONCLUSION

This paper investigated the properties of Internet congestion
controls under non-negligible directional feedback delays. We
focused on the class of control methods with radial Jacobians
and showed that all such systems are stable under hetero-
geneous delays. To construct a practical congestion control
system with a radial (symmetric in particular) Jacobian, we
made two changes to the classic discrete Kelly control and
created a max–min version we call MKC. Combining the latter
with a negative packet-loss feedback, we developed a new
controller EMKC and showed in theory and simulations that it
offers smooth sending rate and fast convergence to efficiency.
Furthermore, we demonstrated that EMKC’s convergence
rate to fairness is exponential when the network provider
scales the number of flows as and linear otherwise.
From the implementation standpoint, EMKC places very little
burden on routers, requires only two local variables per queue
and one addition per arriving packet, and allows for an easy
implementation both in end-to-end environments and under
AQM support. Our future work involves improvement of the
convergence speed to fairness and design of pricing schemes
for EMKC to achieve loss-free performance regardless of the
number of flows .
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