ABS: Adaptive Buffer Sizing for Heterogeneous Networks

Presented by A. L. Narasimha Reddy

Yueping Zhang and Dmitri Loguinov

Texas A&M University College Station, TX 77843

June 2nd, 2008

<u>Agenda</u>

- Introduction
 - Overview of existing buffer sizing rules
- Adaptive Buffer Sizing (ABS)
 - Motivation
 - Basic control design
 - Adaptive parameter training
- Simulations
- Conclusions

Why Does Buffer Sizing Matter?

- I/O buffer is one of the key components of Internet routers, in that it
 - Absorbs transient burstiness in packet arrivals
 - Provides certain performance guarantees, such as packet loss rate, queuing delay, and link utilization
- Improperly sized router buffers can impose an adverse impact on the system's performance
- However, there is no consensus on how to determine the optimal buffer size given a system configuration

Existing Criteria – Rule-of-Thumb

- The rule-of-thumb (Villamizar *et al.* 1994) suggests that the buffer size *b* be at least the product of link capacity *C* and average RTT *R*
- This classic principle has the following limitations
 - It is derived from scenarios where only synchronized long-lived flows are present, which rarely happens in real Internet routers
 - As link speed increases, the amount of memory space required by this rule becomes progressively more unrealistic

Existing Criteria – Small Buffer Rules I

- In Internet core routers, the aggregate window size process converges to a Gaussian process
- Based on this assumption, Appenseller *et al.* prove that when router buffers are sized to $b = CR/N^{0.5}$, link utilization is lower bounded by 98.99%
- Utilizing optimization theory, Avrachenkov *et al.* derive the optimal buffer size of N unsynchronized TCP flows to be $b = (CR)^2/32N^3$
- Both principles deviate from the rule-of-thumb in that they suggest that b should scale inversely proportional to N

Existing Criteria – Small Buffer Rules II

- The small-buffer rules are further extended by Enachescu *et al.*, who suggest that buffers be 10-20 packets if TCP senders implement *Paced TCP*
- All small-buffer criteria assume Poisson arrivals
 - This may be sound for backbone routers, but is not valid for general Internet routers
- In addition, these rules are obtained with an aim to achieve high link utilization
 - They do not consider other performance metrics, such as queuing delay and packet loss rate

Existing Criteria – BSCL

- To address these issues, Dovrolis *et al.* propose a set of buffer-sizing rules called **Buffer Sizing for Congested Links** (BSCL)
- Under utilization constraint, the minimum buffer is $b = \frac{p(N)CR - 2SN(1 - p(N))}{2 - p(N)}$ Fraction of flows that see

at least one packet loss

Under loss rate constraint, the buffer size is

$$b = 0.87 N / \sqrt{p^*} - C R_p$$
 propagation delay

target loss rate

- In contrast to small-buffer rules, this formula indicates that buffer size should be proportional to flow population N
- If both constraints are in effect, buffer size should be the larger of the above two 7

Existing Criteria – ADT

 Another method Adaptive Drop Tail (ADT) proposed by Rade et al. formulates the relationship between buffer size and utilization as a sector-bounded nonlinearity and employs the following dynamic buffer sizing algorithm

$$b(n) = b(n-1) + K(u^* - u(n))$$

where K is an unspecified parameter satisfying $K \in (0, 2/k_2)$ and k_2 is the sector nonlinearity upper bound

• It is unclear how to set K and k_2 in practice

Existing Criteria – Summary

- All buffer-sizing rules established so far are based on certain explicit modeling of the Internet traffic
 - But the Internet is such a complex system that its dynamics are difficult, if ever possible, to precisely model
- Existing work (McKeown *et al.*) concludes that it is premature to deploy any existing buffer-sizing criteria without a comprehensive theoretical tool that incorporates
 - all traffic patterns
 - network topologies
 - router architectures
 - transient and stationary system dynamics
 - proper performance metrics

Objectives of the Presented Work

- Can we achieve the goal of buffer sizing without comprehensive knowledge of Internet dynamics?
- Can we design simple yet robust buffer-sizing methods under generic Internet traffic (i.e., mixtures of long- and short-lived, TCP and non-TCP flows)?
- Can we incorporate multiple performance metrics in one buffer-sizing mechanism?
- Can we develop a technique that adapts the buffersizing scheme to dynamically-changing Internet traffic?

<u>Agenda</u>

- Introduction
 - Overview of existing buffer sizing rules
- Adaptive Buffer Sizing (ABS)
 - Motivation
 - Basic control design
 - Adaptive parameter training
- Simulations
- Conclusions

Motivation – Simulation Illustration

For all these protocols, their loss rate p decreases and utilization u increases as buffer size b grows

Motivation – Intuitive Explanation

- Intuitively, the relationship between buffer size and loss rate and between buffer size and utilization should be monotonic
- A large buffer can
 - absorb more bursts in packet arrivals, there by reducing the frequency of packet drops
 - allows the bottleneck link to sustain full utilization for a longer time, thereby increasing average link utilization
- The paper proves this monotonic relationship in a simple, yet generic, congestion control model
- Leveraging this result, we next design an adaptive buffer sizing scheme, called ABS

ABS Design I

- Consider only the utilization constraint u^*
- We use an Integral controller

$$b_{\overline{u}}(n) = b_{\overline{u}}(n-1) - I_{\overline{u}}T(u(n) - u^*)$$
utilization constraint

- However, this controller may have serious problems in non-bottleneck routers
 - If u^* is set above the maximally achievable utilization of the router, $u(n) u^*$ is always negative
 - The buffer size will be driven to infinity

ABS Design II

- Our solution is to introduce a damping term to mitigate the effect of term $u(n) u^*$
- The new controller is given as

 $b_u(n) = b_u(n-1) - I_u T(u(n) - u(n-1))(u(n) - u^*)$

- In the steady state of a non-bottleneck router, u(n) u(n-1) = 0, forcing buffer $b_u(n)$ to converge to its equilibrium value
- The controller for buffer $b_p(n)$ under the packet loss constraint p^* can be obtained similarly

ABS Design III

• Buffer size b(n) satisfying both constraints is

$$b(n) = \max(b_u(n), b_p(n))$$

- The resulting controller is called Adaptive Buffer Sizing (ABS) and its sub-controllers under utilization and loss constraints are denoted by ABS_u and ABS_p
- However, it is still unclear how to choose optimal gain parameters I_u and I_p
 - If they are chosen too small, the system may suffer from a sluggish convergence rate to the equilibrium
 - If they are set too large, the system may exhibit exceedingly aggressive adaptation behavior and persistently oscillation

ABS Design IV

To illustrate this problem, consider ns2 simulations where $I_u = I_p = 3000, C = 10$ mb/s, and N = 20u^{*} = 95%, p^{*} = 0.5% u^{*} = 70%, p^{*} = 5% 1500 3000 2500 buffer size (pkt) 000 000 (<u>t</u> 2000 eziz 1500 buffer 1000 500 1000 2000 100 200 300 time (sec) time (sec) Control constants I_u and I_p must depend on C, N, u^* , p^* and the underlying ingress traffic 17

Adaptive Parameter Training I

- Since Internet traffic model is unknown, it is unlikely that any off-line parameter selection can be effective
- We solve this problem by developing a parameter training mechanism, which dynamically finds the control gains I_u and I_p that are most suitable for the underlying traffic
- This is accomplished by a combination of the output error and gradient descent methods
- Then, the final control equation of buffer size under the utilization constraint becomes $I_u(n+1) = I_u(n) - \gamma T (u(n+1) - u(n)) (u(n+1) - u^*)$

Adaptive Parameter Training V

- The equation for $I_p(n)$ can be derived similarly
- Rerun the ns2 simulation with parameter training

Agenda

- Introduction
 - Overview of existing buffer sizing rules
- Adaptive Buffer Sizing (ABS)
 - Motivation
 - Basic control design
 - Adaptive parameter training
- Simulations
- Conclusions

Simulations – Load Changes

- Set $u^* = 90\%$ and $p^* = 2\%$
- Flows frequently join and leave the system

Simulations – Web Traffic

- Set $u^* = 95\%$ and $p^* = 1\%$
- Mice traffic generated by 100,000 HTTP sessions

Simulations – TCP Variants

• A single link of capacity 100 mb/s shared by 10 Reno, 10 HSTCP, 10 STCP, 10 HTCP, and 10 Westwood flows ($u^* = 90\%$) 100 80 30

Simulations – Multi-Link Topology

- Two-link "parking lot" topology
- Target link utilization is $p_1^{*} = 95\%$ and $p_2^{*} = 75\%$

Conclusions

- In this paper, we presented a new buffer sizing scheme called ABS, which can dynamically choose the smallest buffer size satisfying the given performance constraints
- In contrast to existing approaches, ABS does not rely on any explicit formulation of Internet traffic
- ABS performs well under generic Internet traffic composed of short/long TCP and non-TCP flows
 - Future work involves
 - Implementing ABS in real systems and testing it in the Internet
 - Simplifying ABS