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Abstract— Network feedback in a congestion-control system
is subject to delay, which can significantly affect stability and
performance of the entire system. While most existing stability
conditions explicitly depend on delayDi of individual flow i,
a recent study [24] shows that the combination of a symmetric
Jacobian A and condition ρ(A) < 1 guarantees local stability
of the system regardless ofDi. However, the requirement of
symmetry is very conservative and no further results have
been obtained beyond this point. In this paper, we proceed in
this direction and gain a better understanding of conditions
under which congestion-control systems can achieve delay-
independent stability. Towards this end, we first prove thatif
Jacobian matrix A satisfies||A|| < 1 for any monotonic induced
matrix norm ||.||, the system is locally stable under arbitrary
diagonal delay Di. We then derive a more generic result and
prove that delay-independent stability is guaranteed as long as
A is Schur diagonally stable [9], which is also observed to be
a necessary condition in simulations. Utilizing these results, we
identify several classes of well-known matrices that are stable
under diagonal delays ifρ(A) < 1 and prove stability of MKC
[24] with arbitrary parameters αi and βi.

I. I NTRODUCTION

Several max-min congestion control algorithms (e.g., XCP
[11], RCP [5], VCP [23], MKC [24], and JetMax [25]) have
been recently proposed. These protocols receive feedback
from the most-congested router in their path and exhibit
appealing performance from both theoretical and practical
perspectives. Thus, stability of these systems, especially
when delay is present in the network feedback, has recently
received a fair amount of attention [4], [7], [13], [14], [16],
[19], [20], [21], [22], [24]. However, most existing stability
conditions (e.g., [7], [11], [14], [19]) require that parameters
of the control equation be adaptively tuned according to
feedback delayDi of user i, making them undesirable in
practice due to the resulting unfairness between flows with
different RTTs and oscillations when delays are not properly
estimated by end-users. Although this limitation is partially
resolved by the recent work [24], which proves that max-
min systems with a symmetric Jacobian matrix are locally
stable regardless of delay, the requirement of symmetry is
very restrictive in practice and understanding whether the
same result holds for a wider class of matrices remains open.

In this paper, we gain a deeper insight into stability of
max-min congestion control systems under diagonal delays.
Most max-min systems (e.g., MKC [24], RCP [5], and XCP
[11]) can be linearized to the following shape (more on this
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below):

xi(n) =
N

∑

j=1

aijxj(n − Di), (1)

whereaij are some constants,N is the number of flows, and
xi(n) andDi are, respectively, the sending rate and round-
trip time of useri. Using this model, we first present an
alternative proof of Theorem 1 in [24] under time-invariant
delay Di, based on which we derive a sufficient stability
condition of (1) to be||A||2 < 1, whereA = (aij) is the
coefficient matrix of the system and matrix norm||.||2 is
induced by theL2 vector norm. Clearly, this condition is
more generic than the one obtained in [24], which required
A to be real and symmetric.

Subsequently, we prove that this result actually extends
to any matrix norm induced by amonotonicvector norm
(which subsumes all standard vector norms, such as||.||1,
||.||2, ||.||∞, and ||.||w∞). Moreover, we prove that a special
norm ||A||s = infW∈P∗ ||WAW−1||2 (whereP∗ is the set
of all positive diagonal matrices) is a monotonic induced
norm and further generalize the sufficient stability condition
of system (1) to||A||s < 1, whose necessity is also indicated
by simulations. Armed with these results, we identify several
classes of systems that are stable under diagonal delays if
and only if they are stable under undelayed feedback. This
finding allows us to prove stability of Max-min Kelly Control
(MKC) [24] with arbitrary parametersαi and βi. We also
discuss and verify obtained results using Matlab simulations.

The rest of the paper is organized as follows. In Section II,
we describe modeling assumptions of this paper and review
existing work in the area of delay-independent stability.
In Section III, we present our main results of the paper
and verify them via Matlab simulations. In Section IV, we
conclude the paper and suggest directions for future work.

II. BACKGROUND

A. Modeling Single-Link Congestion Control

Assume a generic model of max-min congestion control
that is composed ofM links and N users. Each flowi
solicits feedbackpi from a particular link, which we call the
bottlenecklink of useri, in its path. Assuming that bottleneck
assignments of the network are fixed [16], [22], it is proven
in [25] that the entire system can be decomposed into
subsystems of users constrained by individual bottlenecks,
which is stable independent of delays if and only if individual
subsystems are. Thus, in what follows we restrict our focus
to congestion control in single-link networks and note that
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the obtained results are applicable to all multi-link max-min
systems with time-invariant bottleneck assignments.

Consider a network withN users accessing a single
bottleneck link. Feedback delays arise from transmission,
propagation, and queuing delay at individual links. Specif-
ically, the time lag for a packet to travel from senderi to
its bottleneck link is denoted by forward delayD→i , while
delay from the router to the receiver and subsequently from
the receiver back to the sender is denoted by backward delay
D←i . Clearly, summation of the forward and backward delays
forms the round-trip delayDi of useri, i.e.,Di = D→i +D←i .

Each acknowledgement packet of flowi carries certain
network feedbackp(n), which is continually computed by
the bottleneck router as a function of the combined incoming
rate of all flows, i.e.,

p(n) = g
(

N
∑

j=1

xj(n − D→i )
)

. (2)

This feedback is utilized by each sourcei to update its
sending ratexi(n) according to the following control rule:

xi(n) = fi

(

p(n − D←i )
)

, (3)

where functionfi(.) is assumed to be differentiable in the
equilibrium point.

Note that (2)-(3) usually forms a nonlinear system, whose
local stability can be studied by linearizing the system
in the equilibrium pointx∗. Denote byA = (aij) the
corresponding Jacobian matrix, then the linearized system
is described as follows:

xi(n) =

N
∑

j=1

aijx(n − D→j − D←i ), (4)

whereaij = ∂fi/∂xj |x∗ .
The following result transforms stability analysis of (4) to

that of an equivalent system (1).
Lemma 1:System (4) is stable under all heterogeneous

directional delaysD→i andD←i if and only if system (1) is
stable under all round-trip delaysDi.

We omit the proof of this lemma for brevity and note that a
similar result is derived for continuous-time systems in [14].
Compared to (4), system (1) has a simpler shape and is more
amenable to analysis. Thus, in the rest of paper, we focus
our study on system (1) and keep in mind that our results
also apply to (4).

B. Stability Results

In this paper, we are interested in delay-independent
stability as defined below of a given dynamical system.

Definition 1: We call a systemstable independent of
delays if neither its control gain nor stability condition
explicitly involves delays.

It is well-known that system (1) under zero delay is stable
if and only if the spectral radiusρ(A) < 1 [6]. When delay
is introduced into the control loop, stability analysis of the
resulting system becomes more complicated. The most recent
result in this direction is presented in [24], which proves that

(1) with asymmetricJacobianA is stable regardless of delay
if and only if ρ(A) < 1.

One more generic version of this problem is to study
stability of the system under arbitrary delayDij > 0, i.e.,

xi(n) =

N
∑

j=1

aijxj(n − Dij). (5)

We note that in the last equation each feedback is delayed
by Dij time units instead of a round-trip delayDi as in (1).
Thus, stability conditions of system (5) are sufficient, butnot
necessary for system (1).

The convergence property of (5) is initially studied by
Chazan and Miranker [3] in the context of asynchronous
iteration and the first sufficient and necessary condition isdue
to Bertsekas and Tsitsiklis [2], who prove that (5) is stable
for all uniformly-bounded and time-varying delaysDij(n)
if ρ(|A|) < 1 and unstable under a certain set of delays
Dij(n) if ρ(|A|) ≥ 1. The same result is later obtained by
Kaszkurewiczet al. [8] using a different technique.

A slightly stronger version of this result is available in
[18], which first introduces the following terminology.

Definition 2 ([18]): Time delaysDij(n) areadmissibleif:

lim
n→∞

n − Dij(n) = ∞, ∀i, j (6)

andregulated(uniformly bounded) if0 ≤ Dij(n) < D̄, ∀i, j
for some non-negative constantD̄ that is independent ofn.

Then, Suet al. [18] prove that system (5) is stable for all
admissible delaysDij(n) whenρ(|A|) < 1 and unstable for
a certain sequence of regulated delaysDij(n) with D̄ = 1
whenρ(|A|) ≥ 1.

In addition, Kaszkurewiczet al. provide an alternative
way of verifying conditionρ(|A|) < 1 by showing that it
is equivalent to the existence of a positive diagonal matrix
W such that||W−1AW ||∞ < 1. This is a consequence of
[10, Appendix2]:

ρ(|A|) = inf
W∈P∗

||W−1AW ||∞, (7)

whereP∗ is the set of all positive, diagonal matrices.
However, for system (1), conditionρ(|A|) < 1 is too

strong and is not necessary. One example is given in [24],
which demonstrates that MKC in the form of (1) may be
stable even thoughρ(|A|) > 1. The relationship between sta-
bility conditions of (1) and (5) under different types of delays
is illustrated in Fig. 1. As shown in the figure, stability of the
system under zero delay and arbitrary delaysDij has been
well studied; however, understanding of (1) under diagonal
delaysDi is lacking in the current picture. Thus, in the rest
of this paper, we fill in this void and investigate conditions
under which system (1) achieves delay-independent stability.

III. M AIN RESULTS

A. Induced Matrix Norms

We start by recalling definitions and properties of vector-
induced matrix norms, which are used later in the paper.

Definition 3 ([6]): Matrix norm ||A|| is a non-negative
number with the following properties:
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diagonal delay Di 
stability condition? 

arbitrary delay Dij 
stable iff  ρ(|A|) < 1 no delay 

stable iff  ρ(A) < 1 

 

Fig. 1. Illustration of the current research status of delay-independent
stability of system (1) under different types of delays.

1) ||A|| > 0 whenA 6= 0, ||A|| = 0 if and only if A = 0.
2) ||βA|| = |β| · ||A||.
3) ||A + B|| ≤ ||A|| + ||B||.
4) ||AB|| ≤ ||A|| · ||B||.
One special class of matrix norms, calledinduced matrix

norms, is defined as follows.
Definition 4 ([6]): Matrix norm ||.|| induced by or subor-

dinate to a given vector norm||.|| is defined as following:

||A|| = sup
x 6=0

||Ax||

||x||
. (8)

The following properties of induced matrix norms are
available from [6].

Property 1: Any induced matrix norm||.|| satisfies in-
equality ||Ax|| ≤ ||A|| · ||x||.

Property 2: For any matrixA and an arbitrary induced
matrix norm||.||, we haveρ(A) ≤ ||A||.

To better understand Definition 4, consider the follow-
ing commonly used induced matrix norms: spectral norm
||A||2 =

√

ρ(A∗A) (where A∗ is the conjugate transpose
of A) induced by theL2 vector norm, maximum absolute
column sum norm||A||1 = maxj(

∑

i |aij |) induced by the
L1 vector norm, maximum absolute row sum norm||A||∞ =
maxi(

∑

j |aij |) induced by theL∞ vector norm, and
weighted maximum norm||A||w∞ = maxi(

∑

j |aij |wj)/wi

(w > 0) induced by the weighted infinity vector norm||x||w∞.
We refer interested readers to [6] for more details.

B. Alternative Proof of Theorem 1 in [24]

Leveraging definitions and properties of induced matrix
norms, we next present an alternative proof of [24, Theorem
1] with much simpler manipulations. This proof further leads
us to more generic results derived in Section III-C.

Theorem 1:If A is symmetric and stable, system (1) is
stable regardless of delaysDi.

Proof: Applying the z-transform to system (1), we
obtain:

H(z) = ZAH(z), (9)

whereZ = diag(z−Di) is a diagonal matrix andH(z) is the
vector ofz-transforms of each flow ratexi:

H(z) =
(

H1(z), H2(z), · · · , HN (z)
)T

. (10)

Notice that system (1) is stable if and only if all poles of its
z-transformH(z) are within the unit circle in thez-plane.
To examine this condition, re-organize the terms in (9):

(ZA − I)H(z) = 0. (11)

Next notice that the poles ofH(z) are simply the roots of:

det(ZA − I) = 0. (12)

Thus, ensuring that all roots of (12) are inside the open unit
circle will be both sufficient and necessary for system (1) to
be stable. Bringing in notationF(z) = det(ZA−I), we can
re-writeF(z) as following:

F(z) = det(Z[A − Z−1I]) (13)

= det(Z)det(A − Z−1).

Noticing thatdet(Z) is strictly non-zero for non-trivialz,
we can reduce (12) to:

F(z) = det
(

A − Q(z)
)

= 0, (14)

whereQ(z) = diag(zDi).
To prove that all roots of (14) lie in the open unit circle,

we suppose in contradiction that there exists a root|z0| ≥ 1
such thatF(z0) = 0. Denote byB matrix Q(z0). Following
[15] and using basic matrix algebra, it is easy to have that
there exists a non-zero vectorv such thatAv = Bv. For
symmetric matrices, we can write||A||2 = ρ(A) < 1 and:

||A||2 = sup
x 6=0

||Ax||2
||x||2

≥
||Av||2
||v||2

=
||Bv||2
||v||2

, (15)

where||.||2 in application to vectors is a standardL2 norm.
SinceB is diagonal with|bii| = |z0|Di ≥ 1, Bv is simply

a vector(v1b11, . . . , vNbNN )T and we can express vector
norm L2 using the following:

||Bv||2
||v||2

=

(

∑N
i=1

|vi|2|bii|2
)1/2

(

∑N
i=1

|vi|2
)1/2

≥

(

∑N
i=1

|vi|2
)1/2

(

∑N
i=1

|vi|2
)1/2

= 1.

(16)
Thus, we get that both||A||2 ≥ 1 and ||A||2 < 1 must

be satisfied simultaneously, which is a contradiction. This
means that no|z0| ≥ 1 can be a root ofF(z) and that any
heterogenous systems with a symmetric stable matrixA is
stable under arbitrary delay.

Note that the above reasoning indicates symmetry ofA is
not necessary and leads us to the following generalization.

Corollary 1: If JacobianA satisfies||A||2 < 1, system (1)
is stable for all delaysDi.

C. Weaker Sufficient Conditions

We next extend the requirement ofL2 norm in the last
result to anymonotonicvector norm, which is defined below.

Definition 5 ([1]): If a vector norm||.|| on Rn satisfies
the following inequality:

||x|| ≤ ||y|| for all x, y ∈ Rn such that|x| ≤ |y|, (17)

we call this normmonotonic.
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This allows us to prove the following theorem.
Theorem 2:If there exists amonotonicvector norm||.||α

such that induced matrix norm||A||α < 1, system (1) is
stable regardless of delaysDi.

Proof: We utilize the technique in Theorem 1, whose
goal is to show that||Bv||α/||v||α ≥ 1 for all v. Again,
notice thatBv = (v1b11, . . . , vNbNN )T and that|bii| ≥ 1.
Due to the monotonicity of the norm and the fact that|vi| ≤
|biivi|, we directly get||v||α ≤ ||Bv||α. The remaining proof
is similar to that of Theorem 1.

The following result provides a systematic way for gener-
ating monotonic induced matrix norms.

Theorem 3:Matrix norm ||A||w
2

= ||WAW−1||2 for any
non-singular diagonal matrixW = diag(w) is a monotonic
induced norm.

Proof: First write:

||A||w
2

= sup
x 6=0

||Ax||w
2

||x||w
2

= sup
x 6=0

||WAx||2
||Wx||2

. (18)

Next, we need to show that||x||w
2

= ||Wx||2 is monotonic
with respect tox. In other words, we must show that
for any two vectorsx1 and x2 such that |x1| ≤ |x2|,
||Wx1||2 ≤ ||Wx2||2. This directly follows from the fact that
|Wx1| ≤ |Wx2| for any non-singular diagonalW and from
monotonicity properties of||.||2 in application to vectors.

Then, a more generic sufficient stability condition is easy
to derive from Theorem 2.

Corollary 2: The following is sufficient for system (1) to
be stable for all delaysDi:

||A||s = inf
W∈P∗

||WAW−1||2 < 1, (19)

whereP∗ is the set of all positive diagonal matrices.
We next show that spectral norm in (19) is weaker than

infinity norm, which is used in (7) as the sufficient and
necessary condition for stability of system (5).

Theorem 4:For any matrixA, we have||A||s ≤ ρ(|A|) =
infW∈P∗ ||WAW−1||∞.

Proof: Denote byD = |A| the absolute value ofA and
observe that:

||WAW−1||2 =
√

ρ(W−1A∗WWAW−1)

=
√

ρ(A∗W 2AW−2)

≤
√

ρ(D∗W 2DW−2)

= ||WDW−1||2, W ∈ P∗ (20)

whereA∗ is the conjugate transpose ofA. Next, sinceD is a
non-negative matrix, we immediately obtain from [9, Lemma
2.7.25] that:

inf
W∈P∗

||WDW−1||2 = ρ(D). (21)

Completing the chain of arguments, we get:

inf
W∈P∗

||WAW−1||2 ≤ inf
W∈P∗

||WDW−1||2 = ρ(|A|) (22)

for all matricesA.

D. Delay-Independent Stable Matrices

In this subsection, we apply results obtained so far and
identify several classes of matrices that are stable under
diagonal delays if and only if they are stable under zero
delay, i.e.,ρ(A) < 1.

We first examine the class of normal matricesN , which
are defined as the set of matricesA for which AA∗ = A∗A,
whereA∗ is the conjugate transpose ofA. Normal matrices
include symmetric (i.e.,aij = aji), skew-symmetric (i.e.,
aij = −aji), Hermitian (i.e.,A∗ = A), skew-Hermitian (i.e.,
A∗ = −A), circulant, and unitary matrices (i.e.,A∗ = A−1).

Lemma 2: If A ∈ N , A is stable under diagonal delays
Di if and only if ρ(A) < 1.

Proof: First notice that if matrixA is normal, thenA
and A∗ have the same eigenvectors and their eigenvalues
are conjugates of each other [17]. Then applying eigen
decomposition on both matrices, we haveA = ΓΛΓ−1 and
A∗ = ΓΛ∗Γ−1, whereΛ andΛ∗ are, respectively, diagonal
matrices of eigenvalues ofA and A∗ and Γ is the matrix
with the corresponding eigenvectors. Then, we have:

||A||2 =
√

ρ(A∗A) =
√

ρ(ΓΛΓ−1ΓΛ∗Γ−1)

=
√

ρ(ΓΛΛ∗Γ−1) =
√

ρ2(A) = ρ(A). (23)

The rest of proof directly follows from Theorem 1.
We next defineDN as the set of matrices diagonally

similar to N . In other words, for any matrixA ∈ DN ,
there exists matrixB ∈ N and non-singular diagonal matrix
W such thatWAW−1 = B. Then, we can prove the result
below.

Lemma 3: If A ∈ DN , A is stable under diagonal delays
Di if and only if ρ(A) < 1.

Proof: Let WAW−1 = B, where B is normal
and W is non-singular diagonal. Then, we haveρ(A) =
ρ(WAW−1) = ||WAW−1||2 = ||A||2. According to Corol-
lary 1, this implies thatρ(A) < 1 is both sufficient and
necessary forA to be stable under delaysDi.

The third class isP , which consists of non-negative/non-
positive matrices (i.e.,A ≥ 0 or A ≤ 0). Combining the facts
that ρ(A) = ρ(|A|) and ρ(A) ≤ ||A||s ≤ ρ(|A|) = ρ(A)
and invoking Corollary 2, we directly arrive at the following
lemma.

Lemma 4: If A ∈ P , A is stable under diagonal delays
Di if and only if ρ(A) < 1.

Similar to DN , we defineDP as the set of matrices
diagonally similar toP . Then, we have the following result.

Lemma 5: If A ∈ DP , A is stable under diagonal delays
Di if and only if ρ(A) < 1.

Proof: Assume A is diagonally similar to a non-
negative/non-positive matrixB. Then, B = WAW−1

for some non-singular diagonal matrixW . Noticing that
ρ(|B|) = ρ(B) = ρ(A) and ρ(A) ≤ ||A||s ≤ ρ(|A|) =
ρ(B) = ρ(A), we haveρ(A) = ||A||s, which directly follows
from Corollary 2 that conditionρ(A) < 1 is both sufficient
and necessary for system (1) to be stable.

Next, define radial matricesR as the class of matrices
satisfying||A||2 = ρ(A). Recalling that||.||2 is induced from
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Fig. 2. Relationship between various classes of matrices

the L2 vector norm and invoking Theorem 2, the following
lemma is obvious.

Lemma 6: If A ∈ R, A is stable under diagonal delays
Di if and only if ρ(A) < 1.

Analogous to Lemma 3, the last result also applies toDR,
which denotes any matrix diagonally similar toR. Results
obtained in this subsection are summarized as following.

Theorem 5:The following matrices are stable under arbi-
trary diagonal delaysDi if and only if ρ(A) < 1: N , DN ,
P , DP , R, andDR.

We conclude by identifying the relationship between dif-
ferent classes of matrices examined in this subsection.

Theorem 6:The following relations hold:N ⊂ DN ⊂
DR, N ⊂ R ⊂ DR, andP ⊂ DP ⊂ DR.

Proof: We only present proofs ofDN ⊂ DR and
DP ⊂ DR and omit others for brevity. First letA ∈ DN ,
then there exists non-singular diagonal matrixW such that
WAW−1 = B ∈ N . SinceN ⊂ R according to (23), we
haveB ∈ R and thereforeDN ⊂ DR.

We next proveDP ⊂ DR. SinceA ∈ DP, there exists
diagonal matrixW and B ∈ P such thatB = WAW−1.
From (21), we know that for anyB ∈ P , there exists
diagonal matrixV such that||V BV −1||2 = ρ(B). Letting
C = UAU−1 and U = WV , we have||C||2 = ρ(B) =
ρ(A) = ρ(C), which implies thatA is diagonally similar to
radial matrixC and thereforeDP ⊂ DR.

This result is also illustrated in Fig. 2, where notationA →
B refers toA ⊂ B. As seen in the figure,DR is the widest
class of matrices for whichρ(A) < 1 guarantees diagonal
stability of (1). We leave exploration of more generic classes
of delay-independent matrices for future work.

E. Application to MKC

Recall that delay-independent stability of Max-min Kelly
Control (MKC) has been established in [24], in which the
proof holds only for a symmetric Jacobian matrix under
the assumption of constant parametersα and β. We next
utilize the techniques developed in this paper to prove MKC’s
stability under arbitrary parametersαi andβi. The resulting
control equation thus becomes:

xi(n) = xi(n − Di) + αi − βip(n)xi(n − Di), (24)

where feedbackp(n) is a function of the combined incoming
rate of all flows.

Theorem 7:Assumingp(n) is differentiable, system (24)
is stable under arbitrary delaysDi if:

0 < βi

(

p∗ +

N
∑

k=1

x∗i p
′
)

< 2, i = 1, . . . , N, (25)
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Fig. 3. Delayed stability as a function ofρ(A) and ||A||2.

wherex∗i andp∗ are, respectively, the equilibrium points of
xi(n) andp(n), andp′ is the derivative ofp(n) evaluated in
the equilibrium point.

Proof: Linearizing system (24) in the equilibrium point
x
∗, we get the Jacobian matrixA = (aik) as follows:

aik =

{

−βix
∗
i p
′ i 6= k

1 − βi(p
∗ + x∗i p

′) i = k
. (26)

Introducing diagonal matrixW = diag(
√

βkx∗k), we can
construct a new matrixB = (bik) = WAW−1 given below:

bik =

{

−
√

βix∗i βkx∗kp′ i 6= k

1 − βi(p
∗ + x∗i p

′) i = k
, (27)

which is symmetric. Thus, matrixA is diagonally similar to
a symmetric matrixB and, according to Lemma 3, is stable
under diagonal delaysDi if and only if ρ(A) < 1.

We next define square matrixC = (cik) such that:

cik =

{

βix
∗
i p
′ i 6= k

βi(p
∗ + x∗i p

′) i = k
. (28)

It is easy to see thatA = I−C, whereI is the identity matrix.
Applying eigen decomposition on matrixC, we re-writeC
asC = ΓΛΓ−1, whereΓ is a matrix of eigenvectors ofC and
Λ is a diagonal matrix with the corresponding eigenvalues.
Then, we can compute the spectral radiusρ(A) as follows:

ρ(A) = ρ(I − ΓΛΓ−1) = ρ(Γ(I − Λ)Γ−1)

= ρ(I − Λ) = 1 − ρ(C). (29)

Then, conditionρ(A) < 1 leads to 0 < ρ(C) < 2.
Combining Property 2 and the assumption thatx∗i , p

∗, p′ > 0
[12], [24], we upper-boundρ(C) with ||C||∞, which for
cik > 0 leads toρ(C) ≤ maxi(

∑N
k=1

cik). This immediately
yields (25).

It is easy to see that by lettingα = αi andβ = βi for all
i, Theorem 7 directly translates to the sufficient condition of
[24, Theorem 3].

F. Discussion

In this subsection, we verify the obtained results using
Matlab simulations. Our first step is to check sufficiency
and also lack of necessity in the condition of Theorem
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Fig. 4. Delayed stability as a function ofρ(A) and infW ||WAW−1||2.

1. We generate3000 two-by-two matrices and plot points
(x, y) on a 2D plane, wherex = ρ(A) and y = ||A||2. To
detect instabilities, each matrix is tested with100 random
combinations of delayD1 andD2, each uniformly distributed
in [1, 30]. We exclude all matrices withρ(A) > 1 since
these are a-priori known to be unstable. Out of3000 random
matrices,1020 hadρ(A) < 1, out of which468 were stable
and552 unstable under directional delay. Fig. 3(a) shows the
stable points and (b) plots the unstable ones. From the first
figure, notice that condition||A||2 ≥ ρ(A) is never violated
and Theorem 1 isnot necessary for stability. At the same
time, all unstable points in figure 3(b) are located above
||A||2 = 1, confirming the sufficiency of this condition.

Out of 468 stable matrices,251 had ||A||2 ≥ 1 and 331
had ||A||∞ ≥ 1. Furthermore,240 matrices had both norms
above1 simultaneously and in87% of the cases,||A||2 was
smaller than||A||∞. Out of 552 unstable matrices, all had
||A||2 ≥ 1 and ||A||∞ ≥ 1. Moreover,86% of the cases had
||A||2 < ||A||∞. It thus appears that||A||2 is a tighter norm
in terms of obtaining the necessary and sufficient condition.

The next simulation generates10000 random two-by-
two matrices and examines whether condition||A||s =
infW ||WAW−1||2 < 1 is in fact sufficient for stability
of the delayed system. Fig. 4 plots3535 stable/unstable
points (1763 stable and1772 unstable). The largest||A||s
for a stable matrix was0.9953 and the smallest for an
unstable matrix was1.0024. This demonstrates that for the
generatedmatrices, condition||A||s < 1 was both sufficient
and necessary. We leave further investigation of necessityof
this condition to future work.

IV. CONCLUSION

In this paper, we studied delay-independent stability of
max-min congestion control systems under heterogeneous
diagonal delays. Our results improved the current under-
standing of conditions thatA must satisfy from symmetry to
diagonal similarity to matrices whose||.||2 norm is less than
one to ensure stability under arbitrary diagonal delaysDi

(or, equivalently, directional delaysD→i andD←i ). Although
derived in the context of Internet congestion control, the
obtained results are of broader interest and apply to any
system that can be represented by model (1). As mentioned

in the last section, our future work involves finding stability
conditions that are both sufficient and necessary and identi-
fying a wider class of systems that are stable under diagonal
delaysDi as long asρ(A) < 1.
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