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Abstract— Network feedback in a congestion-control system
is subject to delay, which can significantly affect stabiliy and
performance of the entire system. While most existing stality
conditions explicitly depend on delayD; of individual flow 1,
a recent study [24] shows that the combination of a symmetric
Jacobian A and condition p(A) < 1 guarantees local stability
of the system regardless ofD,. However, the requirement of
symmetry is very conservative and no further results have
been obtained beyond this point. In this paper, we proceed in
this direction and gain a better understanding of conditiors
under which congestion-control systems can achieve delay
independent stability. Towards this end, we first prove thatif
Jacobian matrix A satisfies||A|| < 1 for any monotonic induced
matrix norm ||.||, the system is locally stable under arbitrary
diagonal delay D;. We then derive a more generic result and
prove that delay-independent stability is guaranteed as log as
A is Schur diagonally stable [9], which is also observed to be
a necessary condition in simulations. Utilizing these redts, we
identify several classes of well-known matrices that are able
under diagonal delays ifp(A) < 1 and prove stability of MKC
[24] with arbitrary parameters «; and ;.

I. INTRODUCTION

Several max-min congestion control algorithms (e.g., XCP

below):

N
zi(n) =Y aya;(n— Dy), 6y

Jj=1
whereq;; are some constantd] is the number of flows, and
z;(n) and D; are, respectively, the sending rate and round-
trip time of useri. Using this model, we first present an
alternative proof of Theorem 1 in [24] under time-invariant
delay D;, based on which we derive a sufficient stability
condition of (1) to be||A||s < 1, where A = (a;;) is the
coefficient matrix of the system and matrix norl|s is
induced by theL? vector norm. Clearly, this condition is
more generic than the one obtained in [24], which required
A to be real and symmetric.

Subsequently, we prove that this result actually extends
to any matrix norm induced by emonotonicvector norm
(which subsumes all standard vector norms, such|.gs,
[|-ll25 |]-||so, @nd]].]|2). Moreover, we prove that a special
norm ||A||s = infyep- ||[WAW 1|5 (WhereP* is the set
of all positive diagonal matrices) is a monotonic induced
orm and further generalize the sufficient stability coiodit

[11], RCP [5], VCP [23], MKC [24], and JetMax [25]) have of system (1) td|A||s < 1, whose necessity is also indicated

been recently proposed. These protocols receive feedbddk simulations. Armed with these results, we_identify saler _
from the most-congested router in their path and exhib&lasses o_f systems that are stable under diagonal delayg if
appealing performance from both theoretical and practic&nd only if they are stable under undelayed feedback. This
perspectives. Thus, stability of these systems, espyeciaﬂnd'ng allows us to prove stability of Max-min Kelly Control
when delay is present in the network feedback, has recenf§yfKC) [24] with arbitrary parameters; and §;. We also
received a fair amount of attention [4], [7], [13], [14], 16 ISCUSS and verify obtained results using Matlab simutetio
[19], [20], [21], [22], [24]. However, most existing staibj The rest of the paper is organized as follows. In Section II,
conditions (e.g., [7], [11], [14], [19]) require that paratars & d_escribe mpdeling assumptions of this paper and rgyiew
of the control equation be adaptively tuned according tsmstmg_ work in the area of dela_y-mdependent stability.
feedback delayD; of useri, making them undesirable in [N Section Ill, we present our main results of the paper
practice due to the resulting unfaimess between flows wid"d verify them via Matlab simulations. In Section IV, we
different RTTs and oscillations when delays are not prgpericonclude the paper and suggest directions for future work.
estimated by end-users. Although this_ limitation is pélgtia Il. BACKGROUND
re_solved by the_ recent work .[24]’ Wh!Ch proves that max Modeling Single-Link Congestion Control
min systems with a symmetric Jacobian matrix are locally ] _ _
stable regardless of delay, the requirement of symmetry is/ASSUme & generic model of max-min congestion control
very restrictive in practice and understanding whether tH&at is composed ofl/ links and N users. Each flow:
same result holds for a wider class of matrices remains opeiplicits feedbaclp; from a particular link, which we call the

In this paper, we gain a deeper insight into stability opottleneckink of useri, in its path. Assuming that bottleneck
max-min congestion control systems under diagonal delay@SSignments of the network are fixed [16], [22], it is proven
Most max-min systems (e.g., MKC [24], RCP [5], and xcpn [25] that the entire system can be decomposed into

[11]) can be linearized to the following shape (more on thisubsystems of users constrained by individual bottlenecks
which is stable independent of delays if and only if indivatiu

subsystems are. Thus, in what follows we restrict our focus
to congestion control in single-link networks and note that
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the obtained results are applicable to all multi-link makrm (1) with asymmetricJacobianA is stable regardless of delay
systems with time-invariant bottleneck assignments. if and only if p(A) < 1.

Consider a network withV users accessing a single One more generic version of this problem is to study
bottleneck link. Feedback delays arise from transmissiostability of the system under arbitrary deldy; > 0, i.e.,
propagation, and queuing delay at individual links. Specif N
ically, the time lag for a packet to travel from sendeto () = e — D
its bottleneck link is denoted by forward deldy;”, while z:(n) ;%% (n= D). ©)
delay from the router to the receiver and subsequently fro%

the receiver back to the sender is denoted by backward de|gf l;] -(-)t'srrggaljrri:st?r?stl:;fj ?)?l;a?c?l?ngat?ig ;eeelg;agg ilr? (dltilayed
k¥} - 0 .

D;. Clearly, sumr_natmn ofthe fowya_rd and Eaclﬂvardgelay?husy stability conditions of system (5) are sufficient, bat
forms the round-trip delay; of useri, i.e.,D; = D;”+D;". necessary for system (1)

Each acknowledgement packet of flowcarries certain The convergence property of (5) is initially studied by
network feedbaclp(n), which is continually computed by Chazan and Miranker [3] in the context of asynchronous

the bottleneck rogter as a function of the combined InCommﬁeration and the first sufficient and necessary conditiauis
rate of all flows, i.e.,

to Bertsekas and Tsitsiklis [2], who prove that (5) is stable
N . for all uniformly-bounded and time-varying delays;;(n)
p(n) = Q(Z zj(n—D; ))' () it p(JA]) < 1 and unstable under a certain set of delays
=1 Dy;(n) if p(|A]) > 1. The same result is later obtained by
This feedback is utilized by each sour¢eto update its Kaszkurewiczet al. [8] using a different technique.
sending rater;(n) according to the following control rule: A slightly stronger version of this result is available in
[18], which first introduces the following terminology.

#i(n) = fi(p(n = D)), (3 " Definition 2 ([18]): Time delaysD;;(n) areadmissiblf:
where functionf;(.) is assumed to be differentiable in the lim 7 — Dij(n) = oo, Vi, j 6)
equilibrium point. n—o0 i v v

Note that (2)-(3) usually forms a nonlinear system, whosgndregulated(uniformly bounded) i) < D;;(n) < D, Vi, j
local stability can be studied by linearizing the systenfor some non-negative constabt that is independent of.
in the equilibrium pointx*. Denote byA = (a;;) the Then, Suet al. [18] prove that system (5) is stable for all
corresponding Jacobian matrix, then the linearized systestimissible delay®);;(n) whenp(|A]) < 1 and unstable for

is described as follows: a certain sequence of regulated deldys(n) with D = 1
N whenp(|A]) > 1.
xi(n) = Zaijz(n - D;” —D;7), 4) In addition, Kaszkurewiczt al. provide an alternative
j=1 way of verifying conditionp(|A|) < 1 by showing that it

is equivalent to the existence of a positive diagonal matrix
W such that|]|W 1AW ||, < 1. This is a consequence of
[10, Appendix2]:

Whereaij = 8fz/8zzrj X* .
The following result transforms stability analysis of (&) t
that of an equivalent system (1).

Lemma 1:System (4) is stable under all heterogeneous p(JA]) = inf |[[WPAW||s, 7
directional delaysD;~ and D;~ if and only if system (1) is weps
stable under all round-trip delays;. whereP* is the set of all positive, diagonal matrices.

We omit the proof of this lemma for brevity and note thata However, for system (1), conditiop(|A[) < 1 is too
similar result is derived for continuous-time systems id][1 Strong and is not necessary. One example is given in [24],
Compared to (4), system (1) has a simpler shape and is ma¥gich demonstrates that MKC in the form of (1) may be
amenable to analysis. Thus, in the rest of paper, we focgable even though(|A|) > 1. The relationship between sta-
our study on system (1) and keep in mind that our resul#glity conditions of (1) and (5) under different types of dgs
also apply to (4). is illustrated in Fig. 1. As shown in the figure, stability bft

- system under zero delay and arbitrary deldys has been
B. Stability Results well studied; however, understanding of (1) under diagonal

In this paper, we are interested in delay-independedelaysD; is lacking in the current picture. Thus, in the rest
stability as defined below of a given dynamical system. of this paper, we fill in this void and investigate conditions

Definition 1: We call a systemstable independent of under which system (1) achieves delay-independent dtabili
delays if neither its control gain nor stability condition
explicitly involves delays. _

It is well-known that system (1) under zero delay is stablé- Induced Matrix Norms
if and only if the spectral radiug(A) < 1 [6]. When delay We start by recalling definitions and properties of vector-
is introduced into the control loop, stability analysis bEt induced matrix norms, which are used later in the paper.
resulting system becomes more complicated. The most recenDefinition 3 ([6]): Matrix norm ||4|| is a non-negative
result in this direction is presented in [24], which provieatt number with the following properties:

I1l. MAIN RESULTS



Notice that system (1) is stable if and only if all poles of its
z-transformH(z) are within the unit circle in the--plane.
To examine this condition, re-organize the terms in (9):

(ZA—I)H(z) = 0. (11)

arbitrary delayD,;
stable iffp(|A]) < 1

no delay
stable iffp(A4) < 1

diagonal delayD,

Next notice that the poles di(z) are simply the roots of:
stability condition?

det(ZA—1T) =0. (12)

Thus, ensuring that all roots of (12) are inside the open unit
circle will be both sufficient and necessary for system (1) to
Fig. 1. lllustration of the current research status of défmlependent be stable. Bringing in notatiof(z) = det(ZA—1), we can

stability of system (1) under different types of delays. re-write _7:(2) as foIIowing:
F(z) = det(Z[A—Z7'1)) (13)
1) ||A]| > 0 whenA #£ 0, ||A|| =0 if and only if A = 0. = det(Z)det(4—Z71).
2) [IBA[l = 16] - [ All- » - -
3) |4+ B|| < ||A|| +||B]I. Noticing thatdet(Z) is strictly non-zero for non-triviak,
4) ||ABJ| < ||A|l - ||B]I. we can reduce (12) to:
One special class of matrix norms, calliedluced matrix F(z) = det (A — Q(2)) =0, (14)

norms is defined as follows.
Definition 4 ([6]): Matrix norm||.|| induced by or subor- WhereQ(z) = diag(z"").
dinate to a given vector norii.|| is defined as following: To prove that all roots of (14) lie in the open unit circle,
we suppose in contradiction that there exists a fogt> 1
I|A|| = sup ||Ax||. (8) such thatF(z) = 0. Denote byB matrix Q(z). Following
a0 ||z]| [15] and using basic matrix algebra, it is easy to have that
The following properties of induced matrix norms arefhere exists a non-zero vectorsuch thatAv = Bu. For
available from [6]. symmetric matrices, we can writed||> = p(A) < 1 and:
Property 1: Any induced matrix norm||.|| satisfies in- 7 |Az||> _ ||Av|l2 || Bv|l2
equaliy||4z]| < |41« 1Al = Tl = Tl ~ Tollz
Property 2: For any matrixA and an arbitrary induced ’
matrix norm||.||, we havep(4) < ||A||. where||.||2 in application to vectors is a standafd norm.
To better understand Definition 4, consider the follow- SinceB is diagonal with|b;;| = |z0|”* > 1, Bv is simply
ing commonly used induced matrix norms: spectral norrd Vecmf(vl_bn,---,vaN_N)T and we can express vector
[|4]l2 = +/p(A*A) (where A* is the conjugate transpose Norm L? using the following:
of A) induced by theL? vector norm, maximum absolute N ot 12\ /2 N 2\ 172
column sum nornj|A|[; = max;(>_, |a;;|) induced by the ||Bv||, (Zizl |03 [bii] ) (Zi:l |vil )
L' vector norm, maximum absolute row sum nojfd|| ., = 0[]z - ~ N = . NG
max;()_; [a;;|) induced by theL* vector norm, and (Zi:1 |vi] ) (Zizl |vi] )
weighted maximum normi|A||%, = max; (3", ai;|w;)/wi (16)
(w > 0) induced by the weighted infinity vector norfa||%,. Thus, we get that bothAl|; > 1 and [[A][z < 1 must
We refer interested readers to [6] for more details. be satisfied simultaneously, which is a contradiction. This
means that ndzs| > 1 can be a root ofF(z) and that any
B. Alternative Proof of Theorem 1 in [24] heterogenous systems with a symmetric stable matris

Leveraging definitions and properties of induced matrigtable ugderr?rbltl;ary delay. ing indi q;
norms, we next present an alternative proof of [24, Theorem Note that the above reasoning in |cate_s Symmet”ﬁ? .
1] with much simpler manipulations. This proof further lsad hot necessary and 'ea‘?'s us to_ th_e following generalization.
us to more generic results derived in Section IlI-C. Corollary 1: If JacobianA satisfies(| A[|> < 1, system (1)

Theorem 1:If A is symmetric and stable, system (1) isiS stable for all delaysD;.

(15)

stable regardless of delays;. C. Weaker Sufficient Conditions
obtaiferOf. Applying the z-transform to system (1), we We next extend the requirement & norm in the last

result to anymonotonicvector norm, which is defined below.
H(z) = ZAH(z), ©) Definition 5 ([1]): If a vector norm||.|| on R™ satisfies

whereZ = diag(z~"7) is a diagonal matrix an#(z) is the the following inequality:

vector of z-transforms of each flow rate;: ||z|| < ||y|| for all z,y € R™ such thatlz| < |y|, (17)

H(z) = (Hi(2), H2(2), - ,HN(z))T. (10) we call this normmonotonic



This allows us to prove the following theorem. D. Delay-Independent Stable Matrices

Theorem 2:1f there exists anonotonicvector norm||. || In this subsection, we apply results obtained so far and
such that induced matrix norjAll, < 1, system (1) iS jgentify several classes of matrices that are stable under
stable regardless of delays;. diagonal delays if and only if they are stable under zero

Proof: We utilize the technique in Theorem 1, whoseyg|ay, i.e.p(4) <1.
goal is to show that|Bvl|o/[[v|la = 1 for all v. Again, We first examine the class of normal matricEs which
notice thatBv = (vib1, ..., unbyn)" and thatlbi| > 1. are defined as the set of matricégfor which AA* = A* A,
Due to the monotonicity of the norm and the fact that < \yhere A* is the conjugate transpose df Normal matrices
|bizvi|, we directly get|v||a < [|Bvl|o- The remaining proof jnclude symmetric (i.e.a;; = a;;), skew-symmetric (i.e.,

is similar to that of Theorem 1. B 4, = —aj;), Hermitian (i.e.,A* = A), skew-Hermitian (i.e.,
The following result provides a systematic way for gener4+ — _ 4) circulant, and unitary matrices (i.ed* = A~1).
ating monotonic induced matrix norms. Lemma 2:1f A € N, A is stable under diagonal delays
Theorem 3:Matrix norm |!A||§” :.||WAI/.V‘1||2 forany  p; if and only if p(A) < 1.
non-singular diagonal matri}/ = diag(w) is a monotonic Proof: First notice that if matrix4 is normal, then4
induced norm. _ and A* have the same eigenvectors and their eigenvalues
Proof: First write: are conjugates of each other [17]. Then applying eigen
Azl WA decomposition on both matrices, we hate= TAT'~! and
w_ oAl WAz . Al 8 . ,
||Allz = sup sup (18) A* =TA*T'~!, whereA and A* are, respectively, diagonal

= .
w0 [lol3 w0 [[Wall2 matrices of eigenvalues of and A* and T is the matrix

Next, we need to show thatz||¥ = ||[Wz||, is monotonic With the corresponding eigenvectors. Then, we have:
with respect toz. In other words, we must show that _ il e
for any two vectorsz; and z, such that|z;| < |za, 1Al = \/p(A A) = ;/p(FAFQ TA=T)
|[Wa1|]2 < ||Was]|2. This directly follows from the fact that = Vp(TANT-1) = \/p2(A) = p(A). (23)
W] < [Way| for any non-singular diagonal” and from 1, rest of proof directly follows from Theorem 1. m
monotonicity properties dff.||2 in application to vectorsm We next defineDA as the set of matrices diagonally
Then, a more generic sufficient stability condition is easy;miiar to A In other words, for any matrixd € DA
to derive from Theorem 2. N there exists matri¥8 € A/ and non-singular diagonal matrix
Corollary 2: The following is sufficient for system (1) t0 137 sych thatiw AW -! = B. Then. we can prove the result
be stable for all delay®;: below.
. - Lemma 3:If A € DN, A is stable under diagonal delays
Alls = inf [[WAW ™! 1 19 . : ’
[[Alls = nf | 2 < @9 b, it and only if p(4) < 1.
Proof: Let WAW~! = B, where B is normal

We next show that spectral norm in (19) is weaker thaﬁnd w is_lnon-singular_(ljiagonal. Then, Wg. haweA) :I
infinity norm, which is used in (7) as the sufficient and®(WAW ™) = [[WAW 1|5 = || A]|2. According to Corol-
necessary condition for stability of system (5). lary 1, this implies thatp(4) < 1 is both sufficient and

Theorem 4:For any matrixA4, we have|Al|s < p(|4]) = necessary forl to .be staple “”def delays;. -
. 1 The third class isP, which consists of non-negative/non-
infyyep- [|[WAW ™| .

Proof Denote bvD — |A| the absolute value of and positive matrices (i.e4 > 0 or A < 0). Combining the facts
enote byD = |4 that p(4) — p(|A]) and p(A) < [|A][, < p(A]) = p(4)
observe that: . . : ; :
and invoking Corollary 2, we directly arrive at the followgin
Vp(W—TAWW AW 1) lemma.
_ T3 — Lemma 4:If A € P, A is stable under diagonal delays
= vrld WQAW 2) D; if and only if p(A) < 1.
p(D*W2DW=2) Similar to DA, we defineDP as the set of matrices
|[WDWt||,, WeP* (20) diagonally similar toP. Then, we have the following result.

) ] ) ) Lemma 5:1f A € DP, A is stable under diagonal delays
whereA* is the conjugate transpose Af Next, sinceD isa  p it and only if p(A) < 1.

non-negative matrix, we immediately obtain from [9, Lemma

whereP* is the set of all positive diagonal matrices.

[[WAW |,

A

Proof: Assume A is diagonally similar to a non-

2.7.25] that: negative/non-positive matrix3. Then, B = WAW !
: —1). for some non-singular diagonal matri¥’. Noticing that

i IWOW Tl =p(D) P p1B)) = o(B) = p(4) and p(4) < |lAl], < p(lA]) =

Completing the chain of arguments, we get: p(B) = p(A), we havep(A) = [|A]|s, which directly follows
from Corollary 2 that conditiomp(A) < 1 is both sufficient

inf |[[WAW Y|y < inf |[[WDW Y|, = p(JA|) (22) and necessary for system (1) to be stable. [

WePp* wep: Next, define radial matrice® as the class of matrices

for all matricesA. m satisfying||A||2 = p(A). Recalling that|.||> is induced from
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D; if and only if p(A4) < 1.
Analogous to Lemma 3, the last result also applie®1R, Fig. 3. Delayed stability as a function p{A) and || Al[2.

which denotes any matrix diagonally similar 1. Results
obtained in this subsection are summarized as following. . . i . i
Theorem 5:The following matrices are stable under arbi—Wherexi andp” are, r_espectlve_ly, t_he equilibrium pomL_c, of
trary diagonal delay®D; if and only if p(A) < 1: A, DA, z;(n) andp(n), andp’ is the derivative op(n) evaluated in
P DP. R andDR the equilibrium point.
We conclude by identifying the relationship between dif- Proof: Iﬁnearlzn;g systemiA(Z_Al) in the e?ul;hbru.Jm point
ferent classes of matrices examined in this subsection. X @ We getthe Jacobian matrix = (air) as follows:
Theorem 6:The following relations hold:N' ¢ DN C _ Bty ik
DR, N C RC DR, andP Cc DP C DR. aix = 1_ﬁf(*+ﬁ Nk
Proof: We only present proofs oDN Cc DR and P P
DP c DR and omit others for brevity. First le € DN, Introducing diagonal matri®y’ = diag(,/Bxz},), we can
then there exists non-singular diagonal maffix such that construct a new matrisB = (b)) = WAW 1 given below:
WAW~1 = B € N. SinceN' C R according to (23), we
have B € R and thereforeDN c DR. I Bix; By’ iF#k
We next proveDP C DR. Since A € DP, there exists ’ 1—Bilp* +aip) i=k’

diagonal matrixi¥ and B such thatB = WAW 1. I _ e o
g €r which is symmetric. Thus, matrid is diagonally similar to

From (21), we know that for anyB € P, there exists : : . .
diagonal matrixV such that|[VBV1[js = p(B). Letting a symmetric matrix3 and, according to Lemma 3, is stable

(26)

(27)

C = UAU-' andU = WV, we have||C|l = p(B) = under diagona_l delay®); if and.only if p(A) < 1.
p(A) = p(C), which implies thatd is diagonally similar to "€ Next define square matriX = (c;) such that:
radial matrixC' and thereforeDP C DR. ] Bty ik
This result is also illustrated in Fig. 2, where notatidn— Cik = e (28)
Bilp™ +xip') i=k

B refers toA C B. As seen in the figureDR is the widest

class of matrices for whiclp(A) < 1 guarantees diagonal Itis easy to see that = I—C, where/ is the identity matrix.

stability of (1). We leave exploration of more generic ciss Applying eigen decomposition on matriX, we re-writeC

of delay-independent matrices for future work. asC =T'AI'"!, wherel is a matrix of eigenvectors @f and
L A is a diagonal matrix with the corresponding eigenvalues.

E. Application to MKC Then, we can compute the spectral radigg) as follows:

Recall that delay-independent stability of Max-min Kelly _ _

Control (MKC) has been established in [24], in which the p(A) = p(I=TAT™Y) = p(T(I = A7)

proof holds only for a symmetric Jacobian matrix under = p(I—-A)=1-p(). (29)

the assumption of constant parametersand 5. We next Then, conditionp(4) < 1 leads to0 < p(C) < 2.

utilize the techniques developed in this paper to prove MKC,Comk’Jining Property 2 and the assumption thatp*, p’ > 0

stability under arbitrary parametesis and 3;. The resulting [12], [24], we upper-boundy(C) with ||C||uc, wr;ich for

control equation thus becomes: cir. > 0 leads top(C) < maxi(szzl ¢ik). This immediately

zi(n) = xi(n — Di) + s — Bip(n)as(n — D;),  (24) Yields (25). u
. ) . ) ) It is easy to see that by letting = «; and 8 = ; for all
where feedback(n) is a function of the combined incoming ; Theorem 7 directly translates to the sufficient conditién o

rate of all flows. [24, Theorem 3].
Theorem 7:Assumingp(n) is differentiable, system (24) _ _
is stable under arbitrary delays; if: F. Discussion

N In this subsection, we verify the obtained results using
0<Bi (p* + :I’fﬁp/) <9 =1 N (25) Matlab simulations. Our first step is to check sufficiency
1 Y LA Y . . e

1 and also lack of necessity in the condition of Theorem
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(5]

1. We generate3000 two-by-two matrices and plot points
(z,y) on a 2D plane, where = p(A) andy = ||A||2. To
detect instabilities, each matrix is tested with0 random
combinations of delay; andDs, each uniformly distributed
in [1,30]. We exclude all matrices witlp(A) > 1 since
these are a-priori known to be unstable. Oug@f0 random
matrices,1020 had p(A) < 1, out of which468 were stable [9]
and552 unstable under directional delay. Fig. 3(a) shows thlﬁ !
stable points and (b) plots the unstable ones. From the fi s?
figure, notice that conditiofjA||2 > p(A) is never violated
and Theorem 1 isiot necessary for stability. At the same[11]
time, all unstable points in figure 3(b) are located above
[|All2 = 1, confirming the sufficiency of this condition. [12]
Out of 468 stable matrices251 had||A||; > 1 and 331
had||A||- > 1. Furthermore240 matrices had both norms
abovel simultaneously and i87% of the cases||A||» was
smaller than||A||~. Out of 552 unstable matrices, all had
[|All2 > 1 and||A]|~ > 1. Moreover,86% of the cases had
[|All2 < ||Al|eo- It thus appears thatA||; is a tighter norm  [14]
in terms of obtaining the necessary and sufficient condition

(6]
(7]

(8]

[13]

The next simulation generate)000 random two-by- [15]
two matrices and examines whether conditigd||; =
infy |[WAW™1||s < 1 is in fact sufficient for stability [16]

of the delayed system. Fig. 4 plot535 stable/unstable
points (1763 stable andl772 unstable). The largestA||s
for a stable matrix wa9.9953 and the smallest for an [17]
unstable matrix wag.0024. This demonstrates that for the
generatedmatrices, condition|A||; < 1 was both sufficient [18]
and necessary. We leave further investigation of necessity

this condition to future work. [19]

IV. CONCLUSION [20]

In this paper, we studied delay-independent stability dfll
max-min congestion control systems under heterogeneolg
diagonal delays. Our results improved the current under-
standing of conditions thatl must satisfy from symmetry to
diagonal similarity to matrices whosg||2 norm is less than
one to ensure stability under arbitrary diagonal del&ys
(or, equivalently, directional delay®;~ and D;~). Although
derived in the context of Internet congestion control, the,g
obtained results are of broader interest and apply to any
system that can be represented by model (1). As mentioned

[23]

[24]

in the last section, our future work involves finding stafili

1 TR conditions that are both sufficient and necessary and identi
PR TS fying a wider class of systems that are stable under diagonal

delaysD; as long ap(4) < 1.
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