On Delay-Independent Diagonal Stability of Max-Min Congestion Control

Yueping Zhang

Joint work with Dmitri Loguinov

Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

December 13, 2006

- Introduction
 - Modeling of Internet congestion control
 - Current stability results
- Main results
- Applications
 - Delay-independent stable matrices
 - Stability of Max-min Kelly Control (MKC)
- Wrap-up

Max-Min Congestion Control

- Many existing congestion control protocols, such as XCP, RCP, MaxNet, MKC, VCP, and JetMax, are max-min methods
- In max-min congestion control, each user i calculates its sending rate $x_i(n)$ based on feedback $p_i(n)$ generated by the most-congested link
- Network feedback is subject to delays, which are not only heterogeneous but also directional

$$x_i(n) = f_i(p_i(n - D_i^{\leftarrow}))$$

RTT

Linearized Max-Min Congestion Control

Then, the closed-form control equation is

$$x_i(n) = f_i \Big(g \Big(\sum_j x_j (n - D_j^{\rightarrow} - D_i^{\leftarrow}) \Big) \Big)$$

 Let x* be the equilibrium point of the system, then the linearized system model becomes

$$x_{i}(n) = \sum_{j} a_{ij} x_{j} (n - D_{j}^{\rightarrow} - D_{i}^{\leftarrow}) \quad (*)$$
$$a_{ij} = \frac{\partial f_{i}}{\partial x_{j}}\Big|_{\mathbf{x}^{*}}$$

Consider following linear system

$$x_i(n) = \sum_j a_{ij} x_j(n - D_i) \quad (+)$$

- Lemma 1: System (*) is stable under all heterogeneous directional delays D_i^{\rightarrow} and D_i^{\leftarrow} if and only if system (+) is stable under all roundtrip delays D_i
- System (+) has a simpler shape than (*), so we only consider stability of (+) in the rest of the talk

Current Stability Results I

- Assume that the Jacobian matrix A does not involve any delay
- <u>Definition 1</u>: We call a system stable independent of delay if its stability condition does not depend on delays
- Clearly, system (+) under zero delay is stable if and only if $\rho(A) < 1$
- Consider (+) under arbitrary delay D_{ij}

$$x_i(n) = \sum_j a_{ij} x_j (n - D_{ij}),$$

which is proved to be stable if and only if $\rho(|A|) < 1$

Current Stability Results II

no delay, stable iff $\rho(A) < 1$

diagonal delay D_i stability condition?

stable under diagonal delay D_i but with $\rho(|A|) > 1$

- Introduction
 - Modeling of Internet congestion control
 - Current stability results
- Main results
- Applications
 - Delay-independent stable matrices
 - Stability of Max-min Kelly Control (MKC)
- Wrap-up

Induced Matrix Norm

 <u>Definition 2</u>: The induced matrix norm II.II of a given vector norm II.II is defined as follows:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

- Examples
 - Spectral norm $||A||_2 = \sqrt{\rho(A^*A)}$ (where A^* is the conjugate transpose of A) is induced by the L^2 vector norm
 - Maximum absolute column sum norm $||A||_1 = \max_j \sum_{i=1}^N |a_{ij}|$ is induced by the L^1 vector norm
 - Maximum absolute row sum norm $||A||_1 = \max_i \sum_{j=1}^N |a_{ij}|$ is induced by the L^{∞} vector norm

Extending A Previous Result

- It is proved by Zhang *et al.* (SIGCOMM04) system (+) is stable if A is symmetric and $\rho(A) < 1$
- However, this result is very restrictive
- Utilizing induced matrix norms, we can obtain an alternative proof of this result and have the following observation
- Corollary 1: System (+) is stable for all delays D_i if $||A||_2 < \mathbf{1}$
- Clearly, this condition is tighter (i.e., less restrictive) than the previous result

Verification of Corollary 1

- Matlab simulations
 - Generate 3000 random two-by-two matrices and plot (x,y)where $x = \rho(A)$ and $y = ||A||_2$ of stable and unstable matrices on a 2-D plane

Thus, Corollary 1 is a sufficient but not necessary

Tighter Sufficient Conditions I

- <u>Definition 3</u>: A vector norm II.II is monotonic if for all x, y in \mathbb{R}^n such that $|x| \leq |y|$, it follows $||x|| \leq ||y||$
- <u>Theorem 1</u>: If there exists a monotonic vector norm $II.II_{\alpha}$ such that the induced matrix norm $II.AII_{\alpha} < 1$, system (+) is stable regardless of delay D_i
- Monotonic norms can be generated using the following result
- <u>Theorem 2</u>: Matrix norm $||A||_2^w = ||WAW^{-1}||_2$ for any non-singular diagonal matrix W = diag(w) is a monotonic induced matrix norm

Tighter Sufficient Conditions II

- Corollary 2: System (+) is stable for all delays D_i if $||A||_s = \inf_{W \in \mathcal{P}^*} ||WAW^{-1}||_2 < 1$

where \mathcal{P}^* is the set of all positive diagonal matrices

- Theorem 3: For any matrix A, we have $||A||_s \le \rho(|A|)$
- Therefore, Corollary 2 does not hold for arbitrary D_{ij} . But, is it tight for D_i ?

Verification of Corollary 2

- We next use Matlab simulations to verify Corollary 2
 - Generate 10000 random two-by-two matrices and plot 3535 stable/unstable matrices

• Conjecture: Condition in Corollary 2 is both sufficient and necessary for (+) to be stable under any delay D_i

- Introduction
 - Modeling of Internet congestion control
 - Current stability results
- Main results
- Applications
 - Delay-independent stable matrices
 - Stability of Max-min Kelly Control (MKC)
- Wrap-up

Delay-Independent Stable Matrices I

- \mathcal{N} : normal matrices, A is in \mathcal{N} if $AA^* = A^*A$
- Definition 4: Matrix A is diagonally similar to B if there exists a non-singular diagonal matrix W such that $WAW^{-1} = B$
- \mathcal{DN} the set of matrices that are diagonally similar to $\mathcal N$
- \mathcal{P} : the set of non-negative/non-positive matrices
- \mathcal{DP} the set of matrices that are diagonally similar to $\mathcal P$
- \mathcal{R} : the set of radial matrices, A is in \mathcal{R} if $||A||_2 = \rho(A)$
- \mathcal{DR} : the set of matrices that are diagonal similar to $\mathcal R$

Delay-Independent Stable Matrices II

- <u>Theorem 4</u>: The following matrices are stable under all diagonal delay D_i if and only if $\rho(A) < 1$: \mathcal{N} , \mathcal{DN} , \mathcal{P} , \mathcal{DP} , \mathcal{R} , \mathcal{DR}
- These matrix classes satisfy the following relationship, where $A \to B$ denotes $A \subset B$ \mathcal{DN} $\mathcal{DR} \leftarrow \mathcal{DP} \leftarrow \mathcal{P}$
- \mathcal{DR} is the largest class of matrices that are stable under all diagonal delay D_i if and only if $\rho(A) < 1$

Application to Max-min Kelly Control

• MKC end-user equation:

$$x_i(n) = (1 - \beta p_i(n - D_i^{\leftarrow}))x_i(n - D_i) + \alpha$$

sending rate of user *i* feedback $p_i(n) = g\left(\sum_j x_j(n - D_j^{\rightarrow})\right)$

- Stability of MKC under homogeneous parameters α and β has been proved
- <u>Theorem 5</u>: Single-link MKC with heterogeneous α_i and β_i is stable under all diagonal delay D_i if

$$0 < \beta_i(p^* + \sum_{i=1}^N x_i^* p') < 2, \quad i = 1, \dots, N$$

where x_i^* and p^* are stationary points of $x_i(n)$ and p(n)

- In this paper, we studied stability of max-min congestion control systems under diagonal delays
- Our results improved the understanding of delay-independent stability from the requirement that $\rho(A) < 1$ and A is symmetric to the simple condition that $\|A\|_s < 1$
- Simulations suggest that ${\rm II}A{\rm II}_s\!<\!1$ is also a necessary condition
- The obtained results are of broader interest and apply to any system that can be modeled by (+) or (\ast)