
Improving I/O Complexity of
Triangle Enumeration

Yi Cui, Di Xiao , Daren B. H. Cline , and Dmitri Loguinov , Senior Member, IEEE

Abstract—In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that

does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is

triangle listing, where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature,

two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is

known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of

these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method

defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both

previous techniques in all graphs and under all RAM conditions.

Index Terms—External memory, graph algorithms, modeling

Ç

1 INTRODUCTION

TRIANGLE listing is a field of graph mining that aims to
identify all three-node cycles in undirected graphs G.

This problem has many applications in theory and practice
[2], [3], [4], [5], [8], [11], [34], [39], including areas outside of
computer science [14], [15], [17], [23], [25], [33], [36]. Due to
the scale of modern graphs (i.e., billions/trillions of edges)
and anticipated emergence of even bigger datasets in the
future, reducing I/O complexity during graphmanipulation
has become an important topic.

Triangle listing involves two components – in-memory
search, whose purpose is to find all relevant motifs (i.e., tri-
angles) within portions of the graph loaded in RAM, and
graph partitioning, whose responsibility is to chunk G into
such pieces that ensure no triangle is missed or discovered
more than once. In-memory search entails verification of
neighboring relationships between all pairs of candidate
nodes. The majority of these solutions [1], [6], [7], [12], [16],
[18], [21], [28], [29], [30], [31], [32] can be expressed under
the umbrella of 18 vertex/edge-iterator algorithms [9], [37],
where a single method E1 has emerged as a clear winner.

In graph partitioning, however, the situation is more inter-
esting. As of this writing, the twomost-efficient approaches to
splitting the graph are a coloring schemewe call Pagh [26] and
the PCF framework from [9]. The main caveat is that the
former has lower I/O bounds on complete graphs, while the
latter on sparse, i.e., neither one is better than the other.
Besides I/O, execution time also depends on the amount of
hash-table lookups, which is a function of the partitioning

algorithm. This raises a possibility that some methods exhibit
less I/O, but requiremore CPU cost.

It currently remains unclear under what specific condi-
tions Pagh is better than PCF in terms of I/O, which of them
should be chosen for a particular G, why one approach may
have inherent advantages over the other, and whether it is
possible to design a single algorithm that can perform better
than both of these techniques. If so, how does one decide on
its parameters in order to achieve the smallest runtime? Our
goal in the paper is to address these questions.

1.1 Overview of Results

We start by analyzing the asymptotics of I/O in Pagh and
PCF, aiming to achieve an understanding of their strengths
and weaknesses. While the former has a simple model, the
latter is a complex function of the acyclic orientation u, the
resulting directed graph Gu, and specific traversal order of
nodes in each triangle. We derive the exact overhead of
PCF; however, this formula proves difficult for closed-form
analysis. We therefore obtain tight bounds on its growth
rate, which are then used in the comparison against Pagh.

This analysis shows how the scaling rate of average
degree, memory size, and variance of out-degree affect which
method is better. In general, PCF has the highest advantage
when the graph is sparse (i.e., the average degree is low), the
variance of out-degree is small, and RAM is growing slowly
with the number of edges m. Pagh wins when these condi-
tions are reversed. As the number of nodes n ! 1, our
results demonstrate that under the best scenario for PCF, it
beats Pagh by a factor of n. In the worst case, it loses by a fac-
tor of

ffiffiffi
n

p
. We also prove existence of graphs where PCF

scales I/O no faster than Pagh for allmemory sizes; however,
the opposite is possible aswell.

Our investigation reveals that each method brings a sig-
nificant amount of redundant edges into RAM, but they do
so under different conditions. This gives hope that a single
method can combine the strengths of these techniques and

� The authors are with the Texas A&MUniversity, College Station, TX 77843
USA. E-mail: {yicui, di, dmitri}@cse.tamu.edu, dcline@stat.tamu.edu.

Manuscript received 26 Oct. 2019; revised 27 Apr. 2020; accepted 5 June 2020.
Date of publication 18 June 2020; date of current version 7 Mar. 2022.
(Corresponding author: Dmitri Loguinov.)
Recommended for acceptance by K. S. Candan.
Digital Object Identifier no. 10.1109/TKDE.2020.3003259

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022 1815

1041-4347 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8612-2863
https://orcid.org/0000-0002-8612-2863
https://orcid.org/0000-0002-8612-2863
https://orcid.org/0000-0002-8612-2863
https://orcid.org/0000-0002-8612-2863
https://orcid.org/0000-0003-3791-0465
https://orcid.org/0000-0003-3791-0465
https://orcid.org/0000-0003-3791-0465
https://orcid.org/0000-0003-3791-0465
https://orcid.org/0000-0003-3791-0465
https://orcid.org/0000-0003-3876-1000
https://orcid.org/0000-0003-3876-1000
https://orcid.org/0000-0003-3876-1000
https://orcid.org/0000-0003-3876-1000
https://orcid.org/0000-0003-3876-1000
mailto:yicui@cse.tamu.edu
mailto:di@cse.tamu.edu
mailto:dmitri@cse.tamu.edu
mailto:dcline@stat.tamu.edu

simultaneously avoid their individual drawbacks. To this
end, we first generalize graph partitioning to cover all possi-
ble ways to execute vertex/edge iterators in external mem-
ory. Not surprisingly, both Pagh and PCF, as well as
previous techniques based on MGT [12], [16], are all special
cases of this unifying framework. Under its umbrella, we
then create a particular scheme, which we call Trigon, that
leverages the lessons learned from the preceding analysis.
We show that Trigon’s I/O is never worse, and in many
cases much better, than either of its predecessors. Not only
that, but it is also the first method that allows balancing I/O
and CPU cost in order to achieve the smallest runtime.

2 RELATED WORK

The issue of optimal speed for in-memory algorithms
appears to be settled. In the last decade, the fastest techni-
ques have come from the family of vertex/edge iterators
[1], [12], [16], [18], [21], [29], [30], [31], [32]. The former meth-
ods typically rely on hash tables to perform neighbor
checks, where the speed is limited by that of random mem-
ory access. On the other hand, scanning edge iterators can
be implemented using vectorized CPU intrinsics, which are
not bottlenecked by RAM latency. With 128-bit SIMD and
list compression, it is feasible to achieve two orders of mag-
nitude faster neighbor verification [9]. In the taxonomy of
18 vertex/edge iterators, method E1 [1], [12], [31] is by far
the best technique [9], [37].

In external memory, early methods used a variety of tech-
niques, including disk seeking [10], [24], MapReduce [8],
[27], [32], general graph libraries [13], [20], and iterative
graph shrinkage [7], which are difficult to summarize here
analytically. Due to their low efficiency, however, these app-
roaches are not considered competitive today.More recently,
algorithms access the disk only sequentially, which allows
comparison using just the amount of edges read from disk
and RAM size M. In MGT [16], the graph is split into equal-
size chunks. After each is loaded into RAM, the graph is
scanned again to discover the missing edges that complete
triangles with the portion already in RAM. Ignoring small
terms,MGT readsm2=M edges.

This result was superseded by a method we call Pagh
[26], which achieves a strictly better asymptotic bound
Oðm1:5=

ffiffiffiffiffi
M

p Þ. We review its operation in more detail below.
A different approach is proposed in [9], where a set of six
PCF algorithms covers all 18 vertex/edge iterators in exter-
nal memory. While there is no model for PCF I/O, upper
bounds show that it is currently the only method that can
achieve linear complexity under constantM.

3 PRELIMINARIES

Assume a simple undirected graph G ¼ ðV;EÞ with n nodes
and m edges. Detection of triangles requires a large number
of neighbor checks, whose complexity is normally a qua-
dratic function of undirected degree. This overhead can be
substantially reduced by performing an acyclic orientation
on G, which makes cost depend on the much-smaller
directed degree. In recent literature [37], orientation is mod-
eled as some permutation u that decides the direction of
each edge. Specifically, each node u is placed into a

new location uðuÞ, the permuted sequence of nodes is rela-
beled from 1 to n, and all edges are directed from larger to
smaller node IDs. This splits each neighbor list Nu into out-
neighbors Nþ

u and in-neighbors N�
u , with the corresponding

graphs Gþ
u and G�

u . Note that adjacency lists are sorted by
the new labels.

Throughout the paper, we use orientation uD that arranges
the nodes in descending order of undirected degree du. This
permutation, also known as largest-first in graph theory [22],
[35], is optimal for both the fastest edge iterator E1 and its
corresponding PCF algorithms in [9], [37]. Since Pagh’s
performance is independent of u, this choice does not affect its
I/O. Letting Yu ¼ jN�

u j and Xu ¼ jNþ
u j be the respective in/

out-degrees of u in directed Gu, it follows that Xu þ Yu ¼ du
and

Pn
u¼1 Xu ¼Pn

u¼1 Yu ¼ m.
After orientation, E1 searches for all directed triangles

~uvw, where u > v > w. This is done by calling Algorithm
1 for each source node u in Gþ

u . The CPU cost consists of the
number of hash-table lookups to retrieve Nþ

v and the size of
intersection in Line 3. For in-memory operation, the former
is just gðnÞ ¼ m� n, while the latter is given by [37]

rðnÞ ¼
Xn
u¼1

XuðXu � 1Þ

2
þXuYu

!
: (1)

Algorithm 1. Method E1 Processing Source Node u in
RAM

1 foreach v 2 Nþ
u do 3 visit all out-neighbors

2 findNþ
v using a hash table

3 W ¼ Intersect(Nþ
u ,N

þ
v) 3 intersect two sorted out-lists

4 foreach w 2 W do report Duvw

To emphasize the importance of keeping track of lookups,
consider the example of Twitter [19]. With m ¼ 1:2B edges,
Algorithm 1 requires 60 seconds worth of lookups using one
core of an Intel i7. The time to perform 511B intersections is an
additional 250 seconds. Increasing the lookup cost just 5 times
shifts the bottleneck to the hash table and causes triangle
search to increase the runtime from 310 to 550 seconds.

When E1 is used in external memory, the partitioning
schememust ensure that all three edges of a triangle are even-
tually present in RAM at the same time. This can be accom-
plished by holding one of them in RAM and streaming the
other two from disk (e.g., MGT [16], PCF-1B [9]), keeping two
in RAM and streaming the third one (e.g., PCF-1A [9]), or
loading all three simultaneously [26], [28]. Because of the ran-
dom lookupneeded to obtainNþ

v , it does not currently appear
feasible to stream all three edges.

Note that all methods require the same amount of I/O to
store the found triangles. We therefore focus on the cost
needed to create this list, which is what differentiates the
various approaches. Because only sequential disk access is
needed for the methods in this paper, I/O complexity is
measured solely by the amount of data transferred (i.e.,
division by block size B is unnecessary).

4 ANALYSIS OF PAGH

The original Pagh algorithm [26] has certain details omitted
from the paper, while others are sketched at a high level.

1816 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

While I/O complexity of this method has known bounds in
the Oð:Þ notation [26], numerical comparison between the
algorithms, as well as implementation, both require the
missing constants. Additionally, since coupling of Pagh to
E1 has not been done before, we perform this below.

4.1 Algorithm

Pagh assigns to each node u a uniformly random color fu

drawn from a set 1; 2; . . . ; c, where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m=M

p
and M is

RAM size in edges. Then, all nodes are split into c subsets
V1; . . . ; Vc such that

Vi ¼ fu 2 V jfu ¼ ig: (2)

This can be visualized with the help of Fig. 1. Part (a)
shows a directed triangle ðuvwÞ, as seen by Algorithm 1,
with three uniquely-identifiable edges. While they have sev-
eral different names in previous literature, we follow the
notation of [9] for compatibility with E1. From u’s perspec-
tive, edge ðuvÞ results in a hit on the hash table, ðuwÞ partici-
pates in local intersection at u, and ðvwÞ is part of remote
intersection. The mapping to colors is shown in part (b) of
the figure, where i refers to the color of the largest node, j to
that of the middle, and k to that of the smallest.

Algorithm 2. Graph Partitioning in Pagh

1 for u ¼ 1 to n do
2 i ¼ fu 3 color of source node u
3 for j ¼ 1 to c do 3 color of destination node
4 Nþ

uj ¼ Nþ
u \ Vj 3 out-neighbors of color j

5 write ðu;Nþ
ujÞ to subgraph Eþ

ij

The edges of Gþ
u ¼ ðV;Eþ

u Þ are partitioned into c2 subsets
fEþ

ijg according to the color of source/destination nodes, i.e.,

Eþ
ij ¼ fðu; vÞ 2 Eþ

u jfu ¼ i;fv ¼ jg: (3)

This is demonstrated in Algorithm 2, which splits the
out-graph into tuples ðu;Nþ

ujÞ, where Nþ
uj contains u’s out-

neighbors of color j. Note that the expected size of each Vi is
n=c and that of Eþ

ij is m=c2 edges. After this preprocessing
step, Pagh suggests using MGT [16] to find triangles in each
of the c3 triples ðEþ

ij ; E
þ
jk; E

þ
ikÞ, where the remote edge

belongs to Eþ
jk. MGT relies on vertex iterator T1 [9], which is

15� 80 times slower than E1 on real graphs. Additionally, it
does not by default handle heterogeneous partitions (i.e.,
hit/remote/local edges all being stored separately). To cre-
ate a fully working system, we need a few refinements.

4.2 Pagh+

Assuming partitions are well-balanced, i.e., all have size M
within some tolerance, MGT can be combined with E1 to effi-
ciently solve the problem. Algorithm 3, which we call Pagh+,

loads remote edgesEþ
jk, for each pair of colors ðj; kÞ, into RAM

and then scans all remaining subgraphs Eþ
ij and Eþ

ik, where
i ¼ 1; 2; . . . ; c. Since Algorithm 2 writes source nodes in the
same order for all subgraphs, Pagh+ can obtain both hit and
local lists of each u by concurrently reading Eþ

ij and Eþ
ik. The

resulting system detects each triangle once and performs no
more intersections than in-memory E1. Note that we skipped
discussing cases when some of the colors are duplicate (e.g.,
i ¼ k or j ¼ k); however, our implementation handles them
efficiently (i.e., without reading unnecessary files).

Algorithm 3. Pagh+ Handling One Remote Graph ðj; kÞ
1 load Eþ

jk ¼ fðv;Nþ
vkÞg in RAM; set up hash table to sources

2 for i ¼ 1 to c do
3 while file Eþ

ij not empty do
4 load ðu;Nþ

ujÞ from Eþ
ij and ðu;Nþ

ukÞ from Eþ
ik

5 foreach v 2 Nþ
uj do 3 visit all neighbors in the hist list

6 find remote list Nþ
vk using the hash table

7 W ¼ Intersect(Nþ
uk, N

þ
vk) 3 local/remote lists

8 foreach w 2 W do report Duvw

Theorem 1. Pagh+ needs IP ðnÞ ¼ ð2c� 1Þm edges of I/O.

Proof. First notice that Algorithm 3 loads each remote sub-
graph once, for a total I/O cost of m. The remaining over-
head comes from hit/local edges, which we consider
next. While there are c3 possible triples ðijkÞ, there are
three special cases. The first one is shown in Fig. 2a,
where all three edges are in RAM. This results in no addi-
tional cost beyond Eþ

jj. The second configuration in
Fig. 2b has file Eþ

jj loaded in RAM and the remaining
color i is not equal to j. There are cðc� 1Þ such cases, each
requiring jEþ

ij j I/O. The last special case in Fig. 2c
involves cðc� 1Þ files Eþ

jk, each producing jEþ
jjj I/O. The

remaining scenarios are outside the scope of Fig. 2. There
are cðc� 1Þ files Eþ

jk such that j 6¼ k, each of which can be
coupled with c� 1 values of i 6¼ j. This yields
cðc� 1Þðc� 1Þ cases that load 2m=c2 edges each.

Combining the various terms, we get

mþm

c2
ð0þ 2cðc� 1Þ þ 2cðc� 1Þðc� 1ÞÞ; (4)

which simplifies to 2cm�m ¼ ð2c� 1Þm. tu
Since ð2c� 1Þm ¼ 2m1:5=

ffiffiffiffiffi
M

p �m, Pagh+ has the lowest
multiplicative constant in the literature. The closest alterna-
tive [28] uses the undirected graph G, assigns direction to
colors rather than edges, and increases c to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5m=M

p
such

that certain combinations of subgraphs fit in RAM. This
leads to

ffiffiffi
5

p
m1:5=

ffiffiffiffiffi
M

p � 2:2m1:5=
ffiffiffiffiffi
M

p
total I/O, which is

slightly worse than the result above. Another potential
drawback to this approach is usage of undirected graphs,
where E1 has to perform unnecessary intersections [37].

Fig. 1. Directed triangle (u > v > w).
Fig. 2. Special cases in Pagh.

CUI ET AL.: IMPROVING I/O COMPLEXITY OF TRIANGLE ENUMERATION 1817

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

It is also simple to obtain the number of hash-table look-
ups in Pagh+. When they become a CPU bottleneck, E1 may
essentially deteriorate into T1 and lose its advantages. The
next result shows that this value is linear in c.

Theorem 2. Pagh+ performs gP ðnÞ ¼ cm lookups.

Proof. Denote by Xuj ¼ jNþ
ujj the out-degree of u with

respect to neighbors of color j. Now, notice that the size
of hit lists processed by Algorithm 3 for all ðj; kÞ equals

Xc
k¼1

Xc
j¼1

Xc
i¼1

 Xn
u¼1

1fu¼i Xuj

!
; (5)

where 1A is an indicator of event A. Swapping the order
of summations, this becomes

Xc
k¼1

Xc
j¼1

Xn
u¼1

 Xc
i¼1

1fu¼i Xuj

!
¼
Xc
k¼1

Xc
j¼1

Xn
u¼1

Xuj

¼
Xc
k¼1

Xn
u¼1

Xu:

(6)

Leveraging the fact that
Pn

u¼1 Xu ¼ m, we get the
statement of the theorem. tu

4.3 Discussion

Slightly unbalanced partition sizes jEþ
ij j due to randomness of

color assignment are a minor issue in practice. However,
when the graph contains nodes with large degree, Pagh+
requires a different algorithm. One example is the star graph,
where all nodes connect to a center node of some color k. To
avoid optimizations that discard ðijkÞ if any of the subgraphs
is empty, the star graph can be augmented with c2 random
edges between the leaf nodes. Neglecting small terms, Algo-
rithm 2 produces c partitions of sizem=c � M. In fact, two of
the three subgraphs involving color k have size m=c. Pagh+
cannot be applied here, but MGT can be modified to handle
any triple ðijkÞ with I/O complexity 2ðm=cÞ2=M ¼ 2m.
Repeating this c2 times for all ðijÞ produces a total of 2m2=M.
Depending onm andM, this result can be significantly worse
than in Theorem 1.

The authors [26] handle this case by isolating nodes of
degree larger than

ffiffiffiffiffiffiffiffiffiffi
mM

p
into a separate category. Each of

them requires sorting up tom edges on disk. Since there are no
more than c such nodes, the I/O can be bounded by
c � sortðmÞ � cmlogm=logM edges. If RAM scales as some
power ofm, as assumed in [26], we get the usualOðm1:5=

ffiffiffiffiffi
M

p Þ;
however, the hidden constants may be non-negligible. But
more importantly, the CPU cost for sorting the graph c times
may be quite hefty.

Algorithm 4. PCF-1A Graph Partitioning

1 for u ¼ 1 to n do 3 iterate over all nodes
2 for i ¼ 1 to p do 3 go through each partition
3 Hui ¼ Nþ

u \ ½aiþ1; n� 3 pruned hit list
4 Lui ¼ Nþ

u \ ½ai; aiþ1Þ 3 local/remote list
5 if Lui 6¼ ; then
6 write ðu; LuiÞ to Gr

uðiÞ 3 remote file i
7 ifHui 6¼ ; then
8 write ðu;HuiÞ to Gc

uðiÞ 3 companion file i

On the bright side, Pagh+ does not impose much restric-
tion on minimum RAM or disk size. Setting c ¼ n, it is pos-
sible to create subgraphs that contain just one edge each,
resulting in Oð1Þ memory consumption. Furthermore, its
disk-space requirement is only m edges. However, when c3

is large, Pagh+ has to read many small files and its I/O
speed may be adversely affected by disk seeking.

5 ANALYSIS OF PCF

The I/O complexity of PCF is quite peculiar due to the
dependency on the underlying graph. This section develops
the methodology and insight that not only sheds light on
PCF, but also helps later with comparison against Pagh+
and design of our new method.

5.1 Operation

PCF [9] is a suite of six algorithms 1A, 1B, 2A, 2B, 6A, 6B. All
of them partition the graph along the remote edge of the
corresponding in-memory algorithm (i.e., E1, E2, and E6). In
the notation of Fig. 1a, these are ðvwÞ for 1A/1B, ðuwÞ for
2A/2B, and ðuvÞ for 6A/6B. The A variants split based on
the destination node of the remote edge, while the B ver-
sions do the same on the source node. After preprocessing,
PCF sequentially loads chunks of Gþ

u in RAM and scans so-
called pruned companion files to obtain the missing edges.

Method E1 requires PCF-1A/1B, which we review and
analyze next. Both of them start by dividing the set of nodes
V into p ¼ m=M non-overlapping subsets V1; . . . ; Vp. PCF
utilizes sequential partitions such that u 2 Vi iff u 2 ½ai; aiþ1Þ,
where boundaries faig are determined by load-balancing
either the in-degree (1A) or out-degree (1B) of each partition
to equal memory size M. To be consistent with other parts
of the paper, we say that nodes in Vi have color i. We also
use the same function fu to map u to its color.

Algorithm 5. PCF-1B Graph Partitioning

1 for u ¼ 1 to n do 3 iterate over all nodes
2 for i ¼ 1 to fu � 1 do 3 go through each partition below u
3 Hui ¼ Nþ

u \ ½ai; aiþ1Þ 3 hit list
4 Lui ¼ Nþ

u \ ½1; aiþ1Þ 3 local list
5 ifHui 6¼ ; and jLuij 	 2 then
6 write ðu; LuiÞ to Gc

uðiÞ 3 save to companion file i
7 ifNþ

u 6¼ ; then 3 out-degree non-zero?
8 write ðu;Nþ

u Þ to Gr
uðfuÞ; 3remote file of u’s color

File Gþ
u is split into p disjoint subgraphs Gr

uð1Þ; . . . ;Gr
uðpÞ

that contain all remote edges ðvwÞ matching the correspond-
ing color. Specifically, ðvwÞ is written into Gr

uðiÞ iff w 2 Vi in
PCF-1A and v 2 Vi in PCF-1B. The corresponding companion
filesGc

uðiÞ contain nodes u and their hit/local lists, but only if
they are relevant to partition i. For example, PCF-1B skips
node u unless it has at least one neighbor of color i and
another neighbor with a smaller ID. While [9] has a compre-
hensive algorithm that covers all six methods, it may be diffi-
cult to parse. We therefore find it useful to show the minimal
versions of PCF-1A and 1B usingAlgorithms 4 and 5.

5.2 Model

Since
Pp

i¼1 jGr
uðiÞj ¼ m is fixed, the main open question is

companion I/O, i.e.,
Pp

i¼1 jGc
uðiÞj. For a source node u,

1818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

suppose fus is the color of its sth out-neighbor in sorted
order. For a given list Nþ

u , denote by Rus the number of col-
ors to the left of position s, excluding the color of s, and by
R0

us the number to the right, but not counting u’s own color

Rus ¼ jffut j t < s;fut 6¼ fusgj; (7)

R0
us ¼ jffut j t > s;fut 6¼ fugj: (8)

With this in mind, consider the next result.

Theorem 3. The companion I/O of PCF-1A is given by

IAðnÞ ¼
Xn
u¼1

XXu

s¼1

Rus; (9)

and that of PCF-1B by

IBðnÞ ¼
Xn
u¼1

"
R0

u1 þ
XXu

s¼1

R0
us

#
: (10)

Proof. In PCF-1A, consider some source node u and color i.
As long as the local listLui ¼ Nþ

u \ Vi 6¼ ;, all out-neighbors
with labels at least aiþ1 are saved to disk in Algorithm 4.
Therefore, from a perspective of some fixed position
s 2 ½1;Xu� in the out-listNþ

u , the number of times this node
iswritten to disk equals the number of non-empty local lists
in positions ½1; s� 1�, excluding those that contain s. An
example is shown in Fig. 3a, where s is written twice. This
happens to be the number of distinct colors, except fus,
among the nodes preceding s, which equals Rus in (7). Tak-
ing a summation over all u and s yields (9).

For PCF-1B, we first have to remove neighbors of color
fu from consideration since these edges are found in
RAM (i.e., included in the remote graph). Once this is
done, notice that Algorithm 5 writes a node in position s
into R0

us files as part of some local list. Fig. 3b shows one
such example. However, there is one exception for s 	 2.
The last node of each color (within u’s neighbor list) has
overhead R0

us þ 1, where the extra 1 accounts for s being
included in the hit list of companion file Gr

uðfusÞ. The
affected neighbors are shown in Fig. 3 using shading.
Putting the pieces together

IBðnÞ ¼
Xn
u¼1

"
R0

u1 þ
XXu

s¼2

�
R0

us þ 1fu;sþ1 6¼fus

�#
; (11)

where condition fu;Xuþ1 6¼ fu;Xu
is always true (i.e., we

always count an extra 1 for the very last node in Nþ
u).

Rearranging the terms, we get

IBðnÞ ¼
Xn
u¼1

"XXu

s¼1

R0
us þ

XXu

s¼2

1fu;sþ1 6¼fus

#
: (12)

Now notice that the sum of indicator variables yields
the number of unique colors in positions ½2; Xu�. Since
this value is R0

u1, we obtain (10). tu
Note that (9)-(10) are exact. While Rus and R0

us appear
symmetric to each other, there is a subtle difference. PCF-
1A load-balances using in-degree, while PCF-1B using out-
degree. Hence, their color assignments are not directly com-
parable to each other. However, on real graphs, PCF-1B
commonly demands less I/O [9]. Additionally, it requires a
lot fewer lookups. For the next result that shows this, define
Ru ¼ Ru;Xu þ 1 to be number of colors in Nþ

u .

Theorem 4. The number of hash-table hits in PCF-1A is

gAðnÞ ¼ IAðnÞ þm�
Xn
u¼1

Ru; (13)

and that in PCF-1B is

gBðnÞ ¼ m� n: (14)

Proof. PCF-1A writes only pruned hit-lists, which produce
IAðnÞ lookups when they are loaded back to RAM. Addi-
tionally, a portion of each hit list is removed by Algorithm
4 and kept in RAM as part of the local list Lui. In fact, the
entire Lui, except its first node, is part of the hit list for
node u. Adding the two terms together yields (13).

For PCF-1B, every node in Nþ
u is part of the hit list,

except the one in position s ¼ 1. Writing

gBðnÞ ¼
Xn
u¼1

ðXu � 1Þ; (15)

we immediately get (14). tu
Note that gAðnÞ can be orders of magnitude larger thanm,

while gBðnÞ is always optimal (i.e., the same as in-memory
E1). Further problems of PCF-1A include a requirement that
RAM size be no smaller than the largest in-degree maxuYu,
which can be as large as n� 1. In contrast, PCF-1B only needs
M 	 maxuXu, whose largest value under descending-degree
permutation uD stays bounded by

ffiffiffiffiffiffiffi
2m

p
. While PCF-1A can be

dismissed for now as being inferior, we later come back to it
and explainwhat features the newmethod shareswith it.

5.3 Bounds

Computing the exact I/O formula (10) requires processing the
entireGþ

u and splitting allm edges into colors. In certain cases,
this may be too expensive, especially if repeated many times
(e.g., in an iterative search for optimal parameters). To over-
come this issue, we derive simple upper bounds that require
one pass over the out-degree sequence fXug.
Theorem 5. For a given out-degree sequence fXug, the expected

size of companion I/O in PCF-1B (over all graphs realizing this
sequence) is bounded by

E½IBðnÞ�

Xn
u¼a2

zu

h
Xu � zu þ 1þ ðzu � 2ÞqXu�1

u

i
;

(16)
where qu ¼ 1� 1=zu and zu ¼ fu � 1.

Fig. 3. Colors amongNþ
u in PCF.

CUI ET AL.: IMPROVING I/O COMPLEXITY OF TRIANGLE ENUMERATION 1819

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

Proof. Note that uniformly random, rather than sequential,
color assignment can only make R0

us stochastically larger.
Therefore, replacing R0

us with some other variable Qus that
uniformly draws from among zu colors can yield only
larger I/O in expectation. SinceQus ¼ 0 for u < a2, we get

E½IBðnÞ�

Xn
u¼a2

E½Qu1� þ

XXu

s¼1

E½Qus�
!
: (17)

To expand this, continue assuming random color
choices and define

Wusi ¼
XXu

t¼sþ1

1fut¼i; (18)

to be the number of u’s out-neighbors to the right of s that
have color i. Conditioning on the out-degree sequence,
each Wusi is BinomialðXu � s; 1=zuÞ, where E½Wusi� ¼
Xu=zu andP ðWusi 	 1Þ ¼ 1� ð1� 1=zuÞXu�s. Then

Qus ¼
Xzu
i¼1

1Wusi	1; (19)

is the number of uniform colors to the right of s. Setting
qu ¼ 1� 1=zu, we get

E½Qus� ¼ zuP ðWusi 	 1Þ ¼ zuð1� qXu�s
u Þ: (20)

Next, observe that

XXu

s¼1

E½Qus� ¼ zu
XXu

s¼1

ð1� qXu�s
u Þ ¼ zu

Xu �

XXu�1

s¼0

qsu

!

¼ zu

Xu � 1� qXu

u

1� qu

!
¼ zu

h
Xu � zuð1� qXu

u Þ
i
:

Adding E½Qu1� to the last result, we get

E½IBðnÞ�

Xn
u¼a2

zu

h
Xu � zu þ zuq

Xu
u þ 1� qXu�1

u

i

Xn
u¼a2

zu

h
Xu � zu þ 1þ ðzu � 2ÞqXu�1

u

i
;

(21)

where we use the fact that zuqu ¼ ðzu � 1Þ. tu
Bound (16) holds in expectation; however, there are

adversarial graphs and color assignments that may violate
it. Therefore, our second bound is deterministic, but some-
what looser in sparse graphs. It shows a more clear depen-
dency of I/O on the second moment of out-degree.

Theorem 6. The companion I/O of PCF-1B is bounded by

IBðnÞ

Xn
u¼1

min

ðXu � 1ÞðXu þ 2Þ

2
; Xuzu

!
: (22)

Proof. Trivially, R0
us
 minðXu � j; zuÞ. Thus, we get

IBðnÞ

Xn
u¼1

"
minðXu � 1; zuÞ þ

XXu

s¼1

minðXu � s; zuÞ
#

¼
Xn
u¼1

"
minðXu � 1; zuÞ þ

XXu�1

j¼1

minðs; zuÞ
#

Xn
u¼1

min

Xu � 1þ

XXu�1

s¼1

s;Xuzu

!
;

(23)

which becomes (22) after expanding the inner sum. tu
Note that [9] also obtains an upper-bound on IBðnÞ; how-

ever, they neglect the standalone term R0
u1 in (10). This issue

notwithstanding, their bound is a special case of (22) where
zu ¼ fu � 1 is replaced by p� 1. Fig. 4 shows a comparison
between that result and our models, where we use Twitter
from [19] and IRL-domain from [9].

5.4 Discussion

PCF-1B requires that the longest out-list fit in memory, i.e.,
M 	 maxuXu. While much better than in PCF-1A, this con-
dition is stricter than in Pagh+, which can work with con-
stantM as n ! 1. Additionally, PCF-1B needs enough disk
space to write all companion files. In some cases, the read-
only operation of Pagh+ may be preferable. Furthermore, it
is common to exclude the preprocessing stage from compar-
ison, because triangle enumeration can run multiple times
over the same input (e.g., feeding the found Duwv to different
consumers on the fly). However, if this is not the case, all
I/O of PCF-1B needs to be doubled. This is of no conse-
quence to asymptotics, but we benchmark both stages sepa-
rately in the experimental section.

On the positive side, PCF achieves deterministic load-
balancing and its sequential color assignment brings many
benefits compared to random colors in Pagh+. First, contig-
uous coloring produces stochastically smaller R0

us because
u’s neighbors are more drawn towards colors with a large
mass of degree. Since such colors are concentrated at the
start of the range ½1; n�, neighbor lists contain more dupli-
cate colors than would be possible under uniform assign-
ment. This effect is most pronounced on graphs with heavy-
tailed degree. Second, due to sequential grouping of nodes
into each color, splitting of neighbor lists in Algorithm 5
does not require a hash-table lookup for each edge. Simi-
larly, when PCF-1B loads the remote graph into RAM, it can

Fig. 4. Model accuracy in PCF-1B.

1820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

use an array of offsets instead of a hash table to perform
retrieval of remote edges. Third, placing similar node IDs
into individual partitions allows better compression of
neighbor lists. This can save up to 50 percent on byte I/O.
Similarly, [9] shows that SIMD intersection is 80 percent
faster on compressed lists.

6 ASYMPTOTIC COMPARISON

We are now interested in the conditions that cause each of
the candidate methods to be better than the other. Deciding
this for finite n requires a specific graph and computation of
the various models/bounds from the previous section.
Instead, we study cases of n ! 1, which should provide a
qualitative assessment of each method’s capabilities and
types of graphs they are most suited for.

6.1 Definitions

Suppose the average directed degree of the graph, i.e., m=n,
grows proportionally to na, where a 2 ½0; 1� is a constant. In
general, we write f � g to mean that fðnÞ ¼ OðgðnÞÞ and
gðnÞ ¼ OðfðnÞÞ. Similarly, assume memory size Mn � nr,
where r 2 ½0; 1þ a� is also fixed. To ignore contribution
from constants and slowly growing terms, we have the fol-
lowing definition.

Definition 1. The scaling rate of a function fðnÞ is given by

vðfÞ ¼ lim
n!1 log nfðnÞ; (24)

as long as the limit exists and is finite.

For example, fðnÞ ¼ 5n2:3=log ðnÞ has vðfÞ ¼ 2:3. Since
the scaling rate ofm is 1þ a, Pagh+ has a very simple result

vðIP Þ ¼ 3ð1þ aÞ � r

2
: (25)

However, the corresponding model for PCF is less obvi-
ous. We therefore perform a separate investigation into it.

6.2 Dynamics of PCF

We start with an upper bound on vðIBÞ, which requires
studying the second moment of out-degree. To this end,
define

pn ¼
Xn
u¼1

X2
u; (26)

and consider the next result.

Theorem 7. The scaling rate of (26) is vðpÞ ¼ 1þ 2aþ �, where
� 2 ½0; ð1� aÞ=2�.

Proof. Suppose pn � n1þ2aþ�n , where �n is some unknown
function. Our goal is to put bounds on it. Assuming
E½Xu� ¼ m=n is fixed, it is obvious that minimizing the
variance of set X1; . . . ; Xn yields the lowest pn. Since this
is achieved by constantXu ¼ m=n, we get

pn 	 n
m2

n2
� n1þ2a: (27)

This shows that �n 	 0 must hold. To arrive at the
upper bound on pn, first notice thatXu cannot exceed the

number of nodes preceding it (i.e., u� 1). At the same
time, Xu must be no larger than 2m=u; otherwise, the
degree sum

Pu
v¼1 dv of the largest u nodes would exceed

2m, which is impossible. As a result

pn

Xn
u¼1

min

u� 1;

2m

u

!2

Xffiffiffiffiffi2m
p

u¼1

u2 þ
Xn

u¼ ffiffiffiffiffi
2m

p
ð2mÞ2
u2

� ð2mÞ1:5
3

þ 4m2

1ffiffiffiffiffiffiffi
2m

p � 1

n

!
� n3ð1þaÞ=2:

(28)

Since we assumed that pn � n1þ2aþ�n , we get that
�n
 ð1� aÞ=2. Letting �n ! � as n ! 1, the statement of
the theorem follows. tu
Note that regular graphs (i.e., all degree equal to each

other) yield � ¼ 0 for all a. Another well-known case follows
from [37]. Specifically, for a sequence of graphs fGng, define
Dn to be a random variable with the same distribution as
undirected degree in Gn. Then, assuming E½D4=3

n � converges
to a finite constant as n ! 1, these graphs also achieve
� ¼ 0. For more general cases, the family of dense-core
graphs introduced next allows realization of any �.

Theorem 8. For any � 2 ½0; ð1� aÞ=2�, there exists a graph with
vðpÞ ¼ 1þ 2aþ �.

Proof. Assume a graph where the first kn nodes, each with
degree ln
 kn, link to nodes with labels ð1; 2; . . . ; lnÞ. All
remaining nodes have degree two and link to nodes (1,2).
Then, assuming kn � nz1 and ln � nz2 , where z1 	 z2 and
z1 þ z2 	 1, we get

E½Dn� ¼ knln þ 4ðn� knÞ
n

� nz1þz2�1; (29)

and

pn �
Xln
u¼1

u2 þ
Xkn
u¼ln

l2n þ n� kn � knl
2
n � nz1þ2z2 : (30)

Assume a is selected first and � is selected second in
the range ½0; ð1� aÞ=2�. Then, we can construct the sys-
tem above using z1 ¼ 1� � and z2 ¼ aþ 1� z1. Note that
z1 þ z2 ¼ aþ 1 	 1 is satisfied with any a 	 0. Further-
more, condition z1 	 z2 is equivalent to 2z1 	 aþ 1, or
�
 ð1� aÞ=2, which is satisfied by any valid �. tu
Leveraging the last two theorems finally produces a

usable upper bound on the scaling rate of IBðnÞ.
Theorem 9. The rate of PCF-1B I/O is upper-bounded by

vðIBÞ
 minð1þ 2aþ �; 2þ 2a� rÞ: (31)

Furthermore, in the worst-case of � ¼ ð1� aÞ=2, the graphs
built in Theorem 8 reach (31) for all a and r.

Proof. From (22), it is clear that

IBðnÞ
 minðpn; ðp� 1ÞmÞ
 min

pn;

m2

M

!
: (32)

Converting this into rates yields (31).

CUI ET AL.: IMPROVING I/O COMPLEXITY OF TRIANGLE ENUMERATION 1821

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

Next, for any a and � ¼ ð1� aÞ=2, the graphs introduced
in Theorem 8 require z1 ¼ z2 ¼ ð1þ aÞ=2. Then, we can set
kn ¼ 2ln and obtain that out-lists of source nodes
u 2 ½ln; 2ln� haveXu ¼ ln neighbors and roughly zu ¼ l2n=M
colors. Converting this into asymptotics, it follows that
the out-degree of these nodes scales as z2 and the number
of colors as 2z2 � r. Therefore, when z2 < 2z2 � r, or
equivalently r < 1� � ¼ ð1þ aÞ=2, PCF-1B has the same
asymptotics as pn. This makes vðIBÞ ¼ 1þ 2aþ �. Other-
wise, IBðnÞ scales as knlnzu � n2þ2a�r. Both cases and the
condition to switch between them are exactly the same as
in (31). tu
The graphs from Theorem 8 bring out the worst in PCF,

to which we come back shortly. In the meantime, we show
that it has a pretty impressive best-case as well.

Theorem 10. In bipartite graphs, PCF-1B has I/O overhead
IBðnÞ ¼ m for all a and r, i.e., vðIBÞ ¼ 1þ a.

Proof. Suppose the nodes are divided into two sections,
which we call S1 and S2, of size kn and n� kn, respec-
tively. Each node in S1 connects to all nodes in S2. We
assume that kn < n=2, i.e., the first section is smaller, and
kn � na. Notice that this graph has an average degree
proportional to na and that none of the nodes in S1 have
any out-neighbors in Gþ

u . Therefore, PCF-1B assigns them
the same color 1. It then follows that the companion I/O
from all nodes u 2 S2 is no more than m since each out-
neighbor list Nþ

u has nodes of one color and thus can only
produce output to one companion file Gc

uð1Þ. Further-
more, this result holds for allMn. tu
Because PCF-1A load-balances partitions on the in-degree,

rather than the out-degree, it fails to achieve the same benefits
on bipartite graphs. Since PCF-1B cannot have less I/O than
m, Theorem 10 shows that this bound is tight.

6.3 Analysis

We summarize the findings of this section using Fig. 5a.
The x-axis shows rate r at which RAM increases as n ! 1.
This value ranges from zero (i.e., constant Mn) to 1þ a (i.e.,

the entire graph fits in memory). On the y-axis, we have Pagh
+’s scaling rate vðIP Þ, represented by a dashed line, and the
PCF-1B rate vðIBÞ, given by the UYTZ trapezoid. Pagh+’s
curve is a straight line that comes from (25). On the other
hand, the rate of PCF-1B is contained somewhere in the trape-
zoid, with each interior point possibly corresponding to some
graph G. The upper boundary, delineated by segments UY
and YT , is produced by graphs from Theorem 8. The lower
boundary, shown by lineZT , is the bipartite graph fromTheo-
rem 10.

At r ¼ 0, i.e., constant RAM, Pagh+ begins in point X
that is always no lower than PCF-1B’s worst initial point U .
This happens because 1:5þ 1:5a 	 1þ 2aþ � for all
�
 ð1� aÞ=2. As r increases, Pagh+ descends and eventu-
ally intersects with the upper bound of PCF-1B in point W .
Therefore, in the range ½0; 1� a� 2�Þ, Pagh+ has no chance
of beating PCF-1B, regardless of the actual G. Between
points W and T , some of the graphs are solved quicker by
Pagh+ and others by PCF-1B.

It can be seen from the figure that the largest gap between
the two methods occurs at r ¼ 0, where PCF-1B in point Z
vanquishes Pagh+ in point X by ð1þ aÞ=2. Using a complete
bipartite graph with a ¼ 1, this yields a factor of n improve-
ment in favor of PCF-1B. Outside of this custom-tailored
graph, a more realistic best-case scenario for PCF-1B consists
of graphs with a constant average degree and � ¼ 0. This is
depicted in Fig. 5b, where PCF-1B collapses the trapezoid into
a single line and defeats Pagh+ for all r. The biggest gap
occurs at r ¼ 0, where PCF-1B has a factor of

ffiffiffi
n

p
less I/O.

On the other hand, the best case for Pagh+ is � ¼ ð1� aÞ=2,
which is shown in part (c) of the figure. In this situation, it
beats the upper-bound of PCF-1B for all memory sizes. Conse-
quently, knowing thatG has a dense core similar to the graphs
in Theorem 8, Pagh+ is the method of choice. The largest
improvement is achieved in r ¼ ð1þ aÞ=2, where Pagh+
undercuts the scaling rate of PCF-1B by ð1þ aÞ=4. Since a
 1,
point Y causes the most damage to PCF in complete graphs,
i.e., when a ¼ 1. On these, Pagh+ has smaller cost by a factor
of

ffiffiffi
n

p
.

The final caveat is shown in Fig. 5d, where the trapezoid
has its left boundary moved forward to reflect the fact that
Mn 	 maxuXu must hold for PCF-1B to work. While it is
hard to predict how far point U shifts without access to the
actual graph, we know it is no further than r ¼ ð1þ aÞ=2
since maxuXu
 ffiffiffiffiffiffiffi

2m
p

. This may be to the left of W , as show
in the picture, or to the right. In either case, Pagh+ wins by
default for all rwhere PCF-1B is unable to execute.

To see some of these cases in practice, Fig. 6a shows the
actual I/O of the two methods in a random graph with

Fig. 5. Comparison of scaling rates.

Fig. 6. Actual I/O with curve-fitted scaling rates.

1822 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

Pareto degree, where shape a ¼ 1:5 and average degree is
30. As predicted by our analysis and Fig 5b, the asymptotic
gap between the methods is n1=4. Continuing to Fig. 6b, we
examine a dense-core graph from Theorem 8 whose average
degree scales as

ffiffiffi
n

p
, RAM size Mn ¼ n3=4, and � ¼ 1=4. This

puts the graph on the upper-bound of PCF, where the
model suggests Pagh+ should win by n3=8. Indeed, it does.

6.4 Discussion

We can now summarize the insight gained from dissecting
both methods. Pagh+’s main pitfall is that it fails to
exclude nodes u that obviously cannot be in any triangles
of relevant color. For example, if u has out-neighbors of
color j, but none of color k, it should not be used in con-
junction with remote edges Eþ

jk. This leads to epic redun-
dancy when the graph is sparse, i.e., there are few colors
among the neighbors. On the other hand, this strategy
works well for dense graphs where little pruning is neces-
sary in the first place. The number of hash-table lookups
proportional to c is also a concern.

On the other hand, the main downside of PCF lies in one-
dimensional color partitioning. This creates a large number
of colors p and causes unnecessary duplication of effort.
Usage of 2D coloring could help reduce the number of files
into which the out-neighbors must be written. This can be
seen in (10), where making R0

us pick out of
ffiffiffi
p

p
colors, rather

than p, would be a noticeable improvement.

7 TRIGON

Our investigation discovered that an ideal algorithm should
prune unnecessary edges, be able to utilize

ffiffiffi
p

p
colors, deter-

ministically load-balance partitions, leverage sequential col-
ors for faster compression/intersection/lookups, handle
star graphs without exorbitant overhead, operate with Oð1Þ
RAM, and post lower I/O numbers than either of the cur-
rent techniques. We offer such an approach next.

7.1 Generalized Coloring

All vertex/edge iterators [9] require the remote edge of enu-
merated triangles to be retrievable using random lookup in
RAM. Therefore, for such methods to operate in external
memory, the oriented graph must be split into at least
p ¼ m=M chunks. For now, we ignore the issue of how parti-
tioning should be done and focus on the general concepts
that would allow the in-memory search to function prop-
erly. The framework developed below applies to all 18
methods from [9]; however, to keep the notation to a mini-
mum, we only describe how it works with E1.

Since Gþ
u is oriented and without self-loops, only the

lower half of the adjacency matrix has non-zero entries.
Therefore, any edge partition can be viewed as a subset of

B ¼ fðu; vÞ 2 N2 j v < u
 ng; (33)

which is a collection of all integer pairs ðu; vÞ such that
u > v and both numbers are no larger than n. Now suppose
there exist sets B1; . . . ; Bp that form a partition on B, i.e.,
B‘ � B for all ‘, Bi \Bj ¼ ; for i 6¼ j, and [p

‘¼1B‘ ¼ B. This
is illustrated using Fig. 7a, where a 5� 5 adjacency matrix is

split into three subgraphs. The number in each cell specifies
the partition ‘ it belongs to.

Note that all previous methods are special cases of this for-
malization. For example, Pagh+ uses Bðj�1Þcþk ¼ fðu; vÞ ju 2
Vj; v 2 Vkg, where c ¼ ffiffiffi

p
p

is the number of colors. Both PCF
methods utilize contiguous partitions shown in Fig. 7b, where
destinations are split into c1 colors and sources nodes into
c2 ¼ p=c1. PCF-1A uses c1 ¼ p, while PCF-1B does the
opposite, i.e., c1 ¼ 1.

Once partitions are decided, the edges of Gþ
u must be

separated into sets Eþ
1 ; . . . ; E

þ
p , where Eþ

‘ ¼ Eþ
u \B‘ for

‘ ¼ 1; 2; . . . ; p and the following condition enforced.

Definition 2. A partition fB‘g is called admissible with
respect to Gþ

u if it guarantees that jEþ
‘ j ¼ m=p for all ‘.

As discussed earlier, Pagh+ fails to produce admissible
partitions on star graphs and similar structures. PCF-1A
attempts to split the destinations into c1 ¼ p colors in Fig. 7b
and runs into the same problem. On the other hand, PCF-1B
is able to produce admissible partitions in all G as long as
maxuXu
 M.

7.2 Unified Partitioned Iterator

Assume the edges of Gþ
u have been separated into individual

files. What remains is creation of companion files, which is
done in a framework we call Unified Partitioned Iterator (UPI).
Let S‘ ¼ fu j ðu; vÞ 2 B‘g be the source nodes andD‘ ¼ fv j ðu;
vÞ 2 B‘g be the destination nodes in partition ‘. For the exam-
ple in Fig. 7a, S3 ¼ f2; 5g. Operation of UPI is summarized in
Algorithm 6. For each node u and its out-neighbor v, Line 3
finds all partitions ‘ where v is a source. Next, recalling
Fig. 1a, observe that the local list needs to be customized to
include only those neighbors w of u that are possibly neigh-
bors of v in B‘. This is done in Lines 4-5. If the local list is
empty or contains only v, then v cannot be u’s hit node for par-
tition ‘ and the algorithmmoves on in Line 6.

Algorithm 6. UPI Creating Companion Files

1 for u ¼ 1 to n do
2 foreach v 2 Nþ

u do 3 iterate through all out-neighbors
3 foreach partition ‘where v 2 S‘ do 3 v is a source
4 Zv‘ ¼ fw j ðv; wÞ 2 B‘g 3 take neighbors of v
5 Luv‘ ¼ Nþ

u \ Zv‘ 3 local list for ðu; vÞ
6 if Luv‘nfvg ¼ ; then continue
7 if u 2 S‘ then 3 u is also a source in partition ‘
8 Luv‘ ¼ ; 3 all local nodes in Eþ

‘

9 if v 2 D‘ then continue 3 ðu; vÞ in Eþ
‘

10 write ðu; v; Luv‘Þ to companion graph Cþ
‘

Fig. 7. Heterogenous 2D partitioning of remote edges.

CUI ET AL.: IMPROVING I/O COMPLEXITY OF TRIANGLE ENUMERATION 1823

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

Line 7 checks if u itself participates in B‘ as a source
node. If so, the entire local list is already included in Eþ

‘ ,
which Line 8 signals by emptying Luv‘. Additionally, it is
possible that link ðu; vÞ is also contained in the remote
graph, which happens if v is a destination node in B‘. Line 9
takes care of this condition. Finally, Line 10 saves the triple
ðu; v; Luv‘Þ into the companion file, which is done even if
Luv‘ was previously emptied in Line 8.

Algorithm 7. UPI Processing One Partition ‘

1 load Eþ
‘ ¼ fðv;Nþ

v‘Þg in RAM; set up hash table to sources
2 while companion file Cþ

‘ not empty do
3 load ðu; v; Luv‘Þ from Cþ

‘

4 find remote list Nþ
v‘ using the hash table

5 W ¼ Intersect(Luv‘,N
þ
v‘) 3 local/remote lists

6 foreach w 2 W do report Duvw

Triangle search in UPI is shown in Algorithm 7. The only
difference from Pagh+ is that each partition ‘ has its own
companion file, from which nodes u, their hit neighbors v,
and local lists Luv‘ are obtained.

Theorem 11. UPI finds each triangle exactly once and exhibits
no more intersection overhead than in-memory E1.

Proof. Because the edges are partitioned into non-overlap-
ping and exhaustive sets, detecting the same triangle mul-
tiple times or missing some of them is impossible. This is
a consequence of the fact that remote edge ðvwÞ belongs
to exactly one partition ‘.

We now consider the intersection overhead of Algo-
rithm 6. The local intersection cost at node u can be writ-
ten as

X
v2Nþ

u

Xp
‘¼1

jLuv‘j ¼
X
v2Nþ

u

Xp
‘¼1

jNþ
u \ Zvlj: (34)

Since fZv1; . . . ; Zvpg is a partition of v’s possible neigh-
bor options ½1; v� 1�, we get that

X
v2Nþ

u

Xp
‘¼1

jNþ
u \ Zvlj ¼

X
v2Nþ

u

jNþ
u \ ½1; v� 1�j

¼ XuðXu � 1Þ
2

;

(35)

which is exactly the same as in E1.
Now suppose Yv‘ is the in-degree of v from hit lists in

partition ‘ and let Xv‘ be its out-degree in the remote
graph Eþ

‘ . Since node v is hit Yv‘ times in ‘, each causing
a scan over Xv‘ neighbors, the remote intersection over-
head for v equals

Xp
‘¼1

Xv‘Yv‘
 Yv

Xp
‘¼1

Xvz ¼ XvYv: (36)

Combining the upper bound in (36) with (35), we get
the cost of E1 in (1). tu
The proof of this theorem shows that intersection cost can

actually reduce as p increases. This happens because node v
participates in remote intersection only when there is a hit-list

edge ðu; vÞ in the corresponding companion file. However, if
u has no other neighbors smaller than v in partition ‘, Line 6 of
Algorithm 6 discards v as being ineligible. In practice, cost
reduction only affects the XuYu term in (1) and happens only
in partitioning schemes that break some of the out-lists Nþ

u

acrossmultipleEþ
‘ (i.e., Pagh+ and PCF-1A).

7.3 Trigon

We next decide how to achieve the best admissible partition
within the general framework above. On one hand, it is the-
oretically possible to customize set fB‘g to a particular Gþ

u

in order to achieve the absolute minimum I/O for that
graph. However, this solution is expensive (i.e., NP-hard) as
it requires steam-rolling through all possible subsets of m
edges. Instead, we are interested in alternative approaches
that can be computationally reasonable.

To this end, recall our discussion of PCF and Pagh+,
where random assignment of nodes into colors would have
produced stochastically larger Rus and R0

us in (7)-(8). The
best technique, which comes from PCF, is to group nodes of
the same color together. This forces members of Nþ

u to pick
color from a smaller range of options (i.e., those contained
in ½1; u� 1�). Additionally, continuous colors simplify pre-
processing, remove redundancy between local lists of differ-
ent hit nodes v, and improve intersection/compression
performance. At the same time, Pagh+’s lowering of c to

ffiffiffi
p

p
is appealing as well. Combining these ideas, it turns out
that the design in Fig. 7b is the most sensible solution.

We call this approach Trigon and discuss its operation
next. Since there are two colors involved (i.e., along the
source and destination nodes), we call the one whose parti-
tions are decided first primary and the other secondary. One
option is to use c1 primary and c2 secondary colors, which is
the case in Fig. 7b. This approach starts by selecting vertical
boundaries such that the number of edges contained in each
primary color equals m=c1. This is done by computing set
fakgc1k¼1 such that

Xakþ1�1

u¼ak

Yu ¼ m

c1
; (37)

where Yu is the in-degree of u. Note that this is exactly how
PCF-1A begins and that the fYug sequence is available dur-
ing orientation of G, i.e., at no extra cost.

Then, for each primary color k, suppose boundaries
fbkjgc2j¼1 specify the corresponding ranges of secondary col-
ors. This is accomplished by load-balancing the out-degree
within each partition ðkjÞ, i.e.,

Xbk;jþ1�1

u¼bkj

jNþ
u \ ½ak; akþ1Þj ¼ M; (38)

which is similar to PCF-1B. For Fig. 7b, this means each ver-
tical column has size m=c1 and each rectangle fits in RAM.
Note that if (37) fails to create enough partitions of primary
color, e.g., on star-like graphs, the value of c1 is lowered to
match the particulars of Gþ

u . To compensate for the lack of
vertical partitions, (38) automatically increases the number
of secondary colors such that c1c2 ¼ p continues to hold.

1824 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

The second option is to reverse this process, i.e., use
source nodes for primary colors. However, it is not difficult
to see that this procedure offers no I/O benefits due to sym-
metry, but at the same time has a major drawback in inabil-
ity to adapt c1 to Gþ

u . Therefore, the configuration in Fig. 7b
is preferred.

The Trigon split technique is shown in Algorithm 8,
where we continue using color k for node w and color j for v
to maintain compatibility with Fig. 1b. The algorithm is
pretty much self-explanatory, with the only caveat being
Line 8. Under Trigon’s coloring model, it is now possible
for local list Luk to contain nodes w larger than any hit node
inHukj. They can never complete directed triangles in Fig. 1,
which explains their removal.

Algorithm 8. Trigon Writing Companion Files

1 for u ¼ 1 to n do
2 for k ¼ 1 to c1 do 3 run thru primary colors
3 Luk ¼ Nþ

u \ ½ak; akþ1Þ 3 local list for color k
4 if Luk 6¼ ; then 3 work to be done?
5 for j ¼ 1 to c2 do 3 run thru secondary colors
6 Hukj ¼ Nþ

u \ ½bkj; bk;jþ1Þ 3 hit list for ðkjÞ
7 ifHukj 6¼ ; and jLuk [Hukjj 	 2 then
8 Luk ¼ Luk \ ½1;maxðHukjÞ� 3 prune
9 if ’uðkÞ ¼ j then 3 local list in RAM
10 write ðu;HukjnLukÞ to Cþ

kj

11 else
12 write ðu;Hukj [LukÞ to Cþ

kj

7.4 Analysis

Suppose fu and fus are defined as before, except they now
refer to respectively the primary color of u and that of its sth
out-neighbor. In this notation, expression (7) still works for
Rus. Similarly, Ru counts the number of primary colors in
Nþ

u . To handle the vertical dimension with c2 colors, let
’uðkÞ be the secondary color of node u with respect to pri-
mary color k and assume ’usðkÞ is the same for u’s out-
neighbor s. Then, (8) is replaced with

R00
us ¼ jf’utðfsÞ j t > s;’utðfsÞ 6¼ ’uðfsÞgj; (39)

which counts the number of secondary colors to the right of
s, again excluding the color of u. Using the analysis of PCF-
1B, the next result follows immediately.

Theorem 12. The I/O complexity of Trigon is

IT ðnÞ �
Xn
u¼1

"
R00

u1 þ
XXu

s¼1

ðRus þR00
usÞ
#
; (40)

and the number of hash-table lookups is

gT ðnÞ ¼
Xn
u¼1

XXu

s¼1

Rus þm�
Xn
u¼1

Ru: (41)

With the exception of minor terms related to overlapping
local/hit lists, the result in (40) is exact. To perform a self-
check, notice that PCF-1A (i.e., c1 ¼ p) has R00

us ¼ 0, which
converts (40) into (9). For PCF-1B (i.e., c1 ¼ 1), we get
Rus ¼ 0 and R00

us ¼ R0
us, which makes the Trigon model

identical to (10). Intuitively speaking, (40) can be viewed as
a sum of I/O in PCF-1A running with c1 colors and PCF-1B
with c2 colors, although this is approximate since R00

us does
not equal R0

us unless c1 ¼ 1. Recalling (13), also observe that
(41) is exactly the number of lookups in PCF-1A under c1
partitions, where more primary colors cause more CPU cost.

Following the proof of Theorem 6, there exists a simple
bound on IT ðnÞ that shows the impact of each color.

Theorem 13. The Trigon I/O is upper-bounded by

IT ðnÞ

Xn
u¼1

XuhðXuÞ; (42)

where hðxÞ ¼ minðx=2; c1Þ þminðx=2; c2 � 1Þ.
The first term of hðxÞ bounds the size of hit lists (and the

number of lookups), while the second models the size of
local lists. Additionally, since hðxÞ
 c1 þ c2 � 1, usage of
c1 ¼ c2 ¼ ffiffiffi

p
p

in (42) yields a looser bound

IT ðnÞ

Xn
u¼1

Xuðc1 þ c2 � 1Þ ¼ ð2 ffiffiffi
p

p � 1Þm; (43)

which is the I/O cost of Pagh+ in Theorem 1. Since colors
are sequential, Trigon beats (43) even in complete graphs,
where it comes the closest to this bound, by roughly a factor
of 2. It is also clear that (41) is upper bounded by c1m.
Recalling Theorem 2, this makes gT ðnÞ better than the corre-
sponding metric in Pagh+ for all c1
 ffiffiffi

p
p

.
Under an appropriately-chosen c1, Trigon is no worse

than either of the previous methods; however, the best
choice for the number of primary colors remains far from
obvious.

7.5 Minimizing I/O

One big question is whether deploying c1 ¼ ffiffiffi
p

p
is optimal

for achieving the lowest I/O. This seems logical as it
reduces the number of colors in each direction to their mini-
mum. Because analysis of the accurate model (40) currently
appears intractable, we only consider insight that might be
gained from the upper-bound (42), which can be written as
E½XhðXÞ� for some random variableX.

Since c1 and c2 are almost interchangeable in hðxÞ, it
makes sense to study the following simplified problem.
Suppose we are interested in minimizing

�ðcÞ ¼ E½XðminðX; cÞ þminðX; p=cÞÞ�; (44)

whereX is a random variable that represents the out-degree
of Gþ

u and c is the number of primary colors.

Theorem 14. If X has density fðxÞ, (44) is minimized by c ¼ 1,
c ¼ p, or any solution to gðcÞ ¼ gðp=cÞ, where

gðyÞ ¼ y

Z 1

y

xfðxÞdx: (45)

Proof. Suppose X � F ðxÞ. Then, we can expand the expec-
tation in (44) as

CUI ET AL.: IMPROVING I/O COMPLEXITY OF TRIANGLE ENUMERATION 1825

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

�ðcÞ ¼
Z 1

0

xðminðx; cÞ þminðx; p=cÞÞdF ðxÞ

¼
Z c

0

x2dF ðxÞ þ c

Z 1

c

xdF ðxÞ þ
Z p=c

0

x2dF ðxÞ

þ p

c

Z 1

p=c

xdF ðxÞ:

(46)

Differentiating with respect to c and applying Leibnitz’s
integration rule four times

d�ðcÞ
dc

¼ c2fðcÞ � c2fðcÞ þ
Z 1

c

xfðxÞdx� p3fðp=cÞ
c4

þ p3fðp=cÞ
c4

� p

c2

Z 1

p=c

xfðxÞdx

¼
Z 1

c

xfðxÞdx� p

c2

Z 1

p=c

xfðxÞdx

¼ gðcÞ � gðp=cÞ
c

:

(47)

Optimal c is either a solution to gðcÞ ¼ gðp=cÞ or lies on
the boundary, i.e., c ¼ 1 or c ¼ p. tu
Notice that c ¼ ffiffiffi

p
p

is a trivial solution to gðcÞ ¼ gðp=cÞ.
Furthermore, it is the only solution if gðxÞ is monotonic. Out-
side of certain esoteric cases, this result shows that the opti-
mal Trigon configuration is PCF-1A, PCF-1B, or c1 ¼ ffiffiffi

p
p

.
However, there is no clear winner for all graphs G. The next
example shows one such case.

Theorem 15. If X < 2
ffiffiffi
p

p � 1 with probability 1, then c ¼ 1 or
c ¼ p is optimal in (44). On the other hand, if X > 2

ffiffiffi
p

p � 1
with probability 1, then c ¼ ffiffiffi

p
p

is optimal.

Proof. Because the objective function is symmetric in c, we
only need to consider c 2 ½1; ffiffiffi

p
p �. Any optimal solution c

has an optimal counterpart 1=c. Suppose X � F ðxÞ is
defined in ½1; n� 1� and rewrite (44) as

�ðcÞ ¼
Z n�1

1

x�ðc; xÞdF ðxÞ; (48)

where �ðc; xÞ ¼ minðx; cÞ þminðx; p=cÞ. First suppose that
x
 ffiffiffi

p
p

, in which case �ðc; xÞ becomes minðx; cÞ þ x. This
is trivially minimized by c ¼ 1. Second, suppose x >

ffiffiffi
p

p
,

in which case we get �ðc; xÞ ¼ cþminðx; p=cÞ. There are
two subcases here – 1) x < p=c yields cþ x, where c ¼ 1
is optimal; and 2) x 	 p=c produces cþ p=c, where
c ¼ ffiffiffi

p
p

is best. In the former subcase, the lowest cost is
xþ 1 and in the latter it is 2

ffiffiffi
p

p
. Therefore, c ¼ 1 is better

when x < 2
ffiffiffi
p

p � 1, worse when x > 2
ffiffiffi
p

p � 1, and the
two are equal otherwise.

As a result, if X is limited to ½1; 2 ffiffiffi
p

p � 1�, we get that
(48) minimized by c ¼ 1. On the other hand, if X is
always larger than 2

ffiffiffi
p

p � 1, the integral is minimized byffiffiffi
p

p
. tu

One example that falls under Theorem 15 are d-regular
graphs. This is illustrated in Fig. 8a using a random graph
with d ¼ 10, n ¼ 10M, and p ¼ 1024. The I/O function of
Trigon in this graph is an inverted cup, with the middle
being the worst and the two boundaries being the best. This
is one of the few cases where PCF-1A wins over PCF-1B. A

more common scenario is given by Twitter in Fig. 8b, where
c1 ¼ ffiffiffi

p
p ¼ 32 is clearly optimal and PCF-1B beats PCF-1A.

If the program has access toGþ
u , it can compute our models

shown earlier in the paper and alwaysmake the right decision.
However, if graphGþ

u cannot be examined before choosing c1,
the next result explainswhich choicewould always be safer.

Theorem 16. Usage of c ¼ ffiffiffi
p

p
in (44) yields at most double the

optimal I/O. On the other hand, c ¼ 1 or c ¼ p can be worse
than optimal by a factor of

ffiffiffi
p

p
.

7.6 Minimizing Runtime

When achieving the quickest execution time is a priority, the
choice of optimal c1 may involve balancing conflicting objec-
tives. This is exemplified by Figs. 8c and 8d, where optimal
points c1 do not coincide with those in plots (a)-(b). Note that
the x-axis is on a log 2 scale and lookup growth is sublinear.
On the d-regular graph, Trigon increases gT ðnÞ by 3.5 times
between c1 ¼ 1 and

ffiffiffi
p

p
. On Twitter, the number of lookups

goes up by a factor of 9.8. As predicted earlier, both values are
much smaller than Pagh+’s linear (i.e., 32-fold) increase.

With overlapped operation between CPU and I/O, the run-
time is determined by the maximum of disk read time and in-
memory operations. Define SD, SI , and SH to be respectively
the speed of the disk, intersection, and lookups (in edges/sec),
which can be easily benchmarked on startup. Parameterizing
IT ðnÞ and gT ðnÞwith c1, an objectivemight be tominimize

rðc1Þ ¼ max

IT ðn; c1Þ

SD
;
rðnÞ
SI

þ gT ðn; c1Þ
SH

!
; (49)

where rðnÞ is the intersection cost from (1).
To obtain IT ðn; c1Þ and gT ðn; c1Þ, one can use (40)-(41).

Direct computation of these values may be costly; however,
approximation (42), as well as its refinement using (16) or (22),
work quite well. A binary search over rðc1Þ requires efficient
computation of the models, i.e., without scanning the degree
sequence fXug, whichmay not fit in RAM. Our approach is to
create a short digest of the necessary information during

Fig. 8. Trigon tradeoffs between I/O and lookups (p ¼ 1024).

1826 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

construction of Gþ
u , which summarizes the in/out degree

sequences of the graph. Since fXug typically contains many
runs of similar values ðXu;Xuþ1; . . . ;Xuþs�1Þ, each of them
can be compressed into one entry that keeps track of the count
s and the starting value Xu. As a result, minimization of (49)
often takes negligible time.

8 EVALUATION

We finally come to the stage of putting the ideas developed
in the previous section to work. To enable a fair comparison,
we use C++ to implement Trigon and Pagh+ as separate
modules that share the same in-memory and disk compo-
nents (i.e., multi-threading, overlapped I/O, SIMD intersec-
tion). Setting c1 ¼ 1 in Trigon, we obtain PCF-1B. Therefore,
the only difference between the three methods lies in their
partitioning scheme. As PCF-1A is not competitive on most
real-world graphs, we do not consider it here.

Out of the standard graphs used for triangle listing, we
engage the six largest from [9]. Their characteristics are
shown in Table 1. In the last two rows, we add into the mix-
ture best-case scenarios from Pagh+ and PCF.

8.1 I/O

Performance of triangle listing depends on the ratio between
graph size and available RAM, i.e., p ¼ m=M. Since our I/O
methods are quite efficient, this affords us an opportunity to
examine scenarios where graphs are substantially larger than
memory. In fact, this is the first paper that runs an actual
implementation with RAM size that is 3� 4 orders of magni-
tude smaller than the oriented graphGþ

u .
On real-world graphs, Table 2 shows that Pagh+ loses to

PCF-1B in five out of the six cases, sometimes by as much as a
factor of 15. The only graph where it wins is IRL-IP, which is
quite dense (average degree 1;030). This is not surprising

given our earlier analysis. If we consider preprocessing to be
part of triangle listing and double the PCF-1B result, it
becomes worse than Pagh+ in three cases. On the other hand,
Trigon beats both previous methods on each of the graphs,
using c1 ¼ 1 primary colors for Yahoo and

ffiffiffi
p

p
for the rest of

the cases. Furthermore, even if its I/O is doubled, Trigon still
stays below Pagh+, in some cases by awidemargin.

On the complete graph and 10K partitions, Pagh+ deliv-
ers 15� less I/O than PCF-1B. Trigon further cuts this num-
ber in half, which follows from the dichotomy of sequential
versus random coloring discussed earlier. On the bipartite
graph, PCF-1B and Trigon both annihilate Pagh+ by issuing
200 times less I/O, which also matches our analysis.

8.2 Runtime

For the experiments, we use onemachine with a six-core Intel
i7-3930K (desktop CPU released in 2011). We equip this com-
puter with a single 3-TB magnetic hard drive (Hitachi Desk-
star 7K3000) that is capable of reads at 160 MB/s. We omit
PCF-1B since slow I/O makes it predictably worse than Tri-
gon. Instead, we compare against Pagh+ to investigate the
impact of non-sequential colors, lookup load, and disk seek-
ing. Furthermore, we consider the total delay, which includes
the partitioning phase, as one of themeasures of performance.

Table 3 shows the result. In the first four rows, Trigon
completes triangle search 15� 60 times quicker than Pagh+.
One notable example is Yahoo, where purely sequential I/
O in Pagh+ would have been responsible for only 163
minutes (i.e., 392B edges, four bytes each, read at 160 MB/
s). Instead, Pagh+ spends an additional 1;132 minutes (i.e.,
18 hours) on lookups. A similar scenario occurs with Clue-
Web in row six, where Pagh+ gets bogged down for 5 days
just checking the hash table. Table 4 confirms that Pagh+
requires substantially more random memory access than

TABLE 1
Graph Properties

Graph Nodes Edges Degree GB Triangles

Twitter [19] 41M 1.2B 57.7 9.3 35B
Yahoo [38] 720M 6.4B 17.9 53.3 86B
IRL-domain [9] 86M 1.7B 39.5 13.3 113B
IRL-host [9] 642M 6.4B 20.1 52.7 437B
IRL-IP [9] 1.6M 818M 1030 6.1 1040B
ClueWeb [9] 8.2B 51B 12.5 358 879B

Complete 100K 5.0B 100K 37.2 167T
Bipartite 100K 2.5B 50K 18.6 0

TABLE 2
I/O (Billion Edges)

Graph p Pagh+ PCF-1B Trigon RAM

Twitter 1;024 75.6 43.5 19.5 4.5 MB
Yahoo 392.3 25.5 25.5 23.2 MB
IRL-domain 104.8 98.4 33.8 6.2 MB
IRL-host 386.5 137.9 59.7 22.9 MB
IRL-IP 51.5 145.7 23.4 3.0 MB
ClueWeb 2;869:9 457.1 326.2 169.7 MB

Complete 10;000 995.0 15;742 493 1.9 MB
Bipartite 497.0 2.5 2.5 1.0 MB

TABLE 3
Preprocessing and Enumeration Time (Minutes)

Graph
Pagh+ Trigon

pre run total pre run total

Twitter 3.3 144.0 147.4 14.8 10.0 24.8
Yahoo 27.8 1;296:4 1;324:2 35.5 19.1 54.6
IRL-domain 3.5 191.4 194.9 21.0 14.8 35.8
IRL-host 26.2 1;070:3 1;096:5 52.7 32.0 84.7
IRL-IP 0.2 31.7 31.9 12.1 8.7 20.8
ClueWeb 181.8 8;331:1 8;512:9 426.8 254.3 681.1

Complete 2.5 1;050:7 1;053:2 624.2 238.6 862.8
Bipartite 8.8 629.5 638.3 6.6 2.3 9.9

TABLE 4
Number of Lookups (Billion)

Graph Pagh+ Trigon Ratio

Twitter 38.4 11.5 3.5
Yahoo 199.2 19.9 10.0
IRL-domain 53.2 19.4 2.7
IRL-host 196.3 34.3 5.8
IRL-IP 26.2 13.2 2.0
ClueWeb 1;457:8 205.3 7.1

Complete 500.0 252.0 2.0
Bipartite 250.0 2.5 100.0

CUI ET AL.: IMPROVING I/O COMPLEXITY OF TRIANGLE ENUMERATION 1827

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

Trigon. The larger the hash-table size, the worse the lookup
speed, which explains the huge runtime gap between the
two methods on ClueWeb.

In dense-graph scenarios of Table 3, Pagh+ is 3� 5 times
slower than Trigon. Usage of 10K partitions for the complete
graph creates a noticeable bottleneck in reading c3 ¼ 1Mcom-
binations of files. Analysis of the total delay, i.e., both prepro-
cessing and triangle listing, shows a more favorable outcome
for Pagh+; however, Trigon is still faster in all graphs, some-
times by awidemargin (e.g., 24� onYahoo).

9 CONCLUSION

We analyzed I/O complexity of the best methods in the litera-
ture, compared their asymptotics, identified their inherent
strengths and weaknesses, and developed a novel framework
that surpassed the existing efforts in all performancemeasures
relevant to triangle listing. Our approach works by trading
I/O cost for lookups, which makes the method adaptable to
whatever bottlenecks triangle listing may be facing in a partic-
ular hardware configuration.

REFERENCES

[1] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A parallel
algorithm for counting triangles in massive networks,” in Proc.
22nd ACM Int. Conf. Inf. Knowl. Manage., 2013, pp. 529–538.

[2] Z. Bar-Yossef , R. Kumar, and D. Sivakumar, “Reductions in
streaming algorithms, with an application to counting triangles in
graphs,” in Proc. 13th Annu. ACM-SIAM Symp. Discrete Algorithms,
2002, pp. 623–632.

[3] V. Batagelj and M. Zaver�snik, “Short cycle connectivity,” Elsevier
Discrete Math., vol. 307, no. 3–5, pp. 310–318, Feb. 2007.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive
graphs,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2008, pp. 16–24.

[5] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips,
“Tolerating the community detection resolution limit with edge
weighting,” Phys. Rev. E, vol. 83, no. 5, May 2011, Art. no. 056119.

[6] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
rithms,” SIAM J. Comput., vol. 14, no. 1, pp. 210–223, Feb. 1985.

[7] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2011, pp. 672–680.

[8] J. Cohen, “Graph twiddling in a MapReduce world,” Comput. Sci.
Eng., vol. 11, no. 4, pp. 29–41, Jul./Aug. 2009.

[9] Y. Cui, D. Xiao, and D. Loguinov, “On efficient external-memory
triangle listing,” in Proc. IEEE 16th Int. Conf. Data Mining, 2016,
pp. 101–110.

[10] R. Dementiev, “Algorithm engineering for large data sets,” PhD
dissertation, Universit€at des Saarlandes, 2006.

[11] I. Fudos and C. M. Hoffmann, “A graph-constructive approach to
solving systems of geometric constraints,” ACM Trans. Graph.,
vol. 16, no. 2, pp. 179–216, Apr. 1997.

[12] I. Giechaskiel, G. Panagopoulos, and E. Yoneki, “PDTL: Parallel
and distributed triangle listing for massive graphs,” in Proc. IEEE
44th Int. Conf. Parallel Process., 2015, pp. 370–379.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Conf. Operating Syst. Des. Implemen-
tation, 2012, pp. 17–30.

[14] P. Gupta et al.“Real-time Twitter recommendation: Online motif
detection in large dynamic graphs,” Proc. VLDB Endowment,
vol. 7, no. 13, pp. 1379–1380, Aug. 2014.

[15] T. Hocevar and J. Demsar, “A combinatorial approach to graphlet
counting,” Bioinformatics, vol. 30, no. 4, pp. 559–565, Feb. 2014.

[16] X. Hu, Y. Tao, and C. Chung, “Massive graph triangulation,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 325–336.

[17] Z. R. Kashani et al., “Kavosh: A new algorithm for finding net-
work motifs,” Bioinformatics, vol. 10, Oct. 2009, Art. no. 318.

[18] J. Kim, W. Han, S. Lee, K. Park, and H. Yu, “OPT: A new frame-
work for overlapped and parallel triangulation in large-scale
graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 637–648.

[19] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. 19th Int. Conf. World Wide
Web, 2010, pp. 591–600.

[20] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proc. 10th USENIX Conf.
Operating Syst. Des. Implementation, 2012, pp. 31–46.

[21] M. Latapy, “Main-memory triangle computations for very large
(sparse (power-law)) graphs,” Elsevier Theor. Comput. Sci., vol. 407,
no. 1–3, pp. 458–473, Nov. 2008.

[22] D. W. Matula and L. L. Beck, “Smallest-last ordering and cluster-
ing and graph coloring algorithms,” J. ACM, vol. 30, no. 3,
pp. 417–427, Jul. 1983.

[23] L. A. A.Meira, V. R.Maximo, A. L. Fazenda, andA. F. D. Conceicao,
“Acc-Motif: Accelerated networkmotif detection,” IEEE/ACMTrans.
Comput. Biol. Bioinf., vol. 11, no. 5, pp. 853–862, Apr. 2014.

[24] B. Menegola, “An external memory algorithm for listing tri-
angles,” Universidade Federal do Rio Grande do Sul, 2010.

[25] R. Milo, S. Shen-Orr , S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network Motifs: Simple building blocks of complex
networks,” Science, vol. 298, no. 5594, pp. 824–827, Oct. 2002.

[26] R. Pagh and F. Silvestri, “The input/output complexity of triangle
enumeration,” in Proc. 33rd ACM SIGMOD-SIGACT-SIGART
Symp. Princ. Database Syst., 2014, pp. 224–233.

[27] H. Park and C. Chung, “An efficient MapReduce algorithm for
counting triangles in a very large graph,” in Proc. 22nd ACM Int.
Conf. Inf. Knowl. Manage., 2013, pp. 539–548.

[28] H.-M. Park, S.-H. Myaeng, and U. Kang, “PTE: Enumerating tril-
lion triangles on distributed systems,” in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1115–1124.

[29] T. Schank and D. Wagner, “Finding, counting and listing all trian-
gles in large graphs, an experimental study,” in Proc. Int. Workshop
Exp. Efficient Algorithms, 2005, pp. 606–609.

[30] M. Sevenich, S. Hong, A. Welc, and H. Chafi, “Fast in-memory tri-
angle listing for large real-world graphs,” in Proc. 8th Workshop
Soc. Netw. Mining Anal., 2014, pp. 1–9.

[31] J. Shun and K. Tangwongsan, “Multicore triangle computations
without tuning,” in Proc. IEEE 31st Int. Conf. Data Eng., 2015,
pp. 149–160.

[32] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of
the last reducer,” in Proc. 20th Int. Conf. World Wide Web, 2011,
pp. 607–614.

[33] N.H. Tran, K. P. Choi, and L. Zhang, “Countingmotifs in the human
interactome,”Nat. Commun., vol. 4, Aug. 2013, Art. no. 2241.

[34] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung, “On triangulation-
based dense neighborhood graph discovery,” Proc. VLDB Endow-
ment, vol. 4, no. 2, pp. 58–68, Nov. 2010.

[35] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic
number of a graph and its application to timetabling problems,”
Comput. J., vol. 10, no. 1, pp. 85–86, Jan. 1967.

[36] S. Wernicke and F. Rasche, “FANMOD: A tool for fast network
motif detection,” Bioinformatics, vol. 22, no. 9, pp. 1152–1153,
Feb. 2006.

[37] D. Xiao, Y. Cui, D. Cline, and D. Loguinov, “On asymptotic cost of
triangle listing in random graphs,” in Proc. 36th ACM SIGMOD-
SIGACT-SIGAI Symp. Princ. Database Syst., 2017, pp. 261–272.

[38] Yahoo Altavista Graph, 2002. [Online]. Available: http://webscope.
sandbox.yahoo.com/catalog.php?datatype=g

[39] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Zhao, and Y. Dai,
“Uncovering social network Sybils in the wild,” in Proc. ACM SIG-
COMMConf. Internet Meas. Conf., 2011, pp. 259–268.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1828 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: Texas A M University. Downloaded on August 05,2022 at 18:32:34 UTC from IEEE Xplore. Restrictions apply.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

