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Abstract—Discovering triangles in large graphs is a well-studied area; however, both external-memory performance of existing

methods and our understanding of the complexity involved leave much room for improvement. To shed light on this problem, we first

generalize the existing in-memory algorithms into a single framework of 18 triangle-search techniques. We then develop a novel

external-memory approach, which we call Pruned Companion Files (PCF), that supports operation of all 18 algorithms, while

significantly reducing I/O compared to the common methods in this area. After finding the best node-traversal order, we build an

implementation around it using SIMD instructions for list intersection and PCF for I/O. This method runs 5-10 times faster than the

available implementations and exhibits orders of magnitude less I/O. In one of our graphs, the program finds 1 trillion triangles in

237 seconds using a desktop CPU.

Index Terms—Triangle listing, external memory, graph algorithms

Ç

1 INTRODUCTION

ENORMOUS size of modern datasets poses scalability chal-
lenges for a variety of algorithms and applications. One

particular area affected by the explosion of big data is graph
mining and, more specifically, motif discovery in large net-
works. Motifs are important building blocks of real-life
networks in biology, physics, chemistry, sociology, and
computer science [23], [25], [36], [37], [50], [53]. They cap-
ture local composition of graphs and allow reasoning about
the underlying construction processes that result in the
observed phenomena. Three-node cycles (i.e., triangles)
have received the most attention, attracting research interest
for over 35 years [29] and developing many applications in
graph theory [8], [39], [51], [52], [54], bioinformatics [30],
[37], computer graphics [20], databases [7], and social net-
works [9], [11], [17], [57].

Until recently [55], little was known about the CPU cost
of triangle listing, its behavior under different acyclic orien-
tations, and comparison across the different methods. Much
of the previous work [3], [26], [33] utilized Oð:Þ bounds that
were exactly the same for all involved methods (i.e., vertex/
edge iterators). As it turns out [55], there are 18 algorithms
for traversing the nodes of a triangle and handling the
neighbors, which can be reduced to four equivalence classes
from the CPU-cost perspective, each with its own optimal
orientation. However, external-memory triangle listing
remains largely unexplored. Given the same 18 options,
how many different I/O classes are there, what node per-
mutations do they require, and is it possible for some meth-
ods to simultaneously achieve optimal CPU and I/O
complexity using the same orientation?

1.1 State of the Art
Before delving into details, we discuss the I/O model used
throughout the paper. A common assumption on I/O com-
plexity in this field stems from [1], which prescribes that
sequential reading of a file of size X requires cost X=B,
where B is the block size. If this model somehow translates
into I/O delay, it suggests that 100-MB blocks lead to 10�
faster operation than 10-MB blocks. In reality, however,
both block sizes produce the same performance because
read-ahead caching in disk firmware and RAID cards
ensures that sequential data arrives into RAM at a constant
speed S, regardless of block size B. Since the time to process
the file is X=S, where S is a constant for a particular com-
puter system, and all files involved in triangle listing in this
paper are read sequentially, we assume the I/O complexity
is measured in edges that must be retrieved from disk (or
their byte equivalent). In case conversion between our nota-
tion and that of [1] is needed, all I/O formulas in the paper
should be divided by B.

Ifm is the number of edges andM � m is RAM size, pre-
vious implementations [4], [21], [26], [31] operate with a
simple partitioning scheme that requires reading the graph
p ¼ dm=Me times, for a total overhead of pm � m2=M. In
theory, better bounds in the form of Oðm1:5=

ffiffiffiffiffi
M
p Þ can be

achieved [27], [41]; however, there are no reference imple-
mentations that use these methods. What makes previous
work [4], [21], [26], [27], [31], [41] similar is that their perfor-
mance does not depend on the traversal order within each
triangle or preprocessing manipulations applied to the
graph, which leaves little for additional investigation.

1.2 Main Results
Instead, we show below that there exists a technique for
graph partitioning that maps the 18 triangle-listing algo-
rithms into six distinct classes from the perspective of I/O
cost. Their performance depends not only on the underlying
graph, but also the acyclic orientation applied during pre-
processing. We call this framework Pruned Companion Files
(PCF) and demonstrate how all 18 methods can be com-
bined under an umbrella of a single algorithm. Taking into
account both I/O and CPU cost [55], we discover 16 unique
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ways to perform triangle listing in external memory, none of
which were known before.

Similar to the “small-degree assumption” of [21], [26],
which are some of the fastest implementations in this area,
our best method PCF-1B requires that RAM size be larger
than the maximum out-degree dþi under the descending-
degree orientation uD. In this case, it is fairly simple to show
that maxid

þ
i �

ffiffiffiffiffiffiffi
2m
p

, which means that M � maxid
þ
i is a

weak constraint for most practical problems. For example, 8
GB of RAM requires complete graphs with no fewer than
2� 1018 edges (i.e., 8 exabytes). It is highly unlikely that such
graphs, even if they existed, would be amenable to triangle
listing usingmodern computer technology (i.e., the CPU cost
of intersection would be enormous). For the same 8 GB, com-
plete graphswould require at least 1027 operations.

While accurate modeling of PCF I/O complexity is
difficult, we are still able to identify the best partitioning
scheme and deduce its optimal permutation. In random
graphs with Pareto degree sequences and shape parameter
a > 4=3, we also prove that the amount of data read from
disk is upper-bounded by minðg; pÞm, where g is some con-
stant independent of n. This produces a linear I/O bound
under M ¼ Oð1Þ; in contrast, both of the previous techni-
ques [26], [41] require M to scale as QðmÞ to achieve the
same performance. We also demonstrate that our partition-
ing scheme keeps the number of list intersections and table
lookups unchanged compared to RAM-only methods,
which means that its runtime on a given graph remains
fixed for allM as long as I/O is not the bottleneck.

To test these developments in practice, we build an
implementation that combines PCF with a novel application
of SIMD to edge iterator. Our solution, which we call PaCi-
Fier, is benchmarked on a variety of real-world graphs,
including four new ones that have not been examined for tri-
angles before. Our densest graph (IRL-IP) contains over 1T
triangles, while the largest (ClueWeb) has over 102B edges.
Results show that PaCiFier is 1-2 orders of magnitude faster
than the single-threaded vertex iterator MGT [26] and 5� 10
times quicker than the multi-threaded edge iterator PDTL
[21]. More importantly, it achieves 10-50 times lower I/O
complexity when RAM size is small compared tom.

Using a six-core Intel i7-3930K, PaCiFier finds 1T trian-
gles in IRL-IP in just 237 seconds. Furthermore, with a single
3-TB magnetic hard drive and 256 MB of RAM, it can pro-
cess our 358-GB ClueWeb (880B triangles) in 4.2 hours. Nei-
ther MGT nor PDTL can complete in the last case, but
estimates put their runtime at 3 weeks (i.e., two orders of
magnitude slower).

2 GENERALIZED ITERATORS (GI)

Recent work [55] created a taxonomy of 18 vertex and edge
iterators. They use figures to highlight the intuitive differen-
ces among the methods; however, the lacking formal
treatment makes it difficult to extend these results to exter-
nal-memory scenarios. We therefore introduce a new
description framework, which we call Generalized Iterators
(GI), that explicitly encodes the traversal order in each trian-
gle. This allows us to parameterize a single algorithm to
cover execution of all alternative methods.

2.1 Redundancy Elimination
Naive triangle-listing algorithms do not enforce order
among the neighbors, which results in extremely inefficient

operation. Besides discovering each triangle 3! ¼ 6 times,
there are serious repercussions stemming from the fact that
the number of pairs checked at each node is a quadratic
function of its degree. Even on relatively small graphs, this
can lead to 1000� more overhead than necessary [55]. The
redundancy can be eliminated by converting the graph into
a directed version, in which quadratic complexity applies
only to the out-degree (or in-degree, depending on the
method), whose second moments1 are kept significantly
smaller than those of undirected degree. Assuming di is the
undirected degree of node i and dþi is its out-degree, sums
in the form of

P
i d

2
i can be much larger than

P
iðdþi Þ2, both

numerically and asymptotically.
Assume the nodes are first shuffled using some algo-

rithm and sequentially assigned IDs from sequence
ð1; 2; . . . ; nÞ. This creates a total order across the nodes and
is often called relabeling. A directed graph is then created,
where out-neighbors of each node have smaller labels and
in-neighbors have larger. This step is called acyclic orienta-
tion. Finally, in the directed graph, triangles Dxyz are listed
in ascending order of the new labels, i.e., x < y < z. This
procedure generalizes all previous efforts in the field, some
of which perform only relabeling [33], [45], [47] and others
only orientation [4], [21], [26], [31], [45], [48], [49]. The draw-
backs of not doing both are discussed in [55].

2.2 Relabeling
Consider a simple (i.e., no self-loops) undirected graph
G ¼ ðV;EÞ with n nodes and m edges. Define u to be a per-
mutation of node IDs that starts with the ascending-degree
order and re-writes the label of each node in position i to
uðiÞ. Among the n! possibilities, there are several named
permutations [55], which include ascending-degree uAðiÞ ¼ i,
descending-degree uDðiÞ ¼ nþ 1� i, round-robin

uRRðiÞ ¼ dnþi2 e i is odd

bn�i2 c þ 1 i is even;

�
(1)

and complementary round-robin uCRRðiÞ ¼ uRRðnþ 1� iÞ, each
of which optimizes a different class of triangle-listing meth-
ods [55]. The difference in CPU cost between the best and
worst permutations can be orders of magnitude. Evenworse,
this ratio may be unbounded as n!1 [55]. For a given per-
mutation u, define its reverse to be u0ðiÞ ¼ nþ 1� uðiÞ. This is
a useful concept that allows detection of equivalence classes
later in the paper.

SupposeGu is the relabeled graph under permutation u. Its
construction typically requires sorting the degree sequence of
G using u, re-writing the source nodes of each list, inverting
the graph using external memory, and re-writing the source
nodes again. It is also common during this process to drop all
nodeswith degree one since they cannot be part of a triangle.

2.3 Orientation
Define Ni to be the adjacency list of node i in Gu. Note that
variable i refers to the relabeled graph, e.g., the node with
the i-th largest degree under uD. Using this notation,
di ¼ jNij is the undirected degree of i. In general, i =2 Ni

because the graph is simple. Suppose the neighbors within
each Ni are sorted ascending by their ID and Gu is kept as a
sequence of pairs fði; NiÞgni¼1. Our next goal is to define

1. For a random variableX, the second moment is defined as E½X2�.
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notation that allows splitting arbitrary sets into values
smaller/larger than a given pivot. The most immediate use
is construction of in/out lists in the directed graph, but we
will encounter other applications shortly.

Suppose N is the set of natural numbers and consider
two finite sets S; T 	 N. Then, let

ðT; SÞþ ¼ fj 2 Sjj � maxðT Þg (2)

be a subset of S that is bounded from above by the largest
value in T . When T consists of a single element i, we simply
write ði; SÞþ. Similarly, define

ðT; SÞ� ¼ fj 2 Sjj � minðT Þg (3)

to contain elements of S no smaller than the minimum in T .
Then, the out-list of i in the oriented graph is given by
Nþi :¼ ði; NiÞþ, while the corresponding in-list by N�i :¼
ði;NiÞ�.

When the þ=� operator is specified by a variable ’, i.e.,
ðT; SÞ’, we say that S is ’-oriented by T . This notation can be
extended to other graph concepts. For example, G’

u consists
of tuples fði;N’

i Þg, where i is the source node and N’
i is its

neighbor list, and d’i :¼ jN’
i j is the corresponding degree in

the directed graph. Define 1� ’ to be the inverse of operator
’, i.e., a plus becomes a minus and vice versa. It is then not
difficult to see that G’

u0 is identical to G1�’
u , i.e., reversing the

permutation is equivalent to inverting the orientation.

2.4 Search Order
Our focus is on algorithms from the family of vertex/edge
iterators, which operate by visiting the three nodes of a
triangle in sequential order. All such methods can be
described using the following framework. Given six differ-
ent ways to permute the nodes of a triangle, we next show
how ’ allows us to model the various trajectories (i.e., orders
of examination) during search that result in exactly one list-
ing of each triangle. Suppose i is the first visited node by an
algorithm, j 2 Ni is the second, and k 2 Ni is the last one.
The larger/smaller relationship between these nodes is
what differentiates the various traversal orders. All possible
combinations are captured by Fig. 1a, where each dashed
arrow represents a ’-relationship between the two neigh-
boring nodes. If labeled with a plus, a dashed arrow indi-
cates that the source node is larger than the destination. The
roles are reversed when the label is a minus. Note that
unlike our earlier notation Dxyz, where the order x < y < z
was fixed, the relationship between ðijkÞ is fluid, i.e.,
changed by parameter �’ ¼ ð’1;’2;’3Þ.

Once the �’ vector is chosen, the dashed arrows become
oriented and are replaced with solid lines that specify
greater-than relationships among the nodes. One example is
shown in Fig. 1b, where k > i > j. A simple rule to remem-
ber is that a þ keeps the direction of the dashed arrow,
while a � reverses it. Out of the 23 ¼ 8 possible �’ vectors,
two produce loops, such as the one in Fig. 1c. These
are invalid because they lead to a contradiction, e.g.,
k > i > j > k, which makes the orientation cyclic. The
remaining six combinations are studied next.

2.5 Algorithms
In Algorithm 1, we create the generalized vertex iterator (GVI)
that can handle all valid �’ vectors. The method starts by
populating all directed edges from G

’3
u into a hash table.

The reason for using ’3 is that the algorithm performs look-
ups of ðj; kÞ against H, which we know from Fig. 1a have
relationship ’3. Then, for each node i, GVI creates two sets –
the hit listX, from which jwill be drawn, and the local list Y
consisting of neighbors k that may complete a triangle.
From Line 6, the algorithm examines every node j 2 X, ori-
ents Y using ’3 with respect to j, and checks the resulting
pairs ðj; kÞ against the hash table. Note that Line 7 is impor-
tant for eliminating redundancy.

Algorithm 1. Generalized Vertex Iterator

1 Function GVIð�’Þ
2 build hash tableH with all directed edges from G

’3
u

3 for i ¼ 1 to n do
4 X ¼ ði; NiÞ’1 3 neighbors of i in G

’1
u (hit list)

5 Y ¼ ði; NiÞ’2 3 same in G
’2
u (local list)

6 foreach j 2 X do
7 Y 0 ¼ ðj; Y Þ’3 3 set Y ’3-oriented by j
8 foreach k 2 Y 0 do
9 if ðj; kÞ 2 H then report triangle DsortðijkÞ

Algorithm 2. Generalized Lookup Edge Iterator

1 Function GLEIð�’Þ
2 for i ¼ 1 to n do
3 X ¼ ði; NiÞ’1 3 neighbors of i in G

’1
u (hit list)

4 Y ¼ ði; NiÞ’2 3 same in G
’2
u (local list)

5 add elements of Y to hash tableH
6 foreach j 2 X do
7 Z ¼ ðj; NjÞ’3 3 neighbors of j in G

’3
u (remote list)

8 Z0 ¼ ði; ZÞ’2 3 set Z ’2-oriented by i
9 foreach k 2 Z0 do
10 if k 2 H then report triangle DsortðijkÞ
11 emptyH

The next technique is the generalized lookup edge iterator
(GLEI) whose operation is presented in Algorithm 2. The
main difference begins in line 5, where GLEI populates the
local list Y into a small hash table H. For each j 2 X, the
method constructs a remote list Z consisting of j’s neighbors
according to ’3, orients it by ’2 with respect to i, and checks
its members against H. GLEI and GVI perform the same
number of memory hits [55], with the only difference being
the time needed to clear the hash table in Line 11.

The last method is the generalized scanning edge iterator
(GSEI), which is described by Algorithm 3. It relies on
sequential traversal of neighbor lists to perform set intersec-
tion in Line 9. This is in contrast to GLEI that uses hash
tables for this purpose. The rest of the algorithm is quite
similar. Before intersecting local and remote lists ðY;ZÞ, the
method orients them in Lines 7-8 to be consistent with
Fig. 1a. Note that the former is done by GVI and the latter
by GLEI. In practice, orientation of the local list Y imposes
no additional overhead since j monotonically increases

Fig. 1. Search-order operators in triangle listing.
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within the loop, which is a consequence of N
’1
i being sorted

ascending. However, certain GSEI traversal orders require a
binary search in the remote list Z to locate i [55].

Algorithm 3. Generalized Scanning Edge Iterator

1 Function GSEIð�’Þ
2 for i ¼ 1 to n do
3 X ¼ ði;NiÞ’1 3 neighbors of i in G

’1
u (hit list)

4 Y ¼ ði;NiÞ’2 3 same in G
’2
u (local list)

5 foreach j 2 X do
6 Z ¼ ðj; NjÞ’3 3 neighbors of j in G

’3
u (remote list)

7 Y 0 ¼ ðj; Y Þ’3 3 set Y ’3-oriented by j
8 Z0 ¼ ði; ZÞ’2 3 set Z ’2-oriented by i
9 K ¼ Intersect (Y 0; Z0)
10 foreach k 2 K do report triangle DsortðijkÞ

Fig. 2 shows one example of GSEI operation, where i ¼ 5
and j ¼ 50. Since i is the smallest node in this triangle, we
immediately get that X ¼ Y ¼ ð5; N5Þ� ¼ ð8; 12; 50; 70Þ are
the neighbors of i with larger labels. After j ¼ 50 is selected
from X, the next step is to obtain j’s out-neighbor list
Z ¼ ð50; N50Þþ ¼ ð1; 5; 12; 35Þ. While Z \ Y correctly finds
the triangle involving k ¼ 12, this intersection performs
unnecessary comparisons. We therefore can do better by
shrinking Z to include only neighbors larger than i, which
produces Z0 ¼ ði; ZÞ� ¼ ð12; 35Þ. For similar reasons, Y can
be reduced to contain only those neighbors smaller than j,
which leads to Y 0 ¼ ðj; Y Þþ ¼ ð8; 12Þ. Performing intersec-
tion of Z0 and Y 0 yields k ¼ 12.

It should be noted that conversion from Z to Z0 in the
example of Fig. 2 requires a binary search; however, for the
majority of methods this reduction comes at no cost (e.g.,
when i =2 Z). Furthermore, the figure shows existence of
additional triangles involving nodes ð5; 50Þ, i.e., D1;5;50 and
D5;50;70. It is perfectly correct that they are ignored when
i ¼ 5 and j ¼ 50 since the algorithm finds the former trian-
gle using i ¼ 1 and j ¼ 50, while the latter is discovered
when i ¼ 5 and j ¼ 70.

2.6 Taxonomy
A combination of Algorithms 1, 2, 3 comprises our General-
ized Iterators (GI) framework. Analysis above shows that
each of the main algorithms (i.e., GVI, GLEI, GSEI) admits
six traversal orders and that this classification is exhaustive
(i.e., no other patterns are possible). Table 1 assigns names
to all methods based on their �’, specifying whether the edge
iterators require a binary search and how to relate ðijkÞ to
ðxyzÞ ¼ sortðijkÞ. For example T2 first visits the middle
node y, then the largest node z, and finishes with the small-
est x. It is also not difficult to see that the method in Fig. 2 is
E6. In prior literature, T1 can be found in [26], [31], [49], E1

in [4], [21], [48], E2 in [33], [45], E3 in [13], [14], and E5 in
[47]. Methods T1-T3, E1, E3, E4 are listed in [40].

While there are 18 techniques total, their CPU cost can be
reduced to just four non-isomorphic classes [55]; however,
thismay no longer holdwhen I/O is taken into account.What
can be said for sure is that reversing u, or similarly inverting �’,
produces an identical method from the I/O standpoint. This
allows reduction of scope to a subset of methods that cannot
be converted into each other through inversion of �’.

For example, keeping only methods that utilize Gþu for
remote edges, i.e., ’3 is the plus operator, would eliminate
rows ð3; 4; 5Þ in Table 1. In that case, Fig. 3 shows the position
of the remaining 9methods on a 2D plane, where the columns
share the CPU cost, while the rows do the same for I/O. We
use analysis from [55] to position the columns in order of
increasing CPU complexity, with T1 being the best and E6

being theworst.The figure also provides the optimal permuta-
tion for CPU cost in random graphs using the results of [55].
While this is a good start, it is currently unknown if the rows
do in fact differ in I/O cost,whether they can be split intomul-
tiple subrows depending on additional factors, and how their
I/O relates to each other. This is our next topic.

3 PRUNED COMPANION FILES (PCF)

This section presents a general family of disk-based algo-
rithms that supports all methods in Table 1. It also aims to
achieve better I/O complexity than prior approaches.

3.1 Overview
It is important to discuss the performance objectives of
external-memory algorithms before explaining our solution.
There are four metrics that contribute towards the runtime
of a method and its ability to handle large graphs. The first
is the triangle-identification time. In GVI/GLEI, it is based on
the number of lookups against H in Lines 9 and 10, respec-
tively. In GSEI, it is determined by the amount of list intersec-
tions in Line 10. Examination of an item (i.e., edge or node)
by these lines is an elementary operation for the corresponding
algorithm. For a method M and orientation u, suppose
cnðM; uÞ is the number of elementary operations, which we
call the CPU cost, and rðMÞ is the speed of these operations
in items/sec. For a fixed pair ði; jÞ, the CPU cost equals jY 0j
for GVI, jZ0j for GLEI, and jY 0j þ jZ0j for GSEI. Then, the tri-
angle-identification time is given by cnðM; uÞ=rðMÞ.

The second metric is the amount of I/O performed.
Because all reads are sequential, this overhead is measured

Fig. 2. Example of applying GSEI using �’ ¼ ð� �þÞ.

TABLE 1
Taxonomy of Vertex/Edge Iterators

GVI GLEI GSEI Binary Search Vector �’ i j k

T1 L1 E1 No þþþ z y x
T2 L2 E2 No �þþ y z x
T3 L3 E3 No ��� x y z
T4 L4 E4 No þþ� z x y
T5 L5 E5 Yes þ�� y x z
T6 L6 E6 Yes ��þ x z y

Fig. 3. Four CPU and three I/O classes.
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by the length of adjacency lists across all graphs participat-
ing in the algorithm. The third metric is the number of lookups
based on hit list X (i.e., Lines 6, 6, 5), which is generally a
function of the partitioning scheme. This is in contrast to
RAM-only operation, where this value is always fixed at m,
i.e., the number of edges in Gu. Finally, the last parameter is
the minimum amount of RAM supported by the method.

It is possible that some of these metrics are tradeoffs
of each other; however, if an ideal algorithm exists, it
would simultaneously beat the other methods in all four
categories.

3.2 Graph Partitioning
Because GSEI explicitly maintains remote and local lists,
both GVI and GLEI can be viewed as its special cases that
replace one of the lists with a hash table. For example, GVI
usesH in place of scanning Z, while GLEI does the same for
scanning of Y . As a result, any I/O partitioning scheme that
handles GSEI can be adopted to work with the other two
algorithms without incurring additional overhead. It should
be noted that hash tables in Algorithms 1-2 refer to data
structures already in RAM, i.e., there is no random access to
disk. Specifically, GVI builds H from the current subgraph
loaded entirely into memory. This subgraph is a chunk of
G

’3
u that is created by the algorithms below. GLEI creates H

using the partitioned adjacency list N
’2
i that is also present

in RAM, as part of either the current subgraph or its com-
panion file. Therefore, it is sufficient in the description of
our I/O techniques to target only Algorithm 3.

In general, triangle-partitioning schemes work by placing
one (or more) edges in some RAM buffer and then scanning
the disk for discovery of the remaining edges that complete
each triangle. Since node j and its neighbors k must be
retrieved using random access, one crucial observation is
that all methods require the remote edge ðj; kÞ to be present
in RAM, while the other two lists ðX; Y Þ may be streamed
from disk sequentially. This framework, coupled with gen-
eral �’ and the algorithms developed in this section, is what
we call Pruned Companion Files.

Assume the set of nodes V is divided into p pair-wise non-
overlapping and jointly exhaustive setsV ¼ ðV1; . . . ; VpÞ. In a
method we call PCF-A, we split G

’3
u along the destination

node of each pair ðj;N’3
j Þ to create a set of remote-edge graphs

Gr
uðlÞ ¼ fðj;N’3

j \ VlÞg; (4)

where l ¼ 1; 2; . . . ; p. In a method we call PCF-B, we do the
same along the source nodes

Gr
uðlÞ ¼ fðj;N’3

j Þjj 2 Vlg: (5)

These technique are illustrated in Fig. 4 and their proper-
ties are given by the next result.

Theorem 1. Algorithms 1, 2, 3 operating over PCF-A/B find each
triangle exactly once. Furthermore, for a given graphGu, the tri-
angle-identification cost cnðM; uÞ remains constant for all p.

Proof. First notice that every edge ðj; kÞ belongs to a unique
partition Gr

uðlÞ. Then, replacing G
’3
u with Gr

uðlÞ in
Algorithms 1-3 and repeating for all l ¼ 1; 2; . . . ; p, we
immediately obtain that no triangle is missed or counted
more than once.

To show that the triangle-counting overhead remains
constant, we focus on GSEI, with the other methods being

similar. Fix a node j and assume the length of its neighbor
list Z after orientation by node i in Line 8 is given by qij.
Note that list Y 0 is independent of the partitioning scheme
and can be ignored. For RAM-only operation, the intersec-
tion cost related to j can be expressed asX

ði;jÞ2G’1
u

qij: (6)

In PCF-A, assume the length of Z oriented by i in par-
tition l is given by qijðlÞ. This leads to an overall cost for j

Xp
l¼1

X
ði;jÞ2G’1

u

qijðlÞ: (7)

Since the partitions are mutually disjoint and exhaus-
tive, it must be that for all i

Xp
l¼1

qijðlÞ ¼ qij; (8)

which yields the same cost in (7) as in (6) after changing
the order of summations.

In PCF-B, the analysis is even simpler. Because j
appears as the source node in exactly one partition, it
experiences the same overhead (6) in that partition and
zero in all others. tu
This result shows that partitioning does not create any

additional list-intersection cost, which allows us to focus on
the remaining three objectives in the rest of the paper.

3.3 Partition Balancing
Assume M is the RAM size. To achieve the smallest p,
each partition size jGr

uðlÞj must equal M, which requires
explicit balancing. Note that splitting the range ½1; n� into
p ¼ dm=Me equal-size bins fails to accomplish this objective
since permutation u is degree-dependent. For example, with
uD, smaller node IDs indicate larger degree. Therefore,
nodes in the first bin may bring significantly more (or less
depending on ’3) edges into Gr

uðlÞ than those in the last bin.
Balancing is accomplished by setting up boundaries

a1; a2; . . . ; apþ1 such that a node is included in Vl if and only
if it belongs to ½al; alþ1Þ. While a1 ¼ 1 and apþ1 ¼ nþ 1 are
obvious, the other values require more attention. For PCF-A
in Fig. 4a, notice that inclusion of k into Vl implies that all
edges from list N

1�’3
k are placed into Gr

uðlÞ. Therefore, we
must select the boundaries such that

Xalþ1�1
k¼al

d
1�’3
k ¼M; (9)

Fig. 4. Graph partitioning.
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which can be accomplished in one pass overG
1�’3
u . For PCF-

B in Fig. 4b, the roles of j; k are reversed, which leads to

Xalþ1�1
j¼al

d
’3
j ¼M: (10)

Balancing in PCF-A and B is equally fast, except the for-
mer requires existence of an inverted version of G

’3
u . If there

is no sequence fakg that satisfies (9) or (10), the correspond-
ing method cannot run. We discuss the conditions for this
to occur towards the end of the next section.

3.4 Companion Files
The fastest previous implementations [4], [21], [26], [31] use
a framework that would scan the entire file G

’1
u to obtain hit

lists X and G
’2
u for local lists Y . When ’1 ¼ ’2, these files

coincide, which cuts the overhead by half compared to other
vectors �’. Nevertheless, the amount of I/O produced by
these schemes is still substantial, i.e., pm � m2=M. Instead,
our approach is to prune lists X; Y to be optimally suited
for each partition l and write them into special companion
files Gc

uðlÞ. Each of them, when paired with the correspond-
ing remote-edge graph Gc

uðlÞ, allows identification of all tri-
angles with either k (PCF-A) or j (PCF-B) in Vl.

Consider Algorithm 4, which is our one-pass solution to
creating both companion and remote-edge files. If tuples
fði;NiÞg are sorted by the source node i, Lines 3-5 simulta-
neously construct the three lists ðX;Y; ZÞ by scanning
multiple files in parallel; otherwise, only methods with
’1 ¼ ’2 ¼ ’3 are supported. In Lines 7-14, the algorithm pre-
pares the necessary lists for each partition l. Among these,
Line 8 can be explained with the help of Fig. 4a. Notice that
PCF-A can ð1� ’3Þ-orient set X with respect to Vl without
losing any relevant nodes j. Similarly Line 13 uses an obser-
vation from Fig. 4b that PCF-B can ’3-orient Y with respect
to Vl without omitting any essential nodes k.

Algorithm 4. One-Pass Graph Partitioning

1 Function PartitionGraphðmethod; �’;V)
2 for i ¼ 1 to n do
3 X ¼ ði;NiÞ’1 3 hit list from G

’1
u

4 Y ¼ ði;NiÞ’2 3 local list from G
’2
u

5 Z ¼ ði; NiÞ’3 3 remote list from G
’3
u

6 for l ¼ 1 to p do 3 go through each partition
7 ifmethod = PCF-A then
8 X ¼ ðVl;XÞ1�’3 3 hit list oriented by Vl

9 Y ¼ Y \ Vl 3 keep only nodes in Vl

10 Z ¼ Z \ Vl 3 keep only nodes in Vl

11 else
12 X ¼ X \ Vl 3 keep only nodes in Vl

13 Y ¼ ðVl; Y Þ’3 3 local list oriented by Vl

14 Z ¼ Z 
 1i2Vl 3 Z if i 2 Vl and ; otherwise
15 Y 0 ¼ Y 3 local list to be written to Gc

uðlÞ
16 if Z 6¼ ; then
17 write record ði; ZÞ into Gr

uðlÞ
18 if ’1 ¼ ’3 then
19 X ¼ XnZ 3 further pruneX
20 if ’2 ¼ ’3 then
21 Y 0 ¼ Y nZ 3 further prune Y
22 ifX 6¼ ; and Y 6¼ ; and jX [ Y j � 2 then
23 write record ði; X; Y 0Þ to Gc

uðlÞ

In Lines 18-19, where ’1 ¼ ’3 indicates that sets X and Z
may overlap, the algorithm drops redundant edges from X.

The same operation applies to Y in Lines 20-21. Finally, the
companion file receives triple ði; X; Y 0Þ if both hit list X and
local list Y are non-empty, and there exist at least two nodes
j 2 X and k 2 Y such that j 6¼ k.

Note that when ’1 ¼ ’2, it is possible for X to overlap
with Y . An important aspect of these cases is that Y is
always ’3-oriented against X. If additionally Y 0 6¼ ;, either
X 	 Y 0 or Y 0 	 X holds. Not only that, but the smaller list is
always either at the bottom or top of the larger one. In such
cases, only their union X [ Y 0 is written to disk, with an
additional field indicating the offset that separates them.
Algorithm 4 omits this detail to prevent clutter, but actual
implementations should take it into account.

The main search function is shown in Algorithm 5. One
noteworthy aspect is Line 8, which handles X being in
RAM for PCF-A, and Line 10, which does the same for PCF-
B. In the latter case, only nodes j 2 Vl should be included in
the hit list, which explains the need for additional pruning.
Since X being in RAM implies that Y is too, Line 11 uses
NiðlÞ as the local list. Processing of individual nodes is given
by Algorithm 6, which is identical to the corresponding
section of GSEI, except it finds Z via the hash table rather
than from the full graph G

’3
u .

4 ANALYSIS

This section examines the introduced methods in compari-
son to each other. Our objective is to select a technique and
its permutation so as to simultaneously maximize perfor-
mance across all four criteria, if possible.

Algorithm 5. Disk-Based GSEI

1 Function FindTrianglesð�’Þ
2 for l ¼ 1 to p do
3 load Gr

uðlÞ ¼ fði; NiðlÞÞg in RAM
4 build hash tableH to map each i to its neighbor list

NiðlÞ
5 if ’1 ¼ ’3 then 3 possible for parts ofX to be in RAM
6 foreach ði;NiðlÞÞ in RAM do
7 ifmethod = PCF-A then
8 X ¼ NiðlÞ 3 unrestricted hit list
9 else
10 X ¼ NiðlÞ \ Vl 3 restrict hit list to Vl

11 ProcessOneNode ð�’; i; X;NiðlÞÞ
12 while not EOF(Gc

uðlÞ) do
13 read one record ði; X; Y Þ from companion Gc

uðlÞ
14 if Y ¼ ; then
15 Y ¼ H.findðiÞ 3 local list must be in RAM
16 ProcessOneNode ð�’; i; X; Y Þ
17 emptyH

Algorithm 6.Modified GSEI Intersection

1 Function ProcessOneNodeð�’; i;X; Y Þ
2 foreach j 2 X do
3 Z ¼ H.findðjÞ 3 remote list is always in RAM
4 Y 0 ¼ ðj; Y Þ’3 3 set Y ’3-oriented by j
5 Z0 ¼ ði; ZÞ’2 3 set Z ’2-oriented by i
6 K ¼ Intersect (Y 0; Z0)
7 foreach k 2 K do report triangle DsortðijkÞ

4.1 Overview
From this point on, we parameterize PCF with a specific �’
from Table 1 by adding the corresponding row index. As
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before, we consider only rows 1; 2; 6. When the A/B desig-
nation is non-essential, we omit it. For example, PCF-2
refers to �’ ¼ ð� þ þÞ under both A/B, while PCF-2A nar-
rows it down to the A partitioning scheme.

This creates the six I/O mechanisms in Table 2, where
i! j signifies the out-list neighbor relationship, i.e.,
j 2 Nþi , and i j the opposite, i.e., j 2 N�i . Note that PCF-
1A and 2A place two edges in RAM and load the third one
from disk. This explains why their local list Y is always omit-
ted from companion files. The remaining four techniques do
the opposite – one edge is contained in Gr

uðlÞ and two in
Gc

uðlÞ. In three of these cases, edge direction is kept the same
between X and Y , which ensures that either X 	 Y 0 or
Y 0 	 X, with only one of them actually written to disk.
Method PCF-2B is the lone exceptionwith itsX \ Y 0 ¼ ;.

Table 3 summarizes the pruning rules and specifies the
contents of each companion list. Notice that PCF-1B uses
stricter conditions for achieving X; Y 6¼ 0 than PCF-1A
and its X [ Y 0 is the same or smaller, which indicates that it
out-performs its counterpart. Assuming uD, further scrutiny
of companion lists in Table 3 reveals that PCF-1A produces
less I/O than any of the remaining four methods, with PCF-
6A/6B being essentially identical to each other.

4.2 Modeling I/O
Additional insight can be gleaned from bounding the size of
companion files. Assume uil is the length of i’s hit list X0 in
Gc

uðlÞ and vil is that of Y
0nX0. Then, the total amount of com-

panion I/O (in edges) isHc ¼ Hc
X þHc

Y , where

Hc
X ¼

Xn
i¼1

Xp
l¼1

uil; Hc
Y ¼

Xn
i¼1

Xp
l¼1

vil; (11)

and that for remote-edge graphs is

Hr ¼
Xn
i¼1
jGr

uðlÞj ¼ m: (12)

Since Hr is constant for all �’, comparison across the
various approaches in Table 2 needs to involve only Hc.
Closed-form derivation of accurate models for (11) currently
appears intractable. Even ballparking the scaling rate is
quite elusive for certain extremely heavy-tailed degree dis-
tributions [55]. Instead, we offer bounds achievable in two
worst-case scenarios and leave more precise modeling for
future work.

Theorem 2. The companion I/O (in edges) of PCF-k can be
upper-bounded asHc � zk, where

z1 ¼
Xn
i¼1

min
�dþi � 1

2
; p� 1

�
dþi ; (13)

z2 ¼
Xn
i¼1

minðdþi ; pÞd�i ; (14)

z6 ¼
Xn
i¼1

min
�d�i þ 1

2
; p
�
d�i ; (15)

where dþi is the out-degree of i and d�i is its in-degree.

Proof. We only consider PCF-A since PCF-B uses similar
arguments and produces the same bounds. It is not diffi-
cult to see that PCF-1A writes Hc ¼ Hc

X edges to compan-
ion files since its pruned hit lists Y 0 are always empty.
First, notice that a list cannot be split into more than p
chunks. Due to removal of overlapX \ Z, we can do even
better—the last partition Vp produces a hit list X only for
neighbors j � apþ1 ¼ nþ 1. Since no label can exceed n,
there are actually at most p� 1 partitions where uil 6¼ 0.
Therefore,

Pp
l¼1 uil � ðp� 1Þdþi .

Our second observation is that an out-list cannot be
split into more than dþi files. Then, the worst case arises
when each Vl consists of a single node, where partition l
contains the largest dþi � l out-neighbors of i. Thus,

Xp
l¼1

uil �
Xdþi
l¼1

uil �
Xdþi
l¼1
ðdþi � lÞ ¼ dþi ðdþi � 1Þ

2
; (16)

which combined with the first case yields (13).
For PCF-2A, the first case is very similar, except it uses

the in-degree d�i and fails to remove the overlap X \ Z.
The second case writes the full in-neighbor list exactly dþi
times, which yields the result in (14). Finally, PCF-6A oper-
ates similar to 1A, except it uses the in-degree and fails to
prune the lists as efficiently. Due to these small differences,
its bound (15) is not perfectly symmetrical to (13). tu
Using [55], we obtain that the I/O bound of PCF-1 is min-

imized by the descending-degree permutation uD, that of
PCF-2 by round-robin uRR, and that of PCF-6 by ascending-
degree uA. Furthermore, under their respective optimal per-
mutations, (14) is strictly worse than (13). The bound of
PCF-6 under uA rivals that of PCF-1 under uD, although it is
still slightly higher due to a less-efficient pruning of overlap
between ðX; Y Þ and Z. The worst permutations correspond-
ing to (13)-(15) are uA, uCRR, and uD, respectively [55].

For the asymptotics, we consider randomgraphs from [55].
This framework includes classical ErasedConfigurationMod-
els (ECM) [10], [38], importance sampling [12], iterative edge
rewiring [22], and other graph-construction methods [2], [15]
in which the probability of edge existence between a pair of
nodes is proportional to the product of their undirected
degrees, i.e., pij � didj. At a high level, this process can be

TABLE 2
Summary of PCFAlgorithms Using Remote Graph Gþu

PCF Gr
uðlÞ Condition X Y 0

1A ðy; zÞ ! x x 2 Vl z! y ;
2A ðy; zÞ ! x x 2 Vl y z ;
6A z! y y 2 Vl x z x y

1B y! x y 2 Vl z! y z! x
2B z! x z 2 Vl y z y! x
6B z! y z 2 Vl x z x y

TABLE 3
Composition of Companion Lists in PCF

PCF X Y Y 0

1A Nþi \ ½alþ1; n� Nþi \ Vl ;
1B ðNþi \ VlÞ 
 1i�alþ1 Nþi \ ½1; alþ1Þ Y

2A N�i Nþi \ Vl ;
2B N�i \ Vl Nþi Y 
 1i =2 Vl

6A N�i \ ½al; n� N�i \ Vl Y
6B N�i \ Vl N�i \ ½1; alþ1Þ Y
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implemented by placing 2m node stubs into a shared pool,
picking two stubs uniformly randomly at each time step,
connecting them with an edge, and removing the selected
stubs from the list. Duplicate edges and self-loops are
either removed at the end or prevented from occurring in
the first place, either way producing a simple graph.

Let Dn � FnðxÞ be the random degree of a node in a ran-
dom graph of size n, where FnðxÞ is a distribution that
changes with n to ensure the degree sequence is graphic and
the conditions on pij are satisfied. Since we are interested in
limiting cost as n!1, distribution FnðxÞ is set to a truncated
version of some fixed distribution F ðxÞ, i.e., FnðxÞ ¼
F ðxÞ=F ðtnÞ. Note that tn is usually assumed to be Qð ffiffiffi

n
p Þ to

ensure that edge selection is sufficiently independent between
different nodes and the constraints on pij hold. Truncation
function tn has no impact on the limit of CPU cost in [55] and
is introduced for convenience of proofs. A common case of
interest is the Pareto CDF F ðxÞ ¼ 1� ð1þ x=bÞ�a, which pro-
duces graphic sequences as n!1 only when shape a > 1
[5]. This implies that the expected degree in such graphs must
beOð1Þ and thusm ¼ QðnÞ holds.

Observe that FnðxÞ ! F ðxÞ as n!1 and let D � F ðxÞ
be a random variable drawn from the limiting distribution.
Analysis in [55] shows how permutation u affects the con-
vergence point of sums in the form of 1=n

P
iðdþi Þ2 and

1=n
P

i d
þ
i d
�
i . When these limits are finite, it is not difficult

to see that the corresponding formulas in (13)-(15), which
do not have normalization by n, are upper-bounded by lin-
ear functions of n. Specifically, under uD and E½D4=3� < 1,
the scaling rate of (13) can be bounded as

z1 <
Xn
i¼1

dþi minðdþi ; pÞ � min
�Xn

i¼1
ðdþi Þ2; p

Xn
i¼1

dþi
�

� min
�Xn

i¼1
ðdþi Þ2; pm

�
� minðg; pÞm;

(17)

where g is some constant independent of n. For example,
Pareto distributions F ðxÞ satisfy this requirement iff
a > 4=3. For PCF-2 and its best permutation uRR, the linear
bound in (17) holds iff a > 1:5 [55]. Note that (17) is strictly
better than pm from prior implementations [4], [21], [26],
[31]. When M is a constant, it is also better than theoretical
results of [27], [41] whose Oðm1:5=

ffiffiffiffiffi
M
p Þ bound cannot be lin-

ear unlessM grows at least as fast asm.
Based on Table 3, Theorem 2, and symmetry of PCF-1

A/6B and 1B/6A, Fig. 5 places the I/O of the various meth-
ods in relationship to each other under different permuta-
tions. When we do not differentiate between the PCF
variants A/B of a given method, it is usually because they
have similar I/O. From the picture, it emerges that PCF-1B
with uD is globally the most efficient technique.

4.3 I/O Comparison
For an illustration of the ideas presented earlier in this sec-
tion, we employ the commonly considered Twitter graph
[32] with 41M nodes and m ¼ 1:2B edges. The file occupies
9.3 GB and its adjacency lists contain 2m ¼ 2:4B node IDs.
We start with Table 4, which shows the size of companion
files Hc. Observe that the predicted best-case permutations
in each column (highlighted in gray) agree with earlier anal-
ysis. Additionally, notice that reversal of u swaps PCF-A/B,
switches PCF-1 to PCF-6, and maps PCF-2 back to itself.
These effects were expected based on (13)-(15). Even though
PCF-1 and PCF-6 are close under their optimal permutations,
the former comes out ahead for the reasons discussed above.

We now examine how the methods scale as M ! 0. We
dismiss PCF-6 due to its similarity to PCF-1. We also fix uD
since it achieves the best CPU cost among the methods in
Fig. 3. We vary RAM size from 1 GB down to 1 MB and plot
the result in Fig. 6, where PCF-A cannot go lower than 16
MB due to inability to fit the largest in-degree into RAM.
Observe that not only is PCF-1 more efficient than PCF-2,
but the gap between the two grows as M decreases. As
M ! 0 and p!1, both methods converge towards their
upper bounds, which are 150B in (13) and 360B in (14) [55].
The figure shows that PCF-1 is getting there at a slower
pace than PCF-2.

We next analyze the scaling rate of our best method PCF-
1B against the two previous models of I/O. Recall that the
pm � m2=M technique was proposed by MGT [26], while
the Oðm1:5=

ffiffiffiffiffi
M
p Þ bound is due to Pagh et al. [41]. Since there

is no actual implementation for the latter, it is difficult to
assess the constants inside Oð:Þ. We thus take some liberty
in assuming how this method would work in practice. It
randomly colors the nodes using c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m=M
p

unique values
and splits the edges into c2 files based on the color of
source/destination nodes. It then combines three files of
colors ðij; jk; kiÞ and runs MGT over the result. Since the
size of each combined subgraph is 3m=c2, the I/O cost of
the method is 9m1:5=

ffiffiffiffiffi
M
p

edges, which accounts for all c3

combinations of triplets ðij; jk; kiÞ.
The result for Twitter andM ! 0 is shown in Fig. 7a. After

the initial jump, PCF-1B becomes parallel to Pagh’s curve
1=

ffiffiffiffiffi
M
p

. Both of them scale significantly better than MGT’s
inverse linear function. In Fig. 7b we use random graphs with
a Pareto degree distribution (a ¼ 1:5, E½D� ¼ 30) to examine

Fig. 5. Better-than relationships across the I/O of various PCF methods.

TABLE 4
Twitter I/O (in Billion Edges) under 16 MB of RAM

Permutation 1A 1B 2A 2B 6A 6B

uD 43.8 24.5 61.3 55.6 119.1 126.8
uRR 94.1 83.0 51.0 51.7 83.6 94.2
uA 125.7 118.4 54.8 61.7 25.5 44.2

Fig. 6. Scaling rate of PCF-1 on Twitter under uD.
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the scaling rate of I/O as n!1. In this range, PCF-1B is
roughly linear, while the other two methods grow signifi-
cantly faster. As n increases, the ratio of MGT to PCF-1B
jumps from 51 to 219, while that for Pagh from 15.5 to 29.3. To
put this in perspective, n ¼ 80M nodes requires 25B edges of
I/O for PCF-1B, 734B for Pagh, and 5.5T forMGT.

A more in-depth asymptotic comparison is carried out in
[18], which shows that PCF-1B is better than Pagh on sparse
graphs, up to a factor of

ffiffiffi
n
p

(i.e., constant average degree
and constant RAM size as n!1). On the other hand, Pagh
is better in dense graphs, also by up to a factor of

ffiffiffi
n
p

(i.e.,
complete graphs). This insight allows [18] to develop a new
I/O method that beats both predecessors under all condi-
tions and on all graphs.

4.4 CPU-I/O Tradeoffs
As it turns out, Fig. 3 splits into 16 different CPU-I/O com-
plexity classes, i.e., two (A/B) for each of the 8 unique GI
methods, with T6-L6 being a single entity. In the past, it was
believed that GVI and GLEI were functionally identical.
However, this is not the case when I/O is taken into
account. For example, T1 shares the I/O cost with L1, but at
lower CPU complexity. Similarly, it shares the CPU cost
with L2-L6, while imposing less I/O. In the same vein, it
was unknown until now whether E1 and E2 were inter-
changeable. Results above confirm that they are not.

These observations are emphasized using Table 5, where
each I/O cell reports the best number achieved by either PCF-
A or B. Observe that the best GVI is T1, which exhibits optimal
CPU and I/O complexity under uD. The decision is also easy
for GSEI, where E1 is the top contender. On the other hand,
GLEI must choose which of the two objectives is more impor-
tant – L1 has the best I/O and L2 the best CPU cost, both under
uD. Other GLEI combinations aremuchworse.

4.5 Lookups and Minimum RAM
Recalling that PCF-B prunes X such that X 	 Vl holds,
while PCF-A does not, the next result follows immediately.

Theorem 3. PCF-A issues Hc
X hit-list lookups and requires

M � maxid
1�’3
i . PCF-B performs exactly m lookups and

requiresM � maxid
’3
i .

In graphs with heavy-tailed degree and M � m, it is
common that the hit list size Hc

X � m (e.g., see Table 4).
Therefore, for small RAM size, PCF-B should have a notice-
ably better CPU performance than PCF-A. In fact, its num-
ber of hash-table hits is optimal as it equals that in RAM-
only algorithms.

In terms of restrictions on RAM, all considered methods
PCF-1/2/6 have a plus for ’3, which means that PCF-A
lower-bounds M by the largest in-degree, while PCF-B by

the largest out-degree. It is well-known that uD keeps the lat-
ter no larger than

ffiffiffiffiffiffiffi
2m
p

; however, its maximum in-degree
equals maxi di, which can be significantly higher, i.e., up to
n� 1. Therefore, PCF-B under uD is definitively less restric-
tive than PCF-A. When the permutation is reversed, the
bounds on in/out degree are swapped and PCF-A becomes
better than PCF-B. Finally, uRR has both maximum in/out
degree equal to maxi di, which makes this permutation
equally bad in both PCF-A/B.

4.6 Summary
From the analysis above, two methods T1B and E1B emerge
as clear winners within their respective classes (i.e., hash
tables and scanning intersection). Among the 18 methods,
they achieve the smallest companion I/O, perform the mini-
mal number of hit-list lookups, impose the lowest RAM
requirements, do not need to invert G

’3
u during creation of

fVlg, and obtain ðX; Y; ZÞ from a single file in Algorithm 4.
We next consider which of them has a smaller runtime.

There are two aspects involved – the relative CPU cost

wn :¼ cnðE1; uDÞ
cnðT1; uDÞ (18)

and the relative speed s ¼ rðE1Þ=rðT1Þ. While [55] proves
existence of random graphs where wn !1 as n!1, ratio
wn is only 2� 3 in real graphs commonly studied in this
area. Given that s is at least 20 on modern CPUs, it is conclu-
sive that scanning edge iterators will remain the best option
until graphs are discovered with much larger wn.

5 IMPLEMENTATION

Wenow build a fast implementation of E1B that takes advan-
tage of SIMD for scanning the lists and PCF-B for I/O. We
call this method PaCiFier andmake it available in [19].

5.1 Intersection
Since E1B spends almost all of its CPU time on intersection,
it is crucial to address this bottleneck first. With support for
SIMD in modern CPUs, we can exploit data-level parallel-
ism and achieve a significant speedup compared to tradi-
tional CPU-based methods. We adopt the technique from
[46], which utilizes STTNI intrinsics from SSE 4.2. They
work on two 128-bit vector registers, treating them as four
32-bit or eight 16-bit integers. Fig. 8 shows how STTNI
builds an all-to-all comparison matrix and outputs a vector
of matches using just one instruction.

While 32-bit intersection is fast, better results can be pro-
cured by compressing labels into 16-bit numbers. This is

Fig. 7. Comparison against prior methods.

TABLE 5
CPU-I/O Complexity Classes in Twitter under 16 MB of RAM

Under CPU-optimal permutation Under I/O-optimal permutation

Perm GI CPU I/O Perm GI CPU I/O

uD T1 150B 24B uD T1 150B 24B
L2 150B 56B L1 360B 24B

T6-L6 150B 119B E1 511B 24B
E1 511B 24B uRR T2 255B 51B
E2 511B 56B L2 63T 51B

uRR L1 255B 83B E2 63T 51B
T2 255B 51B uA T6-L6 123T 25B

uCRR E6 63T 45B E6 123T 25B
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performed by grouping node IDs into chunks that share the
same upper 16 bits. For each chunk, PaCiFier additionally
keeps its length and a list of the lower two bytes from each
original label. This works well because all vertices are
sequentially relabeled and adjacency lists are kept in ascend-
ing order. Besides almost doubling intersection speed, this
method reduces graph size by approximately 50 percent.

For lists that are shorter than some threshold (e.g., 16),
both compression and 16-bit intersection do not work well.
In these cases, we keep the lists in 32-bit format and apply
the branchless, scalar (i.e., non-SIMD) intersection from
[28]. Note that employing STTNI, binary search [6], or
SIMD galloping [35] over short lists produces worse results.
A benchmark of some of these operations together with the
Google Hash Table is shown in Table 6. With 1.8B opera-
tions/sec, PaCiFier’s ratio s is a whopping 94.7. This places
even more doubt that T1B will be competitive in the future,
especially given that RAM bandwidth scales much faster
than latency [44], i.e., swill continue increasing.

5.2 Relabeling and Orientation
Relabeling in degree-based permutations would normally
require sorting pairs (degree, ID). This becomes a major bot-
tleneck in preprocessing, especially for large graphs where
these tuples do not fit in RAM. In contrast, we use an
approach that decides the new labels without sorting the
nodes. We first accumulate a histogram of degree frequency
in one pass over pairs ði; diÞ, which are kept separately from
the adjacency lists fNig. Using a prefix sum of the histogram,
we then establish the starting IDs for nodes of each unique
degree value. Performing another scan of the tuples, we find
the degree of each source node i in the histogram and create a
mapping from old labels to the corresponding new IDs. This
is shown in Fig. 9. Frequently accessed parts of the histogram
typically fit in the L2 cache, which makes lookups against
them extremely fast. If the mapping fits in RAM, PaCiFier
performs a scan over the adjacency lists and rewrites all
edges in one pass. Otherwise, it changes the source nodes,
inverts the graph, and updates the source nodes again.

To reduce memory consumption, we use two simple
rules to eliminate redundant nodes during orientation. First,
PaCiFier drops all dangling vertices, i.e., those with degree
di ¼ 1, since they cannot participate in triangles. This tech-
nique is especially effective in power-law graphs, where a
large fraction of nodes have degree 1. Second, source verti-
ces with dþi ¼ 0 are discarded because intersecting against
an empty list yields no useful results.

5.3 Parallelization
Scaling PaCiFier to multiple cores is rather straightforward.
In Algorithm 5, the processing of each record ði; X; Y Þ 2
Gc

uðlÞ is an independent job, which allows multiple threads

to work on different lists without interfering with each
other. The lookup table H is read-only and can be safely
shared by all worker threads without any locks. Assuming
C available cores and hyper-threading, we run 2C worker
threads and set the affinity mask to bind each thread to a
dedicated core. This configuration ensures 100 percent CPU
utilization for the entire execution and almost linear scal-
ability with the number of cores (see below).

5.4 Evaluation Setup and Datasets
Experiments use a six-core Intel i7-3930K @ 4.4 GHz, Asus
Rampage IV Extreme motherboard, and quad-channel
DDR3 RAM @ 2133 MHz. We compare PaCiFier against
four methods with available implementations—RGP [14],
DGP [14], MGT [26], and PDTL [21]. For the first three tech-
niques, we use a single-threaded binary shared by the
authors of [26]. For PDTL, we use a multi-threaded imple-
mentation that comes from the authors’ github page.

We employ allthree standard graphs in the field—Live
Journal (LJ) [26], US road maps (USRD) [26], Billion Triples
Challenge (BTC) [24], WebUK [26], Twitter [32], and Yahoo
[56]. Note that the original Yahoo graph has n ¼ 1:4B, which
reduces to 720M after removing zero-degree nodes. To cover
a wider variety of options, we add two web crawls: IRLbot
[34] and ClueWeb [16].2 Out of the former, we extract
domain, host, and IP-level graphs. Assuming IðxÞ is the IP
address of an authoritative nameserver for domain x, graph
IRL-IP contains edges IðxÞ ! IðyÞ iff x! y in IRL-domain,
which may be useful for spam detection and ranking. The
original ClueWeb dataset published online [16] does not con-
tain any dynamic links and is limited to 7.9B edges [43]. We
remedy this problem by running our HTML parser over all
pages, which yields amuch larger graphwith 102B links.

Table 7 summarizes statistics of the graphs, where the
old datasets require billion-scale intersection cost cnðE1; uDÞ
and the new ones trillion-scale. The densest graph IRL-IP
has an average degree 1;030, contains over 1T triangles, and
requires 4.2T intersection operations. ClueWeb comes in at
a hefty 358 GB, but neither its number of triangles nor CPU
cost can top those of IRL-IP. Also note that the longest out-
list in the table occupies just 35 KB of RAM, far smaller than
the longest undirected neighbor set (i.e., 177 MB).

Fig. 8. Parallel intersection with STTNI.

TABLE 6
Single-Core Speed (Intel i7-3930K@ 4.4 GHz)

Implementation Speed (M/sec)

Hash table 19
Naive scalar intersection 264
Branchless intersection 416
SIMD 32-bit intersection 1,119
SIMD 16-bit intersection 1,801

Fig. 9. Descending-degree relabel with a histogram.

2. The new files can be downloaded from [19].
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5.5 Preprocessing Time
RGP/DGP do not require preprocessing, while the other
three methods manipulates the input graph G into a suit-
able format prior to actual listing of triangles. It is common
to time the two phases separately, especially since the for-
mer can be performed once and the latter repeated many
times on the same preprocessed data. Table 8 shows the
result using a RAID system capable of reads at 1 GB/s.
Even though PaCiFier is the only one performing both
relabeling and orientation, it is still 2-8 times faster than
MGT and up to 20 times faster than PDTL.

5.6 Triangle-Listing Time
We run the next set of tests using an 8-GB RAM constraint,
which ensures that I/O is not a bottleneck for our RAID.
As a result, Table 9 presents an evaluation of pure CPU
efficiency of each algorithm. PaCiFier’s performance is
determined by the length of neighbor lists, i.e., efficiency of
SIMD scanning. Compared toMGT, which implements T1, its
speedup varies from a factor of 13.6 on Yahoo to 78.6 on IRL-
IP. In the latter graph, PaCiFier finds 1T triangles in 237 sec-
onds, which translates into 17.7B neighbor checks/sec and
4.3B discovered triangles/sec using all six cores. Compared to
PDTL, which is an optimized version of E1 withMGT’s parti-
tioning scheme, PaCiFier achieves a 5-10� faster runtime.

The number of found triangles is consistent across the
methods, except RGP/DGP fail to finish within 12 hours on
several graphs, which we indicate with a dash. Additionally,
MGT quits with an unrealistically small number of triangles
(i.e., 170M) after spending 24K seconds on ClueWeb, which
we showwith an asterisk. Its traces point toward early termi-
nation before processing all of the partitions; however,
unavailability of the source code prevents further analysis.

To put these results in perspective, Table 10 cites the run-
time from prior work on Twitter and Yahoo. We split the
algorithms into several categories—RAM-only, external-
memory, and MapReduce. We report the number of utilized
cores for the former two groups and cluster size for the last
one. The first two methods in the table [47], [48] produce
comparable numbers to those of PaCiFier, but using 3-6
times more late-model Xeon cores. Due to their RAM-only
operation, we do not consider them competitors for PaCiFier.
The next two techniques [4], [31] are extensions of RGP/DGP
and MGT to multiple machines. They are generally faster
than their respective predecessors, but still far slower than
PaCiFier. The final four methods [17], [49], [42], [43] in the
table are entirely disappointing – 87 to 572 times slower than
PaCiFier while consuming substantiallymore resources.

5.7 Parallelization Efficiency
We now examine how PaCiFier scales with the number of
cores, which indicates how well the algorithm benefits from
additional CPU resources. As discussed earlier in section 5.3,
PaCiFier’s parallelization framework partitions the compu-
tation (i.e., triples ði;X; Y 0Þ from the companion file) into
equal-sized jobs, which are processed lock-free by worker
threads. As shown in Fig. 10, PaCiFier’s runtime indeed
scales almost linearly. The reason for a slightly suboptimal
outcome is that certain auxiliary operations (e.g., indexing of
Gr

uðlÞ in Line 4 of Algorithm 5) are executed sequentially.

5.8 Effect of RAM: Bottlenecked by CPU
Next, we analyze the performance of each algorithm under
varying RAM size. We showed earlier that PaCiFier’s CPU
cost was constant for all M. While the I/O complexity does
increase as M ! 0, double buffering and prefetching can
keep this overhead negligible until the disk becomes a bot-
tleneck. Table 11 supports this discussion – using our RAID
system, PaCiFier completes in virtually the same amount of
time for all M in the range between 256 MB and 8 GB. The
initial drop in runtime can be explained by smaller lookup
tables and better cache locality; however, as M decreases
further, SIMD becomes less efficient and this effect is
reversed. While MGT is not bottlenecked by I/O either,
PDTL increases its runtime by 49-116 percent at M ¼ 256
MB. More interesting cases where the disk can no longer
keep up with the computation are studied next.

5.9 Effect of RAM: Bottlenecked by I/O
For comparison of disk activity, we use the exact model
mdm=Me for MGT/PDTL and compute the size of all

TABLE 7
Dataset Properties

Graph Nodes (n) Degree sum (2m) Triangles wn cnðE1; uDÞ Size E½di� maxidi maxid
þ
i

LJ 4,846,609 85,702,474 285,730,264 3.01 2.1B 364 MB 17.7 20,333 685
USRD 23,947,347 57,708,624 438,804 2.37 25M 403 MB 2.4 9 4
BTC 164,660,997 772,822,094 28,498,939 1.59 3.5B 4.1 GB 4.7 1,637,619 646
WebUK 62,338,347 1,877,431,056 179,076,331,071 1.99 364B 7.5 GB 30.1 48,822 5,692
Twitter 41,652,230 2,405,026,390 34,824,916,864 3.38 511B 9.3 GB 57.7 2,997,487 4,102
Yahoo 720,242,173 12,869,122,070 85,782,928,684 1.47 433B 53.3 GB 17.9 7,637,656 1,540

IRL-domain 86,534,416 3,416,273,404 112,797,037,447 3.63 1.4T 13.3 GB 39.5 2,948,635 4,481
IRL-host 641,982,060 12,872,821,328 437,436,899,269 2.85 2.6T 52.7 GB 20.1 5,475,377 4,516
IRL-IP 1,588,925 1,636,848,800 1,032,158,059,864 3.17 4.2T 6.1 GB 1,030 669,776 8,915
ClueWeb 8,179,508,503 102,394,528,124 879,280,163,294 2.00 3.0T 358 GB 12.5 44,383,637 1,747

TABLE 8
Preprocessing Time (Seconds)

Graph MGT PDTL PaCiFier

LJ 2.2 1.0 1.7
USRD 2.0 1.4 2.0
BTC 18.8 11.6 8.9
WebUK 36.9 24.5 14.7
Twitter 88.9 38.4 24.5
Yahoo 295 276 149

IRL-domain 149 61.9 31.8
IRL-host 736 456 221
IRL-IP 33.9 19.1 8.5
ClueWeb 8,192 19,502 962
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companion files in PaCiFier by running Algorithm 4.
Although DGP/RGP share the same Qðm2=MÞ asymptotic
cost with MGT, these methods require two orders of magni-
tude more I/O due to slow convergence, which we omit
from analysis. Instead, we contrast against MapReduce
methods. The first one is GP [49], which uses at least
r ¼ d3 ffiffiffiffiffiffiffiffiffiffiffiffi

m=M
p e reducers and shuffles

30ðr� 1Þðr� 2Þm
r

(19)

bytes of data [42]. A later method called TTP [42] reduces r
by a factor of

ffiffiffi
3
p

and improves the shuffle to 20ðr� 1Þm.
Table 12 shows the I/O in bytes on the two largest

graphs under consideration. PaCiFier starts off beating GP/
TTP by a factor of 32-78 and MGT/PDTL by a factor of
3:7-9. This advantage keeps accumulating as M decreases.
Eventually, PaCiFier develops a 58-195� lead over the for-
mer and 34� 65� over the latter as M reaches 256 MB. In
the last scenario, the I/O phase of MGT/PDTL would
require 34.5 hours to finish ClueWeb using our 1 GB/s
RAID. With a magnetic hard drive (i.e., 100 MB/s read
speed), this would take over two weeks. On the other hand,
PaCiFier offers to lower these numbers to 32 minutes and
5.3 hours, respectively.

Armed with these predictions, we next investigate the
actual runtime of MGT, PDTL, and PaCiFier in the setup of
Table 12. To ensure that I/O is indeed a noticeable bottle-
neck for all RAM sizes, we equip our host with a single 3 TB
hard drive (Hitachi Desktar 7K3000), capable of sequential
reads at a maximum of 160 MB/s. The result, including
both preprocessing delay and runtime, is shown for Yahoo

in Table 13. Since CPU operations (i.e., hash-table lookups)
are no longer choking MGT, it manages to perform better
than PDTL, both in orientation and triangle enumeration.
However, PaCiFier is still much faster, by 5� in the first
row and 53� in the last. More importantly, its scaling rate is
much better, i.e., the PaCiFier runtime doubles within the
span of the table, while that of MGT increases by a factor of
21. The MGT increase is sublinear (i.e., less than 32) because
I/O is only partially a bottleneck in the first few rows.

Table 14 presents the result on ClueWeb. With 8 GB of
RAM, MGT spends 52K seconds computing triangles, which
we show in the table with an asterisk, but it is still unable to
produce the correct result. We therefore omit running MGT
on the remaining cases. PDTL takes longer than 4 days in all

TABLE 9
Runtime (Seconds) With 8 GB of RAM

Graph RGP DGP MGT PDTL PaCiFier

LJ 22.3 22.2 11.2 2.8 0.7
USRD 12.3 12.3 1.2 6.2 0.3
BTC 111 110 11.4 12.1 2.1
WebUK 1,299 891 599 93.6 17.1
Twitter 10,300 9,814 2,238 327 63.4
Yahoo 31,945 13,990 1,080 619 79.2

IRL-domain 17,717 16,919 5,946 849 148
IRL-host – – 11,099 1,773 367
IRL-IP – – 18,617 2,358 237
ClueWeb – – * 13,782 1,737

TABLE 10
Results from Prior Work

Type Algorithm Runtime (sec) Cores or

Twitter Yahoo servers

RAM-only [47] 101 – 16
[48] 55.9 77.7 40

External PATRIC [4] 552 – 200
OPT [31] 469 819 6

MapReduce [17] 36,300 – 47
GP [49] 28,980 – 1,636
TTP [42] 12,780 – 47
CTTP [43] 5,520 61,920 40

Fig. 10. Speedup versus number of cores (8 GB of RAM).

TABLE 11
Runtime (Seconds)

Graph RAM
(MB)

MGT PDTL PaCiFier

Twitter

8,192 2,238 323 63.3
4,096 2,248 327 63.2
2,048 2,260 327 61.9
1,024 2,285 347 61.0
512 2,354 464 61.4
256 2,487 1,003 67.2

IRL-domain

8,192 5,947 849 148
4,096 5,976 851 144
2,048 6,020 853 143
1,024 6,090 898 143
512 6,252 995 145
256 6,540 1,484 149

TABLE 12
I/O Comparison

Graph RAM
(MB)

GP TTP MGT /
PDTL

PaCiFier

Yahoo (in GB)

8,192 2,099 1,066 88.8 40.4
4,096 3,271 1,599 177.6 47.6
2,048 5,247 2,132 355.1 55.5
1,024 7,632 3,198 710.2 64.8
512 11,219 4,531 1,420 74.6
256 16,408 6,663 2,841 84.4

ClueWeb(in TB)

8,192 47.4 19.2 3.91 0.69
4,096 68.4 27.9 7.82 0.87
2,048 99.8 40.2 15.6 1.10
1,024 141.7 55.9 31.3 1.36
512 204.6 80.4 62.6 1.64
256 291.1 113.6 125 1.93
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rows except the first two, where it is already 10-18� slower
than PaCiFier. Focusing on the last row of the table, where the
oriented and 2-byte compressed graph exceeds RAMby a fac-
tor of 664, PaCiFier completes 1.93 TB of I/O in 4.2 hours. This
translates into 128 MB/s average disk-read speed. Since the
peak rate of an empty 7K3000HDD is 160MB/s andmagnetic
drives become slower as they get full, the PaCiFier outcome
appears very reasonable, especially considering PDTL’s
extrapolated time of 20.3 days (i.e., 116� slower).

6 CONCLUSION

We created a taxonomy of 18 triangle-listing methods using
a unifying framework of Generalized Iterators (GI), devel-
oped a new set of algorithms (i.e., PCF) for external-memory
operation of GI, and showed that it possessed better com-
plexity than current implementations in the field. We then
determined which of the 18 methods was the most efficient
when both CPU and I/O objectives were taken into account
and created a working solution that exhibited 5� 10�
smaller runtime and orders of magnitude less I/O com-
pared to the best previous techniques.
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