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Abstract—Discovering triangles in large graphs is a well- total overhead ofn?/M. In theoretical development, better
studied area; however, both external-memory performance © pounds can be achieved using random coloring of the graph
existing methods and our understanding of the complexity [18], [30]; however, there are no implementations that use

involved leave much room for improvement. To shed light on tis : L 15
problem, we first generalize the existing in-memory algoribms ~thiS method and the constants inside its bodrich "> /v'M)

into a single framework of 18 triangle-search techniques. W are unknown. What makes these two approaches similar is
then develop a novel external-memory approach, which we that their performance does not depend on the traversat orde
call Pruned Companion Files (PCF), that supports operation of within each triangle or preprocessing manipulations aujio

all 18 algorithms, while significantly reducing /O compared  ha granh, which leaves little for additional investigatio
to the common methods in this area. After finding the best Inztezd’ we show below that there exists a te?:hni ue for
node-traversal order, we build an implementation around it ’ q

using SIMD instructions for list intersection and PCF for I/0. graph partitioning that maps the triangle-listing algorithms
This method runs 5-10 times faster than the best available into six distinct classes, each of which possesses differen
implementation and exhibits orders of magnitude less I/O. m  |/O performance characteristics that depend on the acyclic
ggso?]‘:jgUJS?JSP;Z'e;hk?OErOC@g%m finds 1 willion triangles in 237, jentation of the original graph. We call this framework
' Pruned Companion File¢PCF) and demonstrate how aik
methods can be combined under an umbrella of a single
I. INTRODUCTION algorithm. Taking into account both /O and CPU caést [44], we

. . discoverl6 unique ways to perform triangle listing in external
Enormous size of modern datasets poses scalability C%Iémory none of which were known before.

lenges for a variety of algorithm_s and applicatiqns. Or}ei_(par While accurate modeling of 1/O complexity is difficult,
ular area affected by the explosion of big datgraph mining we are still able to identify the best partitioning scheme,

and, more specifically, motif discovery in large networkgyeqce ts optimal permutation, and prove that the amount
Motifs are important building blocks of real-life networks of data read from disk ismin(m?/M,O(m)) in random

biology, physics, chemistry, sociology, and computer reoge ;
graphs with Pareto degree sequences, where shape parameter
[14], [16], [26], [27], [39], [42]. They capturdocal com- > 4/3. Note that this is the first result with linear /O bounds

position (_)f graphs and allow reasqning about the underlyirﬁﬁ;]der constant memory size. In contrast, both of the praviou
construction processes that result in the observed phmm?echniquesﬂ]?]ﬂEO] requird/ to scale at least as fast asto

Three-node cycles (i.e., triangles) have received the MQghieye the same performance. We also demonstrate that our
attention, attracting research interest for over 35 yeidf [ artitioning scheme keeps the number of list intersectants

and developing many appl_ications in graph theory [ED [28 able lookups unchanged compared to RAM-only methods,
[40], [41], [43], b|0|nformat|c_s[Qll],[[Z|7], computer grajes which means that its runtime remains constant foridllas
[2], o_Iatabases*.:[3], an_d social networks [5], [6].I[10].1146 long as I/O is not the bottleneck.

U.nt'l rece_zn?ly @’]’ lttle was knowq about the CPU COSt 1o test these developments in practice, we build an im-
qf triangle listing, Its behavior under_dlfferent acyclioenta- pl?mentation that combines PCF with a novel application of
tions, and comparison across the different methods. Much @y 14 edge iterator. Our solution, which we call PaCiFisr,
the previous work [1]/[17]/]24] utilized)(.) bounds that were benchmarked on a variety of real-world graphs, including fo

_exactly theAsa_me for all mvczllvecrj] methods (I"e"_ r\]/erte;(téedg]ew ones that have not been examined for triangles before. Ou
|terator_s). s It ums OUtD.Z ], there ark8 ﬁ?go”t ms for densest graph contains ovier triangles, while the largest has
tra\_/ersmg the nodes of a triangle ar_ld handling the neighbg ver100B edges. Results show that PaCiFiet is2 orders of
which can be reduced to four equivalence classes from eolgnitude faster than the best vertex iterator [17] aAd10

CPU-cost perspelctlve, each. W'tT |ts|. own Opt'm"_’ll Orl'enmlt'otimes faster than the best edge iteraftoll [13]. More impdltan
Howe\fer, gxtce;na-mhemorytnangg |st|rr11g remalnsd_f?rgey it achieves10 — 50 times lower 1/0O complexity when RAM
unexplored. Given the sami8 options, how many different o, ¢ ic gmall compared ta.

I/O classes are there, what node permutations do they sequir

and is it possible for some methods to simultaneously aehiev

optimal CPU and I/O complexity using the same orientation? Il. GENERALIZED ITERATORS(GI)

It m is the number of edges and is RAM size, previous  Recent work [[44] created a taxonomy o8 vertex and

implementations([2], [[13],[[17],[[22] operate with a simplegge ijterators. They use figures to highlight the intuitive

I/O model that requires reading the grapiyM times, for a gitferences among the methods; however, the lacking formal
) ) ) treatment makes it difficult to extend these results to ester
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dmitri} @cse.tamu.edu). framework, which we callGeneralized Iterators(Gl), that



explicitly encodes the traversal order in each triangleisTh 2 @ 0 0

allows us to parameterize a single algorithm to cover execut ;

of all alternative methods. @ P ° °
D = =

A. Redundancy Elimination
(a) general case (b) + — — () +—+

Naive triangle-listing algorithms do not enforce order
among the neighbors, which results in extremely inefficiefild 1. Search-order operators in triangle listing.
operation. Besides discovering each triangle= 6 times,
there are serious repercussions stemming from the factttbat
number of pairs checked at each node is a quadratic functfon
of its degree. Even on relatively small graphs, this can tead Define N; to be the adjacency list of nodein Gy and
1000x more overhead than necessdryl [44]. d; = |N;| to be its undirected degree. In general¢ N;

The redundancy can be eliminated by converting the graphcause the graph is simple. Suppose the neighbors within
into a directed version, in which quadratic complexity apsach N; are sorted ascending by their ID ari¢y is kept
plies only to the out-degree (or in-degree, depending on the a sequence of pair§(i, N;)}7_,. Our next goal is to
method), whose second moments are kept significantly smaltiefine notation that allows splitting arbitrary sets intdues
than those of undirected degree. Assume the nodes are firsaller/larger than a given pivot. The most immediate use is
shuffled using some algorithm and sequentially assigned IDgnstruction of in/out lists in the directed graph, but wél wi
from sequencél,2,...,n). This creates a total order acrosencounter other applications shortly.
the nodes and is often calledlabeling A directed graph is  SupposeN is the set of natural numbers and consider two
then created, where out-neighbors of each node have smdilgite setsS,7" C N. Then, let
labels and in-neighbors have larger. This step is call®gtlic N , .
orientation Finally, in the directed graph, triangles,, . are (T,9)" = {j € S|j < max(T)} ()

listed in ascending order of the new labels, i< y < z.  pe a subset of that is bounded from above by the largest
This procedure generalizes all previous efforts in the fieldajye in7. WhenT consists of a single elemeitwe simply

some of which perform only relabeling_[24]. [34], [36] andyite (i,5)*. Similarly, define

others only orientation [2],113]/117]122]/ 134][[37]38].

The drawbacks of not doing both are discussedin [44]. (T,S)” ={j € S|j > min(T)} (3

Orientation

to contain elements of no smaller than the minimum i
B. Relabeling Then, the ogt-list of in the oriented_ gr_aph is given hy;" :=
(i, N;)*, while the corresponding in-list byv,” := (i, NV;) .
Consider a simple (i.e., no self-loops) undirected gréph  \when the+/— operator is specified by a variable i.e.,
(V, E) with n nodes andn edges. Definé to be a permutation (7 gy we say thatS is p-oriented byT'. This notation can
of node IDs that starts with the ascending-degree order extended to other graph concepts. For exanififesonsists
re-writes the label of each node in positiomo 6(:). Among of tuples{ (i, N¥)}, wherei is the source node ani¥ is its
then! possibilities, there are several named permutations [4fkighbor list, andi? := |N?| is the corresponding degree in

which includeascending-degre, (i) = i, descending-degree the directed graph. Define— ¢ to be theinverseof operator

0p(i) =n+1— 1, round-robin ¢, i.e., a plus becomes a minus and vice versa. It is then not
i s odd difficult to see thatGzg, is identical toc_lé’“", i.e., reversing
Orn(i) = {f 3_] Z !s 0 : 1) the permutation is equivalent to inverting the orientation
|%52]+1 iiseven

and complementary round-robific g (i) = Orr(n + 1 — i), D- Search Order
each of which optimizes a different class of trianglefigti ~ Given six different ways to permute the nodes of a triangle,
methods([44]. The difference in CPU cost between the best and next show howy allows us to describe the various
worst permutations can be orders of magnitude. Even worg@jectories during search that result in exactly onenggti
this ratio may be unbounded as — oo [44]. For a given of each triangle. Supposeis the first visited node by an
permutationd, define itsreverseto be ¢’(i) = n+ 1 — 6(i). algorithm,j € N; is the second, and € N; is the last
This is a useful concept that allows detection of equivadenone. The larger/smaller relationship between these nogles i
classes later in the paper. what differentiates the various traversal orders. All |juss
Suppose&’y is the relabeled graph under permutattbrits combinations are captured by F[g. }(a), where each dashed
construction typically requires sorting the degree seqeef arrow represents@-relationship between the two neighboring
G using#, re-writing the source nodes of each list, invertingodes. If labeled with a plus, a dashed arrow indicates that
the graph using external memory, and re-writing the sourtiee source node ikarger than the destination. The roles are
nodes again. It is also common during this process to drop ediversed when the label is a minus. Note that unlike ourezarli
nodes with degree one since they cannot be part of a triangietation A,,,., where the order: < y < z was fixed, the



Algorithm 1: Generalized vertex iterator Algorithm 3: Generalized scanning edge iterator

1 Function GVI () 1 Function GSEI (@)

2 build hash table H with all directed edges from Gg’S 2 for i = 1tondo

3 for ¢ = 1ton do 3 X = (i, N3)#1 <aneighbors of i in GZ* (hit list)
4 X = (i, Ng)#1 <neighbors of i in GZ* (hit list) 4 Y = (i, N;)¥2 <asame in G2 (local list)

5 Y = (i, N;)¥2 < same in G§2 (local list) 5 foreach j € X do
6 6
7 7
8 8
9 9

foreachj € X do Z = (j,N;)¥3 <neighbors of j in GJ* (remote list)
Y’ = (j,Y)%3 <setY ps-oriented by j Y’ =(j,Y)¥3 «setY ¢z-oriented by j
foreach k € Y’ do Z' = (i, Z)¥2 <set Z pa-oriented by ¢
| if (4, k) € H then report triangle Ao (ijk) K = Intersect (Y’, Z")

10 foreach k € K do report triangle A1 (i k)

Algorithm 2: Generalized lookup edge iterator TABLE |

1 Function GLEI (@) TAXONOMY OF VERTEX/EDGE I TERATORS

2 for i = 1ton do

3 X = (i, N;)¥1 <neighbors of i in G* (hit list) GVI | GLEI | GSEI Binary Search[ Vectorg | ¢ j k
4 Y = (i, N;)¥2 <asamein Gg? (local list) T 9} E No T++ |z vy =
5 add elements of Y to hash table H Ty Lo Es No — y 2z
6 foreachj € X do Ts Ls Es No _ z oy oz
7 Z = (j,N;)¥3 < neighbors of j in Gg?’ (remote list) Ty L Eq No NI z oz oy
8 Z' = (i,Z)%2 <set Z ¢y-oriented by ¢ Ts Ls Es Yes +—— y T oz
9 foreach k € Z’ do Te Le Es Yes ——4 |z =z y
10 | if k € H then report triangle A ,i(i k)
11 empty H

sequential traversal of neighbor lists to perform set seetion
) ) ) o in Line 9. This is in contrast to GLEI that uses hash tables for
relationship betwee(i;jk) is fluid, i.e., changed by parametely,is nurpose. The rest of the algorithm is quite similar.def
¢ = (p1,92,93). _ intersecting local and remote list¥, Z), the method orients
Once theg vector is chosen, the dashed arrows becomgem in Lines 7-8 to be consistent with F[g. 1(a). Note that
oriented and are replaced with solid lines that specify ®rea {he tormer is done by GVI and the latter by GLEI. In practice,

than relationships among the nodes. One example is Showry ik ntation of the local list” imposes no additional overhead
Fig.[L(B), wherek > i > j. A simple rule to remember is thatjnce ; monotonically increases within the loop, which is a
a+ keeps the direction of the dashed arrow, while eeverses consequence aF#! being sorted ascending. However, certain

. 3 _ : —
it. Out of the2” = 8 possibley vectors, two produce 100ps, GsE traversal orders require a binary search in the rerisite |
such as the one in Fi§. I[c). These are invalid because they, |ocatei [@4).

lead to a contradiction, e.gk, > i > j > k. The remaining
six combinations are studied next.
F. Taxonomy

E. Algorithms A combination of Algorithmd1{33 comprises o@ener-

In Algorithm [dl, we create thgeneralized vertex iterator alized Iterators(Gl) framework. Analysis above shows that
(GVI) that can handle all valigs vectors. The method startseach of the main algorithms (i.e., GVI, GLEI, GSEI) admits
by populating all directed edges fro6#/* into a hash table. six traversal orders and that this classification is exfeist
The reason for usings is that the algorithm performs lookups(i.e., no other patterns are possible). Telle | assigns same
of (j,k) againstH, which we know from Fig[ I(%) have to all methods based on thej; specifying whether the edge
relationshipys. Then, for each nodg GVI creates two sets — iterators require a binary search and how to relagé) to
thehit list X, from whichj will be drawn, and théocal listY  (zyz). In prior literature, T can be found in[[17],[[22],[]38],
consisting of neighbork that may complete a triangle. FromE: in [2], [13], [37], E; in [24], [34], Es in [7], [8], and E
Line 6, the algorithm examines every nogec X, orients in [36]. Methods T-Ts, Ei, Es, E, are listed in[[29].

Y using 3 with respect toj, and checks the resulting pairs While there arel8 techniques total, their CPU cost can be
(4, k) against the hash table. Note that Line 7 is important foeduced to just four non-isomorphic classes [44]; howetés,
eliminating the possibility of redundancy. may no longer hold when I/O is taken into account. What can

The next technique is thgeneralized lookup edge iteratorbe said for sure is that reversirig or similarly invertinge,
(GLEI) whose operation is presented in Algoritith 2. Thproduces an identical method from the I/O standpoint. This
main difference begins in line 5, where GLEI populates thallows reduction of scope to a subset of methods that cannot
local list Y into a small hash tablé/. For eachj € X, the be converted into each other through inversiongof
method constructs emote listZ consisting ofj's neighbors ~ For example, keeping only methods that utilizgl for
according taps, orients it by, with respect ta, and checks remote edges, i.eps is the plus operator, would eliminate
its members against/. GLEI and GVI perform the same rows(3,4,5) in Tablell. In that case, Fi§l 2 shows the position
number of memory hits [44], with the only difference bein@f the remaining methods on a 2D plane, where the columns
the time needed to clear the hash table in Line 11. share the CPU cost, while the rows do the same for /0. We

The last method is thgeneralized scanning edge iteratoruse analysis from[[44] to position the columns in order of
(GSEI), which is described by Algoritha] 3. It relies onincreasing CPU complexity, with ;Theing the best and ¢



X
optimal permutations I i I i
for CPU cost > 0, Orr 0p Ocrr @ 1 P3 @ 1 P3
Fig. 2. Four CPU and three I/O classes. S Z S Z
P2 @ P2

being the worst; however, it is currently unknown if the rows
do in fact differ in cost, whether they can be split into nylki (a) PCF-A (b) PCF-B
subrows depending on additional factors, and how their /10O W vartition
relates to each other. This is our next topic. F19. 3. Graph partitioning.

I1l. PRUNED COMPANION FILES (PCF) each triangle. Since nodg and its neighbors: must be
This section presents a general family of disk-based algetrieved using random access, one crucial observatidmats t
rithms that supports all of the methods in Tale I. It alsosaimall methods require theemoteedge (j, k) to be present in
to achieve better I/O complexity than prior approaches.  RAM, while the other two listg X, Y") may be streamed from
disk sequentially. This framework, coupled with genegal
A. Overview and the algorithms developed in this section, is what we call

L . I Pruned Companion File§PCF).
It is important to discuss the performance objectives of Assume the set of nodds is divided intop pair-wise non-

external-memory algorithms before explaining our solutio overlapping and jointly exhaustive s&¥ — (Vi, ..., V,). In

There are four metrics that contribute towards the runtinie 03 -
of a method and its ability to handle large graphs. The ﬁrgtmethod we call PCF-A, we spitiy” along the destination

is the triangle-identification timewhich consists of lookups node of each paifj, N to create a set ofemote-edge

againstHd in GVI/GLEI and intersection in GSEI (i.e., LinesgraIOhS

9, 10, 9, respectively). For a methad, suppose:, (M, ) is Gy() ={(, N> n W)}, (4)

the number of elementary operations, which we call @R

cost andr(M) is the speed of these operations in nodes/sd¢nerel =1,2,....p. In a method we call PCF-B, we do the

For a fixed pair(i, j), the CPU cost equal§”’| for Gvi, Same along the source nodes

]Z’| fp_r G.LEI,.and_|Y’|.+ |Z'| for GSELI. Then, the triangle- Gy(l) = {(. N£*)|j € Vi) (5)

identification time is given by, (M, 6)/r(M). . _ . . _
The second metric is the amount of 1/0 performed. Because! hese technique are illustrated in Hig. 3 and their properti

all reads are sequential, this overhead is measured by &@ given by the next result.

length of adjacency lists across all graphs participatmghe ~ 1heorem L:Algorithms[1E3 operating over PCF-A/B find

algorithm. The third metric is theumber of lookups based on€ach triangle exactly once. Furthermore, the triangle-

hit list X (i.e., Lines 6, 6, 5), which is generally a functioridentification cost:, (M, ¢) remains constant for aj.

of the partitioning scheme. This is in contrast to RAM-only  Proof: First notice that every edggj, k) belongs to a

operation, where this value is always fixed 7at i.e., the unique partitionGy(l). Then, replacingGy® with G (1) in

number of edges irGy. Finally, the last parameter is theAlgorithms 1-3 and repeating for all = 1,2,...,p, we

minimum amount of RAM supported by the method immediately obtain that no triangle is missed or countedemor
It is possible that some of these metrics are tradeoffs y@an once.

each other; however, if an ideal algorithm exists, it would TO show that the triangle-counting overhead remains con-

simultaneously beat the other methods in all four categorieStant, we focus on GSEI, with the other methods being similar
Fix a nodej and assume the length of its neighbor lisafter

o orientation by node in Line 8 is given byg;;. Note that list”’
B. Graph Partitioning is independent of the partitioning scheme and can be ignored

Because GSEI explicitly maintains remote and local listgor RAM-only operation, the intersection cost related twan
both GVI and GLEI can be viewed as its special cases that expressed as

replace one of the lists with a hash table. For example, GVI
usesH in place of scanningZ, while GLEI does the same Z Qij - (6)
for scanning ofY". As a result, any 1/O partitioning scheme (i,4) €G!
that handles .GSEl can bg adoptgq to work with the other two, , PCF-A, assume the length &f oriented byi in partition
algorithms without incurring additional overhead. Theref
our description of 1/0 techniques targets Algorithin 3.

In general, triangle-partitioning schemes work by placing
one (or more) edges in some RAM buffer and then scanning Z Z ¢i (1)-
the disk for discovery of the remaining edges that complete =1 Gjeay?

1 is given byg;;(1). This leads to an overall cost fgr

()



Since the partitions are mutually disjoint and exhaustilve, Algorithm 4: One-pass graph partitioning

must be that for alf 1 Function PartitionGraph (method, @, V)
» 2 for i = 1tondo
) — 8 3 X = (i, N3)#1 <hitlist from GZ!
Z i (1) = i) ® . Y = (i, Ny)¥2 <local list from G2
=1 5 Z = (i, N;)#3 <remote list from G3
: : : ; 6 for [ = 1 to p do < go through each partition
which yields the same cost iAl(7) as [d (6) after changing th7e if method = PGE-A then
order of summations. 8 X = (V;, X)1=%3 «hit list oriented by V;
In PCF-B, the analysis is even simpler. Becayisgppears ¢ Y =Y NV, <keep only nodes inV;
: o ; ; o Z = Z NV, <akeep only nodes in V;
as the source node in exactly one partition, it experierives t/ else
same overhead](6) in that partition and zero in all othems. |, X = XNV, akeep only nodesinV;
This result shows that partitioning does not create amy Y=(W,Y)# < loial list Orier&t%d bﬁ/ Vi
i et . . f 14 Z =7 licy, <ZifteVyan otherwise
additional I|sF mtersecuon qperatlor?s, which allowsoi$ocus L V' Zy alocal it to be written to )
on the remaining three objectives in the rest of the paper. it Z %0 then
17 write record (i, Z) into G (1)
. i 18 if ©$1 = @3 then
C. Partition Balancing 19 | X =X\Z «further prune X
. . . if = 3 then
AssumeM is _the RAM size. To achieve the small_qst 22 |“02Y, f"y\z < further prune Y
each partition sizelG(1)| must equalM, which requires 22 if X#0andY #(0and|X UY|>2then
explicit balancing. Note that splitting the range,n] into 2 | write record (i, X, Y") to G(1)

p = m/M equal-size bins fails to accomplish this objective

since permutatio is degree-dependent. For example, with

0p, smaller node IDs indicate larger degree. Therefore, nodes

in the first bin may bring significantly more (or less depewdinare sorted by the source nodg Lines 3-5 simultaneously

on 3) edges intoGy (1) than those in the last bin. construct the three listéX, Y, Z) by scanning multiple files
Balancing is accomplished by setting up boundariés parallel; otherwise, only methods withy = s = @3 are

ai,as,...,ap+1 such that a node is included I if and only  supported. In Lines 7-14, the algorithm prepares the nacgss

if it belongs to[a;, a;+1). While a; = 1 anda,+1 = n+1 are lists for each partitiod. Among these, Line 8 can be explained

obvious, the other values require more attention. For PCFwfith the help of Fig[B(a). Notice that PCF-A cdh — o3)-

in Fig.[3(a), notice that inclusion df into V; implies that all orient setX with respect tol; without losing any relevant

edges from IistN,i’“"3 are placed inta=} (). Therefore, we nodes;. Similarly Line 13 uses an observation from Fig.

must select the boundaries such that B(b) that PCF-B canps-orient Y with respect tol; without
arj1—1 omitting any essential nodés
> 4 =M, (9)  In Lines 18-19, wherep; = 5 indicates that setX and
k=a; 7 may overlap, the algorithm drops redundant edges fiom

_For PCE- The same operation applies Y0in Lines 20-21. Finally, the
companion file receives triplg, X, Y”) if both hit list X and
local list Y are non-empty, and there exist at least two nodes
a1l L j € X andk € Y such thatj # k.

> dp = )
: . . .
Note that whenp; = ¢, it is possible forX to overlap

o J=a _ with Y. An important aspect of these cases is tHats always
Balancing in PCF-A and B is equally fast, except the formex. oriented againsk . If additionally Y # , either X C Y

which can be accomplished in one pass c@é?“"f*
B in Fig.[3(b), the roles ofj, k are reversed, which leads to

requires existence of an inverted version(gf’. or Y’ C X holds. Not only that, but the smaller list is always
either at the bottom or top of the larger one. In such cases,
D. Companion Files only their unionX UY"” is written to disk, with an additional

The fastest previous implementations [ﬂﬂ[lﬁﬂ[lﬂ:l[ﬂ‘jielq ind.icating. the offset that separates the_m. Algqriﬂﬁkn 4
use a framework that would scan the entire @ig' to obtain omits this de_ta_|l to prevent clutter, but actual impleménotes
hit lists X and G§* for local lists Y. Whengp; = s, these should take it into account.
files coincide, which cuts the overhead by half compared toThe main search function is shown in AlgoritHth 5. One
other vectorsp. Nevertheless, the amount of I/O produced bgoteworthy aspect is Line 8, which handl&sbeing in RAM
these schemes is still quite substantial, inlep = m?/M. for PCF-A, and Line 10, which does the same for PCF-B. In
Instead, our approach is to prune lisk§,Y to be opti- the latter case, only nodegse V; should be included in the
mally suited for each partition and write them into special hit list, which explains the need for additional pruningn&a
companionfiles G§(1). Each of them, when paired with theX being in RAM implies thatY” is too, Line 11 usesV;(l)
corresponding remote-edge gra@¥j(l), allows identification as the local list. Processing of individual nodes is given by
of all triangles with eitherk (PCF-A) orj (PCF-B) inV]. Algorithm [6, which is identical to the corresponding seatio

Consider Algorithni 4, which is our one-pass solution to cref GSEI, except it findsZ via the hash table rather than from
ating both companion and remote-edge files. If tuglesN;)}  the full graphG}®.



TABLE Il

Algorithm 5: Disk-based GSEI SUMMARY OF PCF ALGORITHMS USING REMOTE GRAPH G’
1 Function FindTriangles ()

2 for i =1topdo PCF [€A( Condition X Y’

3 load G5 (1) = {(i, N;(1))} in RAM Sy — 29)(_1 s zcV, 2oy ]

4 build hash table H to map each ¢ to its neighbor list IV, (1) 2A (y’ 2=z zeV Yz 0

5 if o1 = 3 then < possible for parts of X to be in RAM 6A ’Z Sy yEW Tz ziy
6 foreach (i, N;(1)) in RAM do 1B = yEV, z oy zow
7 if method = PCF-A then 2B PN, zeV, Yz y—a
8 | X = N;(I) <unrestricted hit list 6B z oy zeW, Tz Ty
9 else
10 | X = N;(I) NV <restrict hit list to V]
11 ProcessOneNode (i, 4, X, N;(1)) TABLE IlI
12 while not EOF(G(1)) do COMPOSITION OFCOMPANION LISTS INPCF
13 read one record (i, X,Y’) from companion G (1)
1 if ¥ = 0 then PCF X Y Y’
15 | Y = Hfind() < local list must be in RAM 1A N; 0 [agy1, 7] NNV 0
16 ProcessOneNode (&, i, X,Y) 1B (N nV) Lz, NN[Lag) Y
17 empty H 2A N, NV, ]

2B N, NV N Y 1igy,
6A N, Nag,n] N, NV Y
Algorithm 6: Modified GSEI intersection 6B N NV N, N[l,a141) Y

1 Function ProcessOneNode (3,7, X,Y)

2 foreach j € X do
3 Z = H find(j) <remote listis always in RAM .
4 Y’ = (j,Y)¥3 asetY gs-oriented by j B. Modeling I/0O
I — (4 -0ri ; oy . . . .
: Z =@ (§',‘°7etZ,Z) ipa-oriented by ¢ Additional insight can be gleaned from bounding the size
7 foreach k € K do report triangle Dsort(ijk) of companion files. Assume;; is the length ofi’s hit list X’

in G§(1) andv;; is that of Y\ X’. Then, the total amount of
companion I/O (in edges) il = H + Hy., where

IV. ANALYSIS " & " &

: : : : : . H = E E uy, Hy = E E Vil (11)
This section examines the introduced methods in compari- =111 =1 =1

son to each other. Our objective is to select a technique and :

) . : - and that for remote-edge graphs is

its permutation so as to simultaneously maximize perfocaan

across all four criteria, if possible. o
H™ =" |Gy(1)| = m. (12)
) i=1
A. Overview Since H" is constant for allp, comparison across the
From this point on, we parameterize PCF with a specifi@arious approaches in Tablg Il needs to involve ofly.
¢ from Table[] by adding the corresponding row indexClosed-form derivation of accurate models forl(11) cudgent
As before, we consider only rows,2,6. When the A/B appears intractable. Even ballparking the scaling rateuiteq
designation is non-essential, we omit it. For example, PCElusive for certain extremely heavy-tailed degree distiiins
2 refers top = (— + +) under both A/B, while PCF-2A [44]. Instead, we offer bounds achievable in two worst-case
narrows it down to the A partitioning scheme. scenarios and leave more precise modeling for future work.
This creates the six /0O mechanisms in Tdhle Il, where  AssumeH¢(k) refers to the companion overhead of PEF-
j signifies the out-list neighbor relationship, i.g.,€ N;", and consider the next result.
andi < j the opposite, i.e.j € N; . Note that PCF-1A  Theorem 2:The PCF 1/0O complexity (in edges) is upper-
and 2A place two edges in RAM and load the third one froounded by
disk. This explains why their local list” is always omitted "
from companion files. The remaining four techniques do the He(1) < Zmin(
opposite — one edge is containeddfj(!) and two inG§(1). In =1
three of these cases, edge direction is kept the same between n
X andY’, which ensures that eithéf C Y’ or Y’ C X, with H(2) <> min(d],p)d;, (14)
only one of them actually written to disk. Method PCF-2B is i=1
the lone exception with itsX N Y’ = (). . L
Table [l summarizes the pruning rules and specifies the H(6) < Zmln(
contents of each companion list. Notice that PCF-1B uses =1
stricter conditions for achieving’, Y # 0 than PCF-1A and whered; is the out-degree of andd; is the in-degree.
its X UY’ is the same or smaller, which indicates that it  Proof: We only consider PCF-A since PCF-B uses similar
out-performs its counterpart. Assumirdlg,, further scrutiny arguments and produces the same bounds. It is not difficult to
of companion lists in Tablell reveals that PCF-1A producesee that PCF-1A write¢/ = H edges to companion files
less 1/0O than any of the remaining four methods, with PCEince its pruned hit list¥” are always empty. First, notice that
6A/6B being essentially identical to each other. a list cannot be split into more thanchunks. Due to removal

df —1
2

p-1)d, (13)

a7 +1

p)d; (15)



of overlap X N Z, we can do even better — the last partition 5'
V), produces a hit lisfX' only for neighborsi > a,11 = n+1. 4
Since no label can exceed there are actually at mopt— 1 ’
partitions whereu;; # 0. Therefore,>"7_, u; < (p — 1)dj.

Our second observation is that an out-list cannot be split
into more thand; files. Then, the worst case arises when
eachV] consists of a single node, where partitibcontains
the largest;” — I out-neighbors of. Thus,

Fig. 4. Better-than relationships across the 1/0 of variB@~ methods.

TABLE IV
TWITTER /O (IN BiLLION EDGES) UNDER 16 MB oF RAM

p d:r d;r “+/ 3+
di(df —1)
X . + _ [
l§_1 (%) S ;_1 U1 S l§_l(di l) - 2 ) (16)

which combined with the first case yields113).

For PCF-2A, the first case is very similar, except it uses _Permutation 1A 1B _2A 2B 6A 6B
the in-degreed; and fails to remove the overla@ N Z. ggR gi'? gg'g g}'g gfg 1;3'(13 1323
The second case writes the full in-neighbor list exaetly 04 125.7 1184 54.8 61.7 | 255  44.2

times, which yields the result ib_(IL4). Finally, PCF-6A oaters
similar to 1A, except it uses the in-degree and fails to prune
the lists as efficiently. Due to these small differencedyatsnd jn each column (highlighted in gray) agree with earlier anal
(@5) is not perfectly symmetrical tg([L3). B ysis. Additionally, notice that reversal ¢ swaps PCF-A/B,
Using [44], we obtain that the /O bound of PCF-1 is miniswitches PCF-1 to PCF-6, and maps PCF-2 back to itself.
mized by the descending-degree permutafipnthat of PCF- These effects were expected based[on ([I3)-(15). Even though
2 by round-robirfrr, and that of PCF-6 by ascending-degrepCF-1 and PCF-6 are close under their optimal permutations,
0.4. Furthermore, under their respective optimal permutationthe former comes out ahead for the reasons discussed above.
(I4) is strictly worse thar{ (13). The bound of PCF-6 unler  \we now examine how the methods scalelds— 0. We
rivals that of PCF-1 undéip, aIthough it is still S|Ight|y hlgher dismiss PCF-6 due to its simi|arity to PCF-1. We alsoix
due to a less-efficient pruning of overlap betwgeén ') and  since it achieves the best CPU cost among the methods in Fig.
Z. The worst permutations corresponding[tol (1I3}(15)¢are (. We vary RAM size froml GB down tol MB and plot the
fcrr andfp, respectively([44]. result in Fig.[5, where PCF-A cannot go lower thaih MB
For the asymptotics, leb,, ~ F,(z) be the random degreeduye to inability to fit the largest in-degree into RAM. Observ
of a node in a graph of size. As n — oo, sUpposé,,(z) — that not only is PCF-1 more efficient than PCF-2, but the
F(x) and letD ~ F(z). Then, unde¥p and E[D*/?] < oo, gap between the two grows a¢ decreases. A3/ — 0 and

the scaling rate of(13) iso worse than lineaf44] p — oo, both methods converge towards their upper bounds,
. m?2 which are150B in (I3) and360B in [I4) [44], the figure shows
H(1) < mm(ﬁ, O(m))- (17) that PCF-1 is getting there at a slower pace than PCF-2.

We next analyze the scaling rate of our best method PCF-
1B against the two previous models of 1/0O. Recall that the
m?/M technique was proposed by MGT_[17], while the
O(m'®/v/M) bound is due to Paght al. [30]. Since there
é? no actual implementation for the latter, it is difficult to
assess the constants insid¢.). We thus take some liberty in
. assuming how this method would work in practice. It randomly
linear unlessM grows at least as fast as. . . .

I_Lolors the nodes using= /m/M unigque values and splits

Based on Tablé_Ill, Theored 2, and symmetry of PCF; : . L
g K ) he edges inte? files based on the color of source/destination
1A/6B and 1B/6A, Figl¥ places the 1/0 of the various methoc}nsodes' It then combines three files of coldrs, jk, ki) and

in relationship to each other under different permutations . . .
) . : ns MGT over the result. Since the size of each combined

When we do not differentiate between the PCF variants A[ub raph i$m /2, the 1/0 cost of the method Bm'-> /AT

of a given method, it is usually because they have similar iQograp ' '

From the picture, it emerges that PCF-1B with is globally Whlph accounts for al_b comk_nnatlons of ripletsi, jk, kl_)' .
. : While [30] deals with undirected graphs, whose size is
the most efficient technique.

>, d; = 2m edges, we assume the method can be applied
_ to G, . Thus, both MGT and Pagh use = 1.2B in their
C. 1/C Comparison respective models.

For an illustration of the ideas presented earlier in this The result for Twitter and\/ — 0 is shown in Fig[B(a).
section, we employ the commonly considered Twitter grapkfter the initial jump, PCF-1B becomes parallel to Pagh's
[23] with 41M nodes andn = 1.2B edges. The file occupiescurve 1/v/M. Both of them scale significantly better than
9.3 GB and its adjacency lists contadan = 2.4B node IDs. MGT'’s inverse linear function. In Fid]6(b) we use random
We start with Tablé 1V, which shows the size of companiographs with a Pareto degree distribution=€ 1.5, E[D] = 30)
files H¢. Observe that the predicted best-case permutatidnsexamine the scaling rate of 1/0 as— oc. In this range,

For example, Pareto distributiod&(z) =1 — (1+2/8)™“
satisfy this requirement iftv > 4/3. For PCF-2 an®rg,
the rate [(Il7) holds ifiv > 1.5 [44]. Note that [(Il7) is strictly
better thanm? /M from prior implementations [2][T13][T17],
[22]. When M is a constant, it is also better than theoretic
results of [18], [30] whoseD(m!®//M) bound cannot be



TABLE V

§a CPU-1/O COMPLEXITY CLASSES INTWITTER UNDER 16 MB OF RAM
L7

% Under CPU-optimal permutation Under 1/O-optimal permutation

o Perm Gl CPU /0 | Perm Gl CPU 1/0

5 0o T1 1508 24B | 0p T1 1508 24B

g Lo 150B 56B L1 360B  24B

£ | ; | ; Te-Le 150B  119B E: 511B 24B

© 05 ; > s © 05 ; G s Ey 511B  24B [ Orr T2 255B  51B

10 RaM size () oo Ram size (VB) 10 Es 511B  56B Lo 63T  51B

3 . OrRr Ly 255B 83B Eo 63T 51B

(2) PCF-A (b) PCF-B To 255B  51B [ @1  ToLs 1237 258

Ocrr Es 63T 45B Es 123T  25B

Fig. 5. Scaling rate of PCF-1 on Twitter undep.

10%

V). Therefore, for small RAM size, PCF-B should have a
noticeably better CPU performance than PCF-A. In fact, its
number of hash-table hits is optimal as it equals that in RAM-

=
(=}
w

N

Companion /O (billion edges)
5

Companion I/O (billion edges)
N
o

1 P only algorithms.
0 10} e In terms of restrictions on RAM, all considered methods
10°L . ~ . S : {  [ePCF-18 PCF-1/2/6 have a plus fass, which means that PCF-A lower-
10 RAM size (iB) 0 berotnodesn(mitloy -~ boundsM by the largesin-degree while PCF-B by the largest
(a) Twitter (b) random graphsM = 1 MB) out-degreelt is well-known thatd, keeps the latter no larger
. _ o than v/2m; however, its maximum in-degree equalsx; d;,
Fig- 6. Comparison against prior methods. which can be significantly higher, i.e., up to— 1. Therefore,

PCF-B underfp is definitively less restrictive than PCF-A.

PCF-1B is roughly linear, while the other two methods grO\)o/hen the pzrmu(’;ag(():r::lirﬁversed, tri;etttaoutr;]ds 0;(;‘:/0'3[“ g_egr”e
significantly faster. As: increases, the ratio of MGT to pCF-aré swappedan -/\ becomes betler than -b. Finatly,

1B jumps from51 to 219, while that for Pagh from 5.5 to Orr has both maximum in/out degree equahiax; d;, which
29.3. To put this in perspective; — SOM nodes require@58 makes this permutation equally bad in both PCF-A/B.
edges of 1/0 for PCF-1B734B for Pagh, and.5T for MGT.
F. Summary

D. CPU-I/O Tradeoffs From the analysis above, two methodg Bnd Eg emerge

As it turns out, Fig[R splits intal6 different CPU-1/O as clear winners within their respective classes (i.e.hhas

tables and scanning intersection). Among tte methods,

they achieve the smallest companion 1/O, perform the mihima
|number of hit-list lookups, impose the lowest RAM require-
ments, do not need to inve®}* during creation of V;}, and

complexity classes, i.e., two (A/B) for each of tBeunique
Gl methods, with F-Lgs being a single entity. In the past, it
was believed that GVI and GLEI were functionally identica
However, this is not the case when 1/O is taken into account.” " ; e ,
For example, T shares the I/O cost with 4L but at lower obtain (XY, Z) from a s!ngle file in Algorithni}. .
CPU complexity. Similarly, it shares the CPU cost with-L We next consider wk_nch of them has a smaller runtime.
Lg, while imposing less I/O. In the same vein, it was unknow-r';here are two aspects involved — the relative CPU cost

until now whether E and & were interchangeable. Results __cau(E1,0p)

above confirm that they are not. Wn = cn(T1,0p) (18)

These observations are emphasized using Table V, where . B :
each 1/O cell reports the best number achieved by either P 5 _'it:ahnierecl)?trzs]dsopmeeﬂa_ gs(Elg/r(Tl)' W2|Sle [44] prroa\:%s
A or B. Observe that the best GVI is; T which exhibits wXI isonly2—3in realggrgphcho&rlr):’%\tm:nI(;/Ostugbie_d> i(;ot,his ;rea
optimal CPU and I/O complexity undél,. The decision is Given thats is at least20 on modern CPUs, it is conclusive

also easy for GSEI, wherg B the top contender. On the C)therhat scanning edge iterators will remain the best optiorl unt
hand, GLEI must choose which of the two objectives is moge g edg P

important — L has the best I/O andslLthe best CPU cost, graphs are discovered with significantly largey.

both underdp. Other GLEI combinations are much worse.
V. IMPLEMENTATION

E. Lookups and Minimum RAM We now build a fast implementation off that takes
advantage of SIMD for scanning the lists and PCF-B for I/O.

Recalling that PCF-B pruneX such thatX C V; holds, Wi . P . .
. ; . e call this method PaCiFier and make it availablelin [11].
while PCF-A does not, the next result follows immediately. I o taval L [11]

Theorem 3:PCF-A issued{ hit-list lookups and requires _
M > max; d.~¥*. PCF-B performs exactlyn lookups and A- Intersection
requiresM > max; df®. Since B spends almost all of its CPU time on intersection,
In graphs with heavy-tailed degree add < m, it is it is crucial to address this bottleneck first. With suppant f
common that the hit list sizéZ§ > m (e.g., see Table SIMD in modern CPUs, we can exploit data-level parallelism



[1]2]5]6]9[11][12]15] vector A degl] | 32 | 15 | 9 | 5 | 1 |
0[0[0[0[0]0]0
0/0/0]0]0[0]0]O hisf|1|1|2|4|6|
0/{0/0J/0/0]0|0|0| parallel comparison prefix .
vector B 00 0/0[0]0]0 matrix sum ¢
0[0]0[0[0]0]0]0 newle[]|1|2|3|5|9|
0/0[0[0|0[0[0]0
0/0[0[0]0]0 W
0/0/0]0]0J0]0]0O Fig. 8. Descending-degree relabel with a histogram.
v OR
[l O N 0[O0 [O MO result
the degree of each source nade the histogram and create a
Fig. 7. Parallel intersection with STTNI. mapping from old labels to the corresponding new IDs. This
TABLE VI is shown in Fig[B. Frequently accessed parts of the histogra
SINGLE-CORESPEED(INTEL 17-3930K @ 4.4 GH) typically fit in the L2 cache, which makes lookups against
them extremely fast.
I Speed (M/sec) If the mapping fits in RAM, PaCiFier performs a scan
ash table 19 ; ; ; ;
Naive scalar intersection 264 over thg ad_Jacency lists and rewrites aII_ edges in one-pass.
Branchless intersection 416 Otherwise, it changes the source nodes, inverts the graph, a
SIMD 32-bit intersection 1,119 updates the source nodes again.
SIMD 16-bit intersection 1,801

C. Parallelization

and achieve a significant speedup compared to traditionalScaling PaCiFier to multiple cores is rather straightfaxiva
CPU-based methods. We adopt the technique ffain [35], whigh Algorithm [, the processing of each recofd X,Y) €
utilizes STTNI intrinsics from SSE 4.2. They work on twoG¢ (1) is an independent job, which allows multiple threads
128-bit vector registers, treating them as fa@-bit or eight to work on different lists without interfering with each eth
16-bit integers. Fig[l7 shows how STTNI builds an all-to-alfrhe lookup tableH is read-only and can be safely shared by
comparison matrix and outputs a vector of matches using jugt worker threads without any locks. Assumirgavailable
one instruction. While32-bit intersection is fast, better resultscores and hyper-threading, we r@n worker threads and set
can be procured by compressing labels i6ebit numbers. the affinity mask to bind each thread to a dedicated core.
This is performed by grouping node IDs into chunks that shamgis configuration ensurd$0% CPU utilization for the entire
the same upper6 bits. For each chunk, PaCiFier additionallyexecution and almost linear scalability with the number of
keeps its length and a list of the lower two bytes frorgores (see below).

each original label. This works well because all vertices ar

sequentially relabeled and adjacency lists are kept imaltcg
order. Besides almost doubling intersection speed, thibaode
reduces graph size by approximatély’. Experiments use a six-core Intel-3930K @ 4.4 GHz,

For lists that are shorter than some threshold (elg), Asus Rampage IV Extreme motherboard, and quad-channel
both compression and6-bit intersection do not work well. DDR3 RAM @ 2133 MHz. We compare PaCiFier against four
In these cases, we keep the lists3i+bit format and apply methods with available implementations — RGP [8], DGP [8],
the branchless scalar (i.e., non-SIMD) intersection fri®][ MGT [17], and PDTL [13]. For the first three techniques, we
A benchmark of these operations together with the Good#é€ a multi-threaded binary shared by the authors df [17].
Hash Table are shown in Talle]VI. With8B operations/sec, We employ all standard graphs in the field — Live Jour-
PaCiFier’s ratios is a whoppingd4.7. This places even morenal (LJ) [17], US road maps (USRD) [17], Billion Triples
doubt that T will be competitive in the near future, especiallyChallenge (BTC)[[15], WebUKI[17], Twittei [23], and Yahoo
given that RAM bandwidth scales much faster than lateng¢5]. Note that the original Yahoo graph has= 1.4B, which
[33], i.e., s will continue increasing. reduces tdr20M after removing zero-degree nodes. To cover

a wider variety of options, we add two web crawls: IRLbot
) ) ) [25] and ClueWeb[]9]. Out of the former, we extract domain,
B. Relabeling and Orientation host, and IP-level graphs. Assumitgz) is the IP address

For degree-based permutations, prior work sorts pairs (dg-an authoritative nameserver for domatn graph IRL-IP
gree, ID) to establish a total order. This becomes a majoontains edge$(z) — I(y) iff + — y in IRL-domain, which
bottleneck in preprocessing, especially for large graphere may be useful for spam detection and ranking. The original
these tuples do not fit in RAM. In contrast, we use a novéllueWeb dataset published onlif€ [9] does not contain any
approach that decides the new labels without sorting thesioddynamic links and is limited t@.9B edges|[3P]. We remedy
We first accumulate a histogram of degree frequency in ottés problem by running our HTML parser over all pages,
pass over pairgi,d;), which are kept separately from thewhich yields a much larger graph witt02B links. The new
adjacency lists{ V;}. Using a prefix sum of the histogram files can be downloaded frorn [11].
we then establish the starting IDs for nodes of each uniqueTable[VIl summarizes statistics of the graphs, where the old
degree value. Performing another scan of the tuples, we fidatasets require billion-scale intersection codtF:, 6p) and

D. Evaluation Setup and Datasets
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TABLE VI
DATASET PROPERTIES
Graph Nodest) Degree sumqm) Triangles wn  cn(E1,0p) Size E[d;] max; d; max; d:r
0J 4,846,609 85,702,474 285,730,264 3.01 2.1B 364 MB  17.7 20,333 685
USRD 23,947,347 57,708,624 438,804  2.37 25M 403 MB 2.4 9 4
BTC 164,660,997 772,822,094 28,498,939  1.59 3.5B 4.1 GB 4.7 1,637,619 646
WebUK 62,338,347 1,877,431,056 179,076,331,071  1.99 364B 7.5GB  30.1 48,822 5,692
Twitter 41,652,230 2,405,026,390 34,824,916,864  3.38 511B°  9.3GB  57.7 2,997,487 4,102
Yahoo 720,242,173 12,869,122,070 85,782,928,684  1.47 433B  53.3GB  17.9 7,637,656 1,540
IRL-domain 86,534,416 3,416,273,404 112,797,037,447  3.63 14T 13.3GB  39.5 2,948,635 4,481
IRL-host 641,982,060 12,872,821,328 437,436,899,269  2.85 26T 52.7GB  20.1 5,475,377 4,516
IRL-IP 1,588,925 1,636,848,800  1,032,158,059,864  3.17 42T  6.1GB 1,030 669,776 8,915
ClueWeb 8,179,508,503  102,394,528,124 879,280,163,294  2.00 3.0T 358GB 125 44,383,637 1,747
TABLE VIII TABLE IX
PREPROCESSING IME (SECONDY) RUNTIME (SECONDS) WITH 8 GB OF RAM
Graph MGT PDTL PaCiFier Graph RGP DGP MGT PDTL PaCiFier
LJ 2.2 1.0 1.7 (N} 22.3 22.2 11.2 2.8 0.7
USRD 2.0 1.4 2.0 USRD 12.3 12.3 1.2 6.2 0.3
BTC 18.8 11.6 8.9 BTC 111 110 11.4 12.1 2.1
WebUK 36.9 24.5 14.7 WebUK 1,299 891 599 93.6 17.1
Twitter 88.9 38.4 24.5 Twitter 10,300 9,814 2,238 327 63.4
Yahoo 295 276 149 Yahoo 31,945 13,990 1,080 619 79.2
IRL-domain 149 61.9 31.8 IRL-domain 17,717 16,919 5,946 849 148
IRL-host 736 456 221 IRL-host - - 11,099 1,773 367
IRL-IP 33.9 19.1 8.5 IRL-IP - - 18,617 2,358 237
ClueWeb 8,192 19,502 962 ClueWeb - - * 13,782 1,737
TABLE X
ape RESULTS FROMPRIOR WORK
the new ones trillion-scale. The densest graph IRL-IP has an
average degreg 030, contains ovel T triangles, and requires Type Algorithm Runtime (sec) Cores or
4.2T intersection operations. ClueWeb comes in at a h&ig/ Twitter  Yahoo  servers
GB, but neither its number of triangles nor CPU cost can top ~ *AM-only 51505 S 4118
those of IRL-IP. Also note that the longest out-list in thbléa External PATRICI[Z] £59 - 300
occupies just35 KB of RAM, far smaller than the longest OPT [22] 469 819 6
; ; ; MapReduce [[10] 36,300 - 47
undirected neighbor set (i.el77 MB). GP (3] 58,080 - 1,636
TTP [31] 12,780 - a7
CTTP [32] 5,520 61,920 40

E. Preprocessing Time

RGP/DGP do not require preprocessing, while the other
three methods manipulates the input graphnto a suitable an optimized version of Ewith MGT's partitioning scheme,
format prior to actual listing of triangles. It is common tmeé PaCiFier achieves &a— 10x faster runtime.
the two phases separately, especially since the former €an bThe number of found triangles is consistent across the meth-
performed once and the latter repeated many times on the sands, except RGP/DGP fail to finish withir2 hours on several
preprocessed data. Talile YIII shows the result using a RAtPaphs, which we indicate with a dash. Additionally, MGT
system capable of reads atGB/s. Even though PaCiFier isquits with an unrealistically small number of trianglese .
the only one performing both relabeling and orientatios, itt70M) after spending24K seconds on ClueWeb, which we
usage of the histogram to avoid sorting make2 # 8 times show with an asterisk. Its traces point toward early termma
faster than MGT and up t@0 times faster than PDTL. before processing all of the partitions; however, unabdits
of the source code prevents further analysis.

To put these results in perspective, Tdble X cites the rumtim
from prior work on Twitter and Yahoo. We split the algorithms

We run the next set of tests using &GB RAM constraint, into several categories — RAM-only, external-memory, and
which ensures that 1/O is not a bottleneck for our RAID. As MapReduce. We report the number of utilized cores for the
result, Tablé TX presents an evaluation of pure CPU effigienformer two groups and cluster size for the last one. The
of each algorithm. PaCiFier's performance is determined Hliyst two methods in the tablé [36], [37] produce comparable
the length of neighbor lists, i.e., efficiency of SIMD scamni numbers to those of PaCiFier, but usiig- 6 times more
Compared to MGT, which implements; Tits speedup varies late-model Xeon cores. Due to their RAM-only operation, we
from a factor of13.6 on Yahoo to78.6 on IRL-IP. In the do not consider them competitors for PaCiFier. The next two
latter graph, PaCiFier findsT triangles in237 seconds, which techniques[[2],[[22] are extensions of RGP/DGP and MGT
translates intd 7.7B neighbor checks/sec and3B discovered to multiple machines. They are generally faster than their
triangles/sec using all six cores. Compared to PDTL, whsch iiespective predecessors, but still far slower than PaCiFre

F. Triangle-Listing Time
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6 : : : : 6 : : : : TABLE XII
: : : : : : : : 1/0 COMPARISON
L] R e R i L R P ol
e A ) SRS SO U Nt S Graph RAM (MB) GP TTP  MGT/PDTL  PaCiFier
2 | | i ‘ 2 : : ‘ 8192 2,099 1,066 88.8 40.4
e 0 RN S D R 4,096 3271 1,599 177.6 47.6
3 3 3 3 3 3 3 ‘ Yahoo 2,048 5,247 2,132 355.1 55.5
2b------ oo A oo 2b----- o~ A R s (in GB) 1,024 7,632 3,198 710.2 64.8
) 3 3 3 3 ) 3 3 3 3 512 11,219 4,531 1,420 74.6
7 2 3 4 5 6 - 2 3 4 5 6 256 16,408 6,663 2,841 84.4
cores cores 8,192 47.4 19.2 3.91 0.69
(a) Twitter (b) IRL-domain 4,096 68.4 27.9 7.82 0.87
ClueWeb 2,048 99.8  40.2 15.6 1.10
Fig. 9. Speedup vs. number of cores (8 GB of RAM). (in TB) 1,024 141.7 55.9 31.3 1.36
512 204.6  80.4 62.6 1.64
TABLE XI 256 291.1 113.6 125 1.93
RUNTIME (SECONDS)
Graph RAM (MB) MGT PDTL PaCiFier .
8102 2,238 393 633 I. Effect of RAM: Bottlenecked by 1/O
‘21’822 g’gég gg; gi"g For comparison of disk activity, we use the exact model
Twitter 1,024 2,285 347 61.0 m[m/M for MGT/PDTL and compute the size of all com-
512 2,354 464 61.4 panion files in PaCiFier by running Algorithid 4. Although
8?32 g’gi; 1’223 61745 DGP/RGP share the sant®(m?2/M) asymptotic cost with
4:096 5:976 851 144 MGT, these methods require two_ orders of _magnitude more
. i 2,048 6,020 853 143 I/O due to slow convergence, which we omit from analysis.
IRL-domain 1,024 6,090 898 143 : :
’ ’ Instead, we contrast against MapReduce methods. The first
512 6,252 995 145 : )
256 6540 1,484 149 one is GPI[3B], which uses at legst= [31/m/M] reducers
and shuffles
. . . 30(p—1)(p—2)m 9
final four methods [10]/[38][131][T32] in the table are eaty (19)
disappointing —87 to 572 times slower than PaCiFier while P
consuming substantially more resources. bytes of datal[31]. A later method called TTP[31] redupes
by a factor of\/3 and improves the shuffle 20(p — 1)m.
G. Parallelization Efficiency Table[XTl shows the 1/0 in bytes on the two largest graphs

We now examine how PaCiFier scales with the number gpder consideration. PaCiFier starts off beating GP/TTR by

cores, which indicates how well the algorithm benefits frorr%1Ct0r 0f32—78 and MGT/PDTL by a factor 08.7—9. This

additional CPU resources. As discussed earlier in seCfi@h Vadva}nyage keeps accumulating &6 decreases. Eventually,
o . " PaCiFier develops &8 — 195x lead over the former and
PaCiFier's parallelization framework partitions the cargp

. . . . , Sl 34 — 64x over the latter as\/ reache256 MB. In the last
o Pl ) o e comanon ) 0 A% senari, e O phas of MGTIPOTL would requse
' ' urs to finish ClueWeb using our GB/s RAID. With a

As shown in Fig[B, PaCiFier's runtime indeed scales almos ) T )
linearly. The reason for a slightly suboptimal outcome iatth magnetic hard drive (i.e100 MB/s read speed), this would

. o : . . o take over two weeks. On the other hand, PaCiFier lowers these
certain auxiliary operations (e.g., indexing@f(!) in Line 4 numbers to32 minutes ands.3 hours. respectivel
of Algorithm[5) are executed sequentially. ‘ » Fesp Y-

H. Effect of RAM: Bottlenecked by CPU VI. CONCLUSION

Next, we analyze the performance of each algorithm underThe paper created a taxonomylgftriangle-listing methods
varying RAM size. We showed earlier that PaCiFier's CPUsing a unifying framework called Generalized Iterator$) (G
cost was constant for allZ. While the 1/0 complexity does developed a new set of algorithms called Pruned Companion
increase a3/ — 0, double buffering and prefetching can keefriles (PCF) for external-memory operation of Gl, and showed
this overhead negligible until the disk becomes a bottlenedhat it possessed better complexity than current impleaient
Table[X] supports this discussion — using our RAID systentions in the field. It then determined which of tihi& methods
PaCiFier completes in virtually the same amount of time favas the most efficient when both CPU and 1/O objectives
all M in the range betweed56 MB and 8 GB. The initial were taken into account and created a working solution that
drop in runtime can be explained by smaller lookup tablexhibited5 — 10x smaller runtime and orders of magnitude
and better cache locality; however, a$ decreases further, less /0O compared to the best previous technique.

SIMD becomes less efficient and this effect is reversed. &Vhil
MGT is not bottlenecked by I/O either, PDTL increases its
runtime by49—116% at M = 256 MB. More interesting cases

where the disk can no Ionger keep up with the Compmaﬂoﬂ] N. Alon, R. Yuster, and U. Zwick, “Finding and Counting\@n Length
are studied next. Cycles,” Algorithmica vol. 17, no. 3, pp. 209—-223, Mar. 1997.
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