
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006 2249

Towards a Generalized Stochastic Model of
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Abstract—End-to-end packet-pair probing has been used as one
of the primary mechanisms to measure bottleneck capacity, cross-
traffic intensity, and available bandwidth of end-to-end Internet
paths. However, there has been lacking an understanding of what
types of information about the path are sampled by packet-pairs
and how they are encoded in the corresponding output dispersions.
In this paper, we answer these questions by deriving the expres-
sion of individual output spacings (i.e., dispersions) in the context
of multihop paths and general bursty cross-traffic arrivals. Based
on these results, we examine stochastic properties of the sampled
signals and derive the statistical mean of the output interpacket
spacings as a recursive function of the input spacing. We show that
the result is different from what has been obtained in prior work
using fluid cross-traffic models and that this discrepancy has a sig-
nificant adverse impact on the accuracy of packet-pair bandwidth
measurement techniques.

Index Terms—Active measurement, bandwidth estimation,
packet-pair sampling.

I. INTRODUCTION

SENDING packet-pairs to measure network path characteris-
tics has been a common practice in the Internet since the late

1980s. Traditionally, packet-pair dispersions are used to infer
the minimum capacity of an end-to-end network path [2]–[4],
[6], [9], [11], [20], [21]. More recently, people also use packet-
pairs to measure the cross-traffic [7], [18], [22], the raw capacity,
and the residual capacity [10], [18], [23] of the available band-
width bottleneck (i.e., the tight link).

To understand and justify packet-pair measurements, espe-
cially the recently proposed techniques that measure the tight
link bandwidth characteristics, there has been a fair amount
of research effort to characterize the information contained in
the output dispersions of probing packet-pairs. However, pre-
vious analysis either relied on constant-rate fluid cross-traffic
models [4], [17], or provided answers only partially suitable
for generic bursty cross-traffic [2], [8], [19], [22]. In this paper,
we provide a more accurate, yet concise characterization of
packet-pair probing in the contexts of a multihop path and
nonfluid cross-traffic. We identify three stochastic processes
related to the cross-traffic arrival at each network hop and show
that packet-pair probing essentially inspects the sample-paths
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of these three processes and constructs the output dispersion
signal based on their random sampling. We derive several
closed-form expressions to describe this construction proce-
dure and call our characterization of packet-pair probing the
“sampling and constructing” model.

Under the assumption of cross-traffic stationarity, we ex-
amine the statistical properties of the signals encoded in
interpacket spacings and derive the statistical mean of the
output dispersions as a recursive function of the input disper-
sion. We show that the result substantially deviates from what
was previously obtained using constant-rate fluid cross-traffic
and that this deviation has a significant adverse impact on
packet-pair bandwidth estimation techniques.

For the convenience of the reader, we list the terminology
used in this paper in Table I. The rest of this paper is organized as
follows. We summarize related work of packet-pair analysis in
Section II. A detailed discussion about our “sampling-and-con-
structing” model to characterize packet-pair probing is given
in Section III. Based on this model, we examine the statistical
characteristics of the sampled signals in packet-pair dispersions
in Section IV. We derive the statistical mean of output disper-
sions in Section V and show that its deviation from the fluid
result has an adverse impact on packet-pair bandwidth estima-
tion in Section VI. Finally, we present our concluding remarks
in Section VII.

An earlier version of this work appeared in [15], where the
discussion is restricted to a single-hop path.

II. RELATED WORK

The earliest packet-pair analysis dated back to 1988, when
Jacobson [9] examined the packet-pair spacing in the absence
of cross-traffic and obtained the following result:

(1)

where and are the input and output spacings of the packet-
pair, respectively, is the probing packet size, and is the bot-
tleneck capacity of the path. Note that when the input spacing
is small, the output spacing contains information about .

In real networks, cross-traffic is often non-negligible. To take
into account the effect of cross-traffic, Dovrolis et al. [4] and
Melander et al. [17] studied the relationship between the packet-
pair input and output rate using a constant-rate fluid cross-traffic
model. In a single-hop path, their results can be summarized as
follows:

(2)
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TABLE I
TERMINOLOGY

where and are the input and output rates
of packet-pairs, respectively, is the cross-traffic intensity (i.e.,
arrival rate), and is again the hop capacity. Translating (2)
into its spacing version, we get

(3)

This shows that when the input rate is higher than hop available
bandwidth, there will be a deterministic multiplicative signal of
link utilization and a deterministic additive signal that
are sampled and encoded in the output spacing .

This result can be recursively extended to a multihop path.1

Furthermore, it is easy to show using mathematical induction
that the single-hop models (associated with the tight link) (2)
and (3) still hold in a multihop setting when the input rate
falls into a certain range

(4)

where indexes the tight link, and is the input rate range
where a packet-pair passing through the multihop path carries
exactly the same information as it does when passing though
only the tight link . The exact value of depends on several
factors of the path, and it is always no less than the second min-
imum hop available bandwidth along the path. This result leads
to the recent measurement proposal TOPP [16], [18], which is a
technique to infer available bandwidth and tight-link capacity.

Realistic cross-traffic is always bursty and its intensity is
never a time-invariant constant. Therefore, a natural question
becomes how to generalize results (1)–(4) to accommodate
bursty cross-traffic. We summarize the main results of previous
studies next.

To interpret his Internet measurement observations of the
probing packet round-trip time (RTT) phase plot, Bolot (1993)
[2] adopted a single-hop path with bursty cross-traffic in his
analysis. Bolot showed that the packet-pair dispersion reflects
the amount of traffic workload arrived at the router between the
pair when the router does not idle between their arrivals.

Hu et al. (2003) [8] did a similar analysis and proposed a
spacing formula under the condition when the packet-pair share
the same queueing period (the same condition used in Bolot’s
analysis)

(5)

1However, note that a recursive extension of (3) implicitly implies one-hop
persistent cross-traffic routing, meaning that every cross-traffic flow only travels
one hop along the path and exits the path at the next hop.

Fig. 1. A multihop model of packet pair probing.

where is a random variable reflecting the cross-traffic arrival
rate in the duration between the arrivals of the probing pairs.

Both Bolot and Hu pointed out that when the input spacing
is large enough, the output spacing , although random, be-

comes equal to on average. In other words, the input spacing is
only contaminated by some additive zero-mean signal. Kang et
al. (2004) [10] further showed that the mean of the random avail-
able in (5) is equal to the long-term arrival rate of cross-traffic
regardless of the stochastic nature of its arrival. We point that
(5) is an important result, since almost all recently proposed
packet-pair measurement techniques are based on this model.

To sum up, previous work provided an understanding of the
packet-pair sampling nature when cross-traffic is constant-rate
fluid. For bursty cross-traffic, existing results are both condi-
tional (packet-pair sharing the same queueing period) and re-
stricted into single-hop cases, and show a consistence with the
fluid model where certain random terms are substituted by their
means. Neither the whole picture of packet-pair sampling be-
havior in a practical multihop setting nor the validity of existing
fluid models is clearly understood at the current stage.

III. THE “SAMPLING AND CONSTRUCTING” NATURE OF

PACKET-PAIR PROBING

In this paper, we examine the nature of multihop packet-pair
probing, as illustrated in Fig. 1. A packet-pair with input disper-
sion signal (or ) passes through an -hop path. The output
dispersion of the pair at link is denoted by , which then
serves as the input signal at link . The pair eventually exits
the path with an output dispersion (or ). Our goal in
this section is to determine the path information carried by the
output signal . To simplify discussions, we only consider
the case in which cross-traffic flows are routed along the path
in a one-hop persistent fashion, meaning that flow that en-
ters the path from link will exit the path from link . This
routing pattern is amenable for recursive multihop analysis, and
has been considered by several previous studies [5], [18]. For
each network hop, we further assume infinite buffer capacity,
first-in–first-out (FIFO) queueing, and a work-conserving dis-
cipline. For the composite of cross-traffic and probing traffic,
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we assume simple traffic arrival, i.e., at most one packet ar-
rives at any time instant. For cross-traffic alone, we identify
three sample-paths which play crucial roles in determining the
nature of packet-pair probing. They are the sample-paths of
cross-traffic intensity process, hop workload-difference process,
and available bandwidth process. We next present a rigorous for-
mulation for these three elements and show the basic relation-
ship among them.

A. Formulation of Cross-Traffic Arrival

Without loss of generality, we define the relevant processes
generated by the arrival of cross-traffic flow at link .

Definition 1: Cross-traffic flow is driven by the packet
counting process and the packet size
process . The cumulative traffic arrival
at link , denoted by , is a random process
counting the total volume of data (in bits) received by the hop
up to time instant

Definition 2: We define as the process
indicating the average cross-traffic arrival rate at link in the
interval

and call it “ -interval cross-traffic intensity process at link .”
The second critical element is hop workload-difference

process.
Definition 3: Hop workload process

indicates the sum at time instant of service times of all packets
in the queue and the remaining service time of the packet in
service at link .

Definition 4: We define as the process
indicating the difference between the workload of link at time

and

and call it “ -interval workload-difference process at link .”
The third important process is the available bandwidth

process.
Definition 5: Hop utilization process at

link is an on–off process associated with

(6)

and -interval hop idle process

(7)

is a process indicating the total amount of idle time of the for-
warding hop in . We further call time interval
a “hop busy period” if and a “hop idle period” if

.

Definition 6: We define as the process
indicating the residual bandwidth at link in the time interval

(8)

and call it “ -interval available bandwidth process” at link .
The following theorem describes the relationship among the

three important processes.
Theorem 1: For all positive t and , the following holds:

(9)

Proof: Note that the total hop idle time of link within the
time interval is

(10)

The amount of data transmitted by the hop within the time in-
terval is

Thus, the hop working time is

(11)

Since is the sum of hop working time and hop idle time.
Adding up (10) and (11), we get

(12)

Rearranging (12), we get the desired result.
A packet-pair arriving at link with dispersion interacts

with the sample-paths of the -interval processes we just for-
mulated. We next examine certain details about this interaction.

B. Probing Intrusion of Packet-Pairs

We use the triple to denote a pair of probing packets
and of the same size that arrive at link at time instant .

The first element in the triple is the arrival time of the packet
to the hop; is the interpacket spacing; and is the probing

packet size. The arrival time of is then . The departure
time of from link is denoted by and the output spacing
between and is . This means that departs from link

at time . In terms of rate, the input and output probing
rates are and .

We use and to denote the workload process and
the hop idle process associated with the superposition of cross-
traffic and the probing packet-pair. Note that traffic composition
only increases hop workload. That is, for all , .
Therefore, we define the following function to help understand
this intrusion behavior of packet probing.
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Fig. 2. Illustration of the probing intrusion behavior of a single packet.

Definition 7: The intrusion range of a probing traffic into
is the set . The intrusion residual

function is .
Let us next examine how the arrival of a single probing packet

changes the hop workload. Note that before the arrival of the
probing packet, . The workload gets an imme-
diate increment of upon the packet arrival, where is the
packet size. In ’s busy periods, the workload difference

remains unchanged. In ’s idle periods, The work-
load difference decreases linearly with slope 1 until it
becomes 0, which marks the end of the intrusion range. Fig. 2
illustrates this behavior, from which we can infer that ,

and are three busy periods in , whereas
, , and are three idle periods in . Time

instant is the arrival time of the probing packet, whereas is
the end point of the intrusion range.2

When is probed by a packet-pair , the first
probing packet experiences a queueing delay of . The
queueing delay of the second probing packet is however not

, but the left-hand limit3 . There is
some extra amount of queueing delay, besides the portion that
comes from the original hop workload , that will
experience. We denote this extra amount of queueing delay by

. That is

(13)

As a direct observation from the intrusion behavior illustrated
in Fig. 2, the term can be computed as follows:

(14)
where .

2Note that the probing packet departs before t .
3Note that the queueing delay of p is not ~W (a + � ), since the arrival of

p itself causes a sudden increment of workload at time a + � . This makes a
difference of s=C between ~W (a + � ) and ~W (a + � �).

We are also interested in computing when the hop is
probed by packet-pair , which can be expressed as

(15)
Notice that between the two terms and ,

there is at most one positive term for any given . When
, the two packets in the pair share the same hop

busy period and . When , the two
packets fall into different hop busy period and .

We are now ready to derive the recursive relation between
the input spacing and the output spacing for an indi-
vidual packet-pair. This relation is a milestone of our packet-
pair analysis.

C. Output Packet-Pair Dispersion

We first present a corollary, which is due to the work-con-
serving assumption.

Corollary 1: For any packet arriving into the hop at time
and departing from the hop at time , the time interval
is a hop busy period.

This corollary immediately leads to the following lemma.
Lemma 1: When link is probed by a packet-pair ,

we have .
Proof: First, due to Corollary 1, we have

(16)

Further, notice that can be expressed in the
following two ways:

(17)

(18)

Combining (17) and (18), we have
.

Our next theorem expresses the output spacing of a packet-
pair at link from two different angles.

Theorem 2: When link is probed by a packet pair ,
the output spacing can be expressed as

(19)

Proof: We examine the hop activity with respect to
within the time interval . Notice that time
units are spent on serving probing packet and that

(20)
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Fig. 3. The “sampling-and-constructing” nature of packet pair probing.

time units are spent on serving the cross-traffic that has arrived
to the hop during the time interval . Thus, the total
hop working time in is given by

(21)

Also, notice that is the total idle time of the hop
during this time interval. Since the sum of the hop working time
in (21) and hop idle time must be equal to , we immediately
have the following:

(22)

Further, due to Lemma 1 and (15), we get

(23)

Substituting (23) back to (22), we proved the first equality in
(19). For the second part of (19), first notice that the total delays
of and at link are given by

Subtracting the delay of from that of , we get

(24)

Substituting (14) into (24), we get the second half of (19).
The most salient feature of Theorem 2 is that the result is

unconditional, in the sense that it neither relies on any assump-
tion on cross-traffic arrival pattern nor imposes any restriction
on the input signal . In addition, this result enforces such a con-
ceptual idea that packet-pair probing can be viewed as a “sam-
pling-and-constructing” procedure, as illustrated in Fig. 3. The
packet-pair is essentially sampling the three sample-

paths , , and at the time point , and
then constructing the output signal using the three samples
based on (19). Although (19) shows two different ways of con-
structing the output signal, they both produce the same result.
We surely can take advantage of Theorem 1 and rewrite (19) in
a form involving only two processes (e.g., and ).
However, the present version is more intuitive and makes later
analysis easier. Our characterization already sheds light on what
the sampled path information is and how it is encoded in the
output dispersion signal. It also allows investigation of the statis-
tical nature of the sampled information from an analytical angle
rather than experimental observations.

IV. THE STATISTICS OF PACKET-PAIR SAMPLED SIGNALS

In this section, we study the statistical properties of the
packet-pair sampled signals at link . We classify the sam-
pled signals into two categories. The first category includes
the directly sampled signals such as , , and

, which are inherent to the queueing system and are
independent of the input packet-pair parameters. The second
category contains the derived signals such as and

, whose properties are related to both the system being
sampled and the input packet-pair parameters. We focus on the
case when is a deterministic constant. This simple case is
important for two reasons. First, in a single-hop path, the input
dispersion is formed by the probing source and consequently
is a deterministic constant. Second, even when is a random
output from link , the analysis of the sampled signals
would rely on conditioning on , which requires understanding
the situation when is a constant.

A. Directly Sampled Signals

To simplify discussions, we make a stationarity assumption
on cross-traffic arrival in flow so that , , and

can be treated as identically distributed processes.4

Assumption 1: The cumulative traffic arrival process
of flow has ergodic stationary increments, i.e., for any positive
, the process is an identically distributed process with

ensemble mean .
This assumption imposes two restrictions on the process

. First, the stationarity assumption implies that
has time-invariant distribution and that its marginal distribution
at any time instant can be described by the same random vari-
able . Second, the ergodicity assumption implies that the
variance of the random variable decays to 0 as increases.

We also assume that the queueing system at link has evolved
for a sufficiently long time and has entered its equilibrium state.
Therefore, the hop workload process also exhibits dis-
tributional stationarity. This property is further carried over to
process and , whose time-invariant marginal
distributions are characterized by their corresponding random
variables and , respectively.

The following lemma summarizes the first-order statistics of
the three sampled signals. They are all immediate consequences
of the cross-traffic stationarity stated in Assumption 1.

4We impose no constraint on their correlation structures, however.
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Fig. 4. The evolving trend of E[~I ] and E[R ] with respect to �, while
keeping s constant.

Lemma 2: For any positive , the ensemble means of the
random variables , , and are given by

(25)

For the second-order statistics of these signals, note that sim-
ilar to , the variance of also decays to 0 (due to the
cross-traffic ergodicity) when the sampling interval becomes
large.5 This further implies that the distribution of con-
verges to the following step function, as :

(26)

B. Derived Signals

We now study the first-order statistics of the two derived sig-
nals and . Recall that both terms are function-
ally related to , as shown in (14) and (15). Due to the
distributional stationarity of , the two derived processes

and also have time-invariant marginal distribu-
tions, described by the random variables and , respec-
tively. Denoting by the distribution function of , the
ensemble means of the two derived signals can be computed as
follows:

(27)

(28)

Unlike the three directly sampled signals, the statistical
means of the derived signals are dependent on . Fig. 4 plots
the evolving trend of the two means with respect to , while
keeping constant. As shown in the figure, shows
a monotonically decreasing trend as increases and at some

5On the other hand, notice thatD is not a moving average by nature. Hence,
the variance ofD would not decay with the increase of �. Instead, it converges
to 2Var[W ], i.e., twice as much as the hop workload variance.

point it becomes 0 or practically negligible. The other term
remains 0 for and then shows a monotonically

increasing trend, asymptotically approaching a linear function
of . The two curves intersect at the point .
These results can be summarized into the following two set of
formulas:

(29)

(30)

All these properties are easily provable based on the statistical
characteristics of . We next prove one of them and leave the
verification of the others to the reader.

Theorem 3: The term is a continuous and monotonic
decreasing function of in the range . It converges to 0
as increases.

Proof: First, note that for any and any , we have

(31)

This difference defines a new random variable, whose ensemble
falls into the range

(32)

which can be rewritten as

(33)

where we have dropped because of the stationarity of the de-
rived process . This result shows that is a mono-
tonic decreasing function of . Further, by taking the limit of
(33) when , we have

(34)

This proves the continuity of with respect to in the
range . Next, we show its convergence to 0 as increases.
First, recalling (27), we have

(35)
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Note that the first item in (35) is zero6

(36)
and the second item in (35) is also zero

(37)

Hence, the limit of when is zero.
Before we conclude this section, we briefly mention the first-

order statistics of the sampled signals when the input packet-pair
dispersion is random. By conditioning on , it is easy to show
that the randomness of does not at all change the mean of all
three directly sampled signals. We still have that ,

, and . For the derived signals,
we have to know the distribution of to compute their ensemble
means. However, it is important to keep in mind that the two
derived signals always have non-negative means, regardless of
whether the input dispersion is random or not.

V. PACKET-PAIR PROBING RESPONSE CURVES

In this section, we derive the statistical mean of packet-pair
output signals (dispersion or rate) as a function of the input sig-
nals. This function, which we call the packet-pair probing re-
sponse curve, serves as a theoretical foundation for bandwidth
measurement tools such as TOPP [18] and Spruce [23]. Pre-
vious derivations assumed constant-rate fluid cross-traffic and
obtained (2) and (3). In this section, we revisit this problem
under the condition of ergodic stationary cross-traffic arrival.
We derive the results for both a single-hop path and a multihop
path with one-hop persistent cross-traffic routing.

A. Single-Hop Response Curves

To derive the single-hop results, we assume that the tight link
is the only link that changes the input packet-pair disper-

sions. This means that the input dispersion at the tight link is
the same as the input dispersion (or ) formed by the probing
source and that the output dispersion is the same as the
output dispersion (or ) at the end of the path, as so ob-
tained by the probing receiver. Then, we have the following
closed-form expression for .

Theorem 4: Let be the distribution function of the
random variable . When link is probed by a packet-pair
with input dispersion and packet size , the statistical mean of
the output dispersion is given by

(38)

6Recall that P is the step function given in (26).

Fig. 5. Illustration of the gap response curve.

Proof: This result directly follows from Theorem 2,
Lemma 2, (27), and (28).

Note that (38) is different from the fluid model (3). In fact, as
schematically showed in Fig. 5, the fluid model is a lower bound
of the real curve. In the input dispersion range , the
real curve positively deviates from this lower bound and reaches
the maximum deviation at the point , where
the input rate is equal to the available bandwidth. This response
deviation is also illustrated by the curve in the shadow area of
Fig. 4 and can be expressed as

(39)
This result tells us about the deciding factors of the response
deviation. A precise computation is, however, difficult due to
the unknown available bandwidth distribution function
in practice.

It helps to identify the exact value of , which represents the
end point of the deviation range. Note that is the minimum
input dispersion that makes with probability one

(40)

This requires that be greater than the input probing rate
almost surely. In other words, the input rate must be smaller
than the distribution lower bound of -interval available band-
width at link . It is often not possible to satisfy such a condition
exactly,7 since the convergence of to the step function in
(26) might only be asymptotic and may remain positive
for all regardless of the observation interval . In
that case, and we can only mark it approximately at
a point where the deviation becomes practically negligible. It is
often more informative to look at the rate version of the response
curve rather than the spacing version, because the rate response
curve has a direct association with cross-traffic arrival rate and

7For instance, when cross-traffic arrival is Poisson.
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Fig. 6. Illustration of the rate response curve.

available bandwidth. Plotting with respect to
and comparing it with the fluid model (2), we get Fig. 6. The
fluid rate model becomes an upper bound of the real response
curve. The input rate range becomes the area where
the real curve negatively deviates from the fluid model.

B. Multihop Probing Response Curve

We next take into account the effects of nontight links and
derive the packet-pair response curve for an -hop path. The
input packet-pair dispersion is a deterministic constant , the
output dispersion (at link ) now becomes random, for all

. The multihop gap response curve of the path is
the functional relation between and , which has the
following recursive expression:

(41)

The exact expressions for and would depend
on the distribution of , as we mentioned in the previous sec-
tion. Suppose that the distribution function of is . Then,
we can compute the two terms by conditioning on

(42)

(43)

To compare the multihop curve (41) with its fluid counter-
part, recall that the multihop response curve in constant-rate
fluid cross-traffic can be recursively expressed in the following,

Fig. 7. Illustration of the transformed versions of the real packet-pair rate re-
sponse curveZ(r), the multihop fluid rate curveF(r), and the single-hop fluid
rate curve S(r).

where we use to represent the input dispersion at link to dif-
ferentiate from used in bursty cross-traffic

(44)
Denoting by the difference , we can obtain the

following recursive expression of , based on (41) and (44),
where :

(45)

To better understand this result, we expand (45) to a nonre-
cursive form in two special cases. In the first case, the input rate
is less than the path available bandwidth . That is, we
let . In such a case, the dispersion is
always no less than and can be expressed as

(46)

In the second case, we consider the input rate larger than the
tight link available bandwidth but smaller than any other hop
available bandwidth. Consequently, the condition

is true only at the tight link when . The deviation
in this situation can be expressed as

(47)

To illustrate the multihop curves, we adopt a transformed
rate version that exhibits piecewise linearity in fluid cross-traffic
models. We define to be the function between the ratio

(which is also the ratio between the input and output
rate) and the input rate in the fluid model. The trans-
formed version of the single-hop fluid rate curve associated with
the tight link is denoted by . For the real response curve,
we use to denote the relation between and the
input rate . Fig. 7 illustrate these three response curves,
Where we see that the real curve appears above in
the entire input rate range. The amount of deviation is .
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Also, note that is a piecewise linear curve with the first two
linear segments overlapping with , and the other linear seg-
ments appearing above .

C. Impact of Probing Packet Size

How does the packet size affect the response curves or the
amount of response deviation from fluid models? To answer
this question, we examine the rate response curve evolving tend
when the probing packet size increases. For any given input
probing rate , we denote by the packet-pair output
dispersion random variable at link , and denote by
the deterministic output dispersion at link when cross-traffic
flows are constant-rate fluid. Then, the following theorem states
a condition under which the response deviation vanishes when

.
Theorem 5: Assuming that for each link , the

distribution function of , denoted by , converges to
the step function in (26) with the following speed:

(48)

then the response deviation decays to 0 as increases

(49)

The asymptotic variance of when increases is upper
bounded by some constant

(50)

Proof: Please refer to Appendix I.
Note that for a single-hop path, condition (48) can be relaxed

to a convergence speed of . Even though these conditions
appear cryptic, they are valid in a broad range of cross-traffic en-
vironments. In particular, when cross-traffic arrivals result in a
regenerative queue (which is very common both in stochastic
modeling and in practice), Theorem 6 shows that the conver-
gence speed of to is in fact exponential, much
faster than required in Theorem 5. Hence, large probing packet
size usually implies less deviation of the real response curve
from its fluid counterpart.

Theorem 6: When hop utilization process is regener-
ative,8 is an asymptotically exponential func-
tion of . That is, there exists a positive constant , such that

(51)

Proof: Please refer to [13].
It is beneficial to have some extra understanding of Theorem

5 using the transformed rate response curves plotted in Fig. 7.
Note that as , the curve approaches in the entire
input rate range, which also means that the single-hop curve
is a tight lower bound of in the input rate range , but not
in the rate range .

In practice, however, due to the limit of path MTU and the
concern of packet fragmentation, probing packet size can
not be made arbitrarily large. The question becomes whether
the commonly used MTU of 1500 bytes is enough to reduce

8Refer to [24, p. 89] for the definition of regenerative processes.

Fig. 8. Transformed versions of the fluid rate curve and the real rate curve
measured in simulation.

the amount of curve deviation to such an extent that its impact
on bandwidth measurement accuracy becomes insignificant?
In Section VI, we will use several experiments to show that
the response deviation phenomenon have a significant adverse
impact on bandwidth estimation even when the probing packet
size is set to be the largest possible.

D. Packet-Train Probing

We have been focusing on the case of packet-pair sampling
in this paper. Our analytical approach can be extended to un-
derstand packet-train probing techniques such as pathload and
IGI/PTR. This extension, even though logically straightforward,
comes at the cost of substantially more complex presentations.
Due to limited space, we next present the main result without
elaboration, and refer interested readers to [14] for more details.

Recall that a packet-train usually consists of packets
(packet-pair is a special case when ) and that the disper-
sion of a packet-train is defined as the average interpacket time
spacing within the train. If we view the first and the last packets
in the train as a packet-pair and denote by the output
dispersion of this pair at link , then, the output dispersion
of the train at link is equal to . Under certain
additional assumptions, we showed in [14] that as packet-train
length increases, the output dispersion converges to its
fluid counterpart in the mean-square sense, for any input
dispersion (at the first link) and any probing packet size

(52)

This result shows that using a packet-train can mitigate
the adverse impact of the response deviation phenomenon on
bandwidth estimation. It explains the reason why packet-train
bandwidth estimation tools (e.g., pathload and PTR) are usually
much more accurate than packet-pair tools.

VI. IMPACT OF RESPONSE CURVE DEVIATION ON

BANDWIDTH MEASUREMENT

In this section, we first quantitatively observe the packet-pair
response deviation in both single-hop and multihop paths. We
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Fig. 9. Multihop response curves. (a) Using packet-pairs of different size. (b) Using packet-trains of different length.

then show how this phenomenon adversely affects the accu-
racy of two representative measurement techniques, TOPP and
Spruce.

A. Single-Hop Experiments

In our first experiment, we use a single-hop path with capacity
mb/s. We use Poisson cross-traffic with average ar-

rival rate mb/s. The probing packet size is chosen to
be 1500 bytes. We compute for 130 input values of
in [0.86 and 12 ms], which corresponds to 130 equally spaced
input rates in the range of [1.0 and 14 mb/s]. We obtain the re-
sponse curves using an NS2 simulation experiment. In the sim-
ulation, the sender transmits 1000 packet-pairs for each input
rate. The interprobing delay is controlled by a random variable
with its mean set to ten times as large as the input packet-pair
dispersion . We use the average of the 1000 output dispersions
to approximate .

Fig. 8 shows the transformed versions of both the rate curve
measured in NS2 simulation and the fluid rate curve. We can
see that the measured curve non-negligibly deviates from the
fluid lower bound within the input rate range roughly from 4 to
10 mb/s. The deviation is very clear even though we are using
the largest probing packet size. Also, recall that the response
curve has provable monotonicity and continuity. Hence, any
roughness as we see in the obtained curve comes from measure-
ment errors.

B. Multihop Experiments

We first use a simple three-hop path in NS2 simulation. The
capacity of all the links are 100 mb/s. The cross-traffic flows
traversing each link are generated using three NLANR [1] traces
with average arrival rates , , and mb/s.
All interpacket delays in each trace are scaled by a common
factor so that the average rate during the trace duration becomes
the desired value. The trace durations after scaling are 1–2 min-
utes, and the trace is replayed once the previous round is fin-
ished. In these settings, link is the tight link of the path with
available bandwidth 40 mb/s.

To obtain the packet-pair response curves while at the same
time examine the impact of probing packet size and confirm
the result in Theorem 5, we use packet-pairs of different sizes

to measure the rate response curves. For each packet size, we
probe the path at 45 input rates, from 10 to 100 mb/s with 2 mb/s
increasing step. For each input rate, we use 500 packet-pairs to
estimate , the mean of the output dispersions.

Fig. 9(a) plots the transformed rate curves for probing packet
size 500, 1500, and 8000 (all in bytes).9 To compare with
the fluid models. We also plot both the multihop fluid curve
(computed recursively using the single-hop model) and the
single-hop fluid curve at the tight link (i.e, ). Note that the
multihop fluid curve is composed of four linear segments with
turning points located at 40, 60, and 80 mb/s. The single-hop
fluid curve is composed of two linear segments with a turning
point at 40 mb/s, which is the path available bandwidth. The
two fluid curves are independent of the probing packet size
and they coincide with each other in the input rate range (0,
60). In the input rate range from 60 to 100 mb/s, The multihop
fluid curve appears above the single-hop fluid curve. The three
real rate curves measured in NS2 simulations all appear above
the multihop fluid curve, which they approach as the probing
packet size increases. The curve measured using a packet
size of 1500 bytes shows a significant deviation from its fluid
counterpart. For bytes, the measured curve almost
coincides with the multihop fluid curve in the input rate range
(60, 100). However, in the input range (30, 60), the amount of
the deviation is still clearly noticeable.

To understand packet-train probing response curves and
verify the results in Section V-D, we probe using packet-trains
a three-hop Emulab network path that has the same settings
and traversing cross-traffic flows. All parameters used in the
testbed experiment (except for the train length) are the same
as those used in the previous ns2 simulation. Fig. 9(b) shows
the measured curves for , 9, and 33. We observe that
as packet-train length increases, the measured response curve
converges from above to the multihop fluid lower bound.
Noticed that in the Emulab path, the IP-level capacity of each
Ethernet path is 96 mb/s. Hence, the turning points on the fluid
curves all have a left shift of 4 mb/s, compared with those in
the ns2 simulation.

9Note that such an experiment can not be replicated in real networking testbed
because a packet size as large as 8000 bytes will cause fragmentation, which is
avoided in NS2 simulations.
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TABLE II
TOPP ESTIMATION RESULTS (IN mb/s)

Next, we discuss the implications of our findings on two
packet-pair bandwidth measurement techniques: TOPP and
Spruce.

C. TOPP

TOPP measures the tight link bandwidth characteristics from
the transformed multihop fluid rate curve, assuming that it is a
valid first-order approximation of the real response curve. TOPP
identifies the second linear segment from the transformed rate
curve and applies linear regression to calculate the capacity
and cross-traffic intensity .

We first consider the single-hop response curves in Fig. 8. We
see that the second segment falls into the deviated range. When
applying linear regression on this segment, we get estimation
results in Table II. The table shows that even if TOPP could
manage to obtain a precise rate curve, it would not achieve an
accurate measurement due to its unawareness of the deviation
phenomenon.

In a single-hop case, note that the real curve agrees with fluid
model when . Therefore, linear regression can be applied
to this curve portion to extract the capacity and cross-traffic
intensity . In a multihop path, the response curve usually de-
viates from its fluid counterpart in the entire range and does not
necessarily exhibit piece-wise linearity, as exemplified by Fig. 9.
Hence, any attempt to search for the second linear segment from
the curve can lead to measurement errors even more significant
than what we showed in Table II.

D. Spruce

Spruce measures the path available bandwidth based on the
single-hop fluid response curve at the input rate . Spruce
assumes that the tight link capacity is known beforehand and
that nontight links have negligible effects on the measurement
accuracy. Using the response curve notations we introduced in
Section V, the Spruce available bandwidth estimator can be
written as

(53)

Our first observation is that Spruce estimator is unbiased if
and only if the following condition holds:

(54)

where is the transformed single-hop
fluid rate response at input rate . This condition holds in a
single-hop path regardless of the probing packet size, as we
showed in Section V. Hence, Spruce estimator is unbiased in a
single-hop path. In a multihop path, however, is usually

TABLE III
SPRUCE BIAS IN MULTIHOP EMULAB EXPERIMENT (IN mb/s)

larger than , as illustrated in Fig. 9. This causes a neg-
ative bias (underestimation) in Spruce’s available bandwidth
estimation. The amount of bias is given by

(55)

The first additive term in (55) is the measurement bias caused
by the curve deviation of from at input rate , which, as
stated in Section V, will vanish when the probing packet size

or when long packet-trains are used. Hence, we call
it elastic bias. The second additive term is the portion of mea-
surement bias caused by the curve deviation of from at
input rate , which remains constant for any packet size or
any long packet-trains. Therefore, it is nonelastic bias. Con-
ceptually, elastic bias stems from cross-traffic burstiness and
nonelastic bias is a consequence of multihop effects.

In Table III, we give the amount of measurement bias caused
by the two types of curve deviations in our multihop Emulab
packet-train probing experiment. Using a train length of 2 (i.e.,
packet-pair), the elastic bias is 54 mb/s, about 150% of the ac-
tual available bandwidth. We also see that increasing the train
length to 33 can completely overcome the elastic bias, but can
not change the nonelastic bias of 30 mb/s.

VII. CONCLUDING REMARKS

In this paper, we presented a “sampling-and-constructing”
view to understand the essence of packet-pair probing. We iden-
tified several types of important information about the queueing
system that are sampled and encoded in packet-pair dispersions.
Our approach uncovers the full picture of packet-pair sampling
and leads to a closed-form solution to the multihop response
curve, which extends previous fluid models and serves as a the-
oretical foundation for active bandwidth measurement.

To convey the main idea and the spirit of our analytical ap-
proach, we limited the scope of our discussions in several as-
pects. Note that the major results in this paper can be gener-
alized along several directions. In particular, we extended our
discussion to packet-train sampling and relaxed the cross-traffic
stationarity assumption in [12]. We also accommodated arbi-
trary cross-traffic routing into the multihop analysis in [14]. We
refer interested readers to [12] and [14] for additional results,
but point out that they also use a similar analytical approach
that features the “sampling-and-constructing” characterization
of active packet probing. In our future work, we are interested
in developing new techniques that overcome the problems we
have identified in existing tools.

APPENDIX I
PROOF OF THEOREM 5

We first present the following lemma.
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Lemma 3: Given (48), when link is probed by a packet-
pair with an input rate , we have the following two limits re-
garding the second-order moments of and :

(56)

Proof: We only consider the case when and
prove the first part of (56). The proof for the second part is sim-
ilar. Note that

(57)

Denoting by the distribution function of , we get the
second-order moment of (57) as

(58)

Taking the limit of (58) and further recalling (48), we get

(59)

This leads to the first part in (56).
We next prove Theorem 5.

Proof: We apply mathematical induction to . For the base
case when , and , the theorem
holds trivially. Suppose that the theorem holds for , then
we next show that it also holds for .

First, consider the case when . Recalling
Theorem 2, we have

(60)

We now examine the asymptotic mean and asymptotic variance
of each term on the right-hand side of (60). For the first term

, due to the induction hypothesis, we have

(61)

(62)

The second term in (60) is a zero-mean random variable. That is

(63)

The variance of converges to as ,
which is a constant with respect to . To show this, first note
that

(64)

where is the distribution function of . The integral term
in (64) can be decomposed into the sum of three integral terms
as follows:

(65)
where and . Using Chebyshev’s in-
equality and the fact that , it is easy to show
that both the first and the third integral terms in (65) converges
to 0 as . In addition, using Chebyshev’s inequality,
we can show that the second integral term in (65) converges to

as . Omitting the intermediate steps, we get

(66)

For the third term in (60), its first-order moment con-
verges to 0 as as we show next. Note that

(67)

where is the available bandwidth of ,
is the distribution function of . Notice that is upper
bounded by . Hence, due to Chebyshev’s inequality, for
the first additive term in (67), we have

(68)

Taking the limit of (68) when , we get

(69)

where the last inequality is due to the induction hypothesis and
the second last equality is due to the fact that is a linear
function of .

For the second additive term in (67), first recall Theorem 3,
which says that is a monotonically decreasing function of

. Therefore, we have

(70)
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where the last equality is due to Lemma 3, which implies that
also converges to 0 in mean when . Com-

bining (69) and (70), it follows that:

(71)

Similar to the transition from (67) to (71), we can prove that
the asymptotic variance of when increases is bounded
by a constant. We omit the proof details of this step. Combining
all these investigations, it follows that:

(72)

The asymptotic variance of is also bounded by a con-
stant irrespective of due to the fact that all the additive terms on
the right-hand side of (60) have bounded asymptotic variance.
We denote this variance upper bound by .

So far, we finished the proof for the case when .
For the case when , we have

(73)

We now examine the asymptotic mean and variance for each of
the additive terms on the right-hand side of (73). For the first
term, by conditioning on , we get

(74)

Similarly, we can also get the asymptotic variance as follows:

(75)
where the last inequality is due to induction hypothesis. Note
that the limiting variance is bounded by a constant that does not
depend on .

The second additive term in (73) is a constant. For the third
term , we now show that it converges to 0 in the mean-
square sense as . Consequently, both the asymptotic
mean and the asymptotic variance of this term is 0. Note that

can be decomposed as

(76)

where is the available bandwidth of ,
is the distribution function of given packet size . Note
that the first term in (76) approaches 0 as . That is

(77)

where is the distribution function of the random variable
given that is fixed. The inequality is due to fact that

is a monotonically decreasing function of given that is fixed.
The last equality in (77) is due to Lemma 3.

The second term in (76) also approaches 0 as . Note
that , so we have

(78)

Combining (77) and (78), it follows that:

(79)

Combining (79) and (74), we have

(80)

Combining induction hypothesis, (75) and (80), we get an upper
bound of the asymptotic variance of

(81)

which is a constant independent of . Combining the two cases,
we complete the inductive step for any probing input rate .
Hence, the theorem follows.

REFERENCES

[1] National Laboratory for Applied Network Research. [Online]. Avail-
able: http://www.nlanr.net

[2] J. Bolot, “Characterizing end-to-end packet delay and loss in the In-
ternet,” in Proc. ACM SIGCOMM, 1993, pp. 289–298.

[3] R. Carter and M. Crovella, “Measuring bottleneck link speed in packet-
switched networks,” Int. J. Perform. Eval., vol. 2728, pp. 273–318,
1996.

[4] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet disper-
sion techniques measure?,” in Proc. IEEE INFOCOM, Apr. 2001, pp.
905–914.

[5] ——, “Packet-dispersion techniques and a capacity estimation method-
ology,” ACM/IEEE Trans. Netw., vol. 12, no. 6, pp. 963–977, Dec.
2004.

[6] K. Harfoush, A. Bestavros, and J. Byers, “Measuring bottleneck
bandwidth of targeted path segments,” in Proc. INFOCOM, Mar.–Apr.
2003, pp. 2079–2089.

[7] G. He and J. Hou, “On exploiting long range dependence of network
traffic in measuring cross traffic on an end-to-end basis,” in Proc. IEEE
INFOCOM, Mar. 2003, pp. 1858–1868.

[8] N. Hu and P. Steenkiste, “Evaluation and characterization of avail-
able bandwidth probing techniques,” IEEE J. Sel. Areas Commun., pp.
879–894, Aug. 2003.

[9] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-
COMM, 1988, pp. 314–329.

[10] S. Kang, X. Liu, M. Dai, and D. Loguinov, “Packet-pair bandwidth
estimation: Stochastic analysis of a single congested node,” in Proc.
IEEE ICNP, Oct. 2004, pp. 316–325.

[11] K. Lai and M. Baker, “Measuring bandwidth,” in Proc. IEEE IN-
FOCOM, 1999, pp. 235–245.

[12] X. Liu, K. Ravindran, B. Liu, and D. Loguinov, “Single-hop probing
asymptotics in available bandwidth estimation: Sample-path analysis,”
ACM IMC, pp. 300–313, Oct. 2004.



2262 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

[13] X. Liu, K. Ravindran, and D. Loguinov, “Multi-hop probing asymp-
totics in available bandwidth estimation: Stochastic analysis,” City
University of New York (CUNY), New York, Aug. 2005, Tech. Rep..

[14] ——, “Multi-hop probing asymptotics in available bandwidth estima-
tion: Stochastic analysis,” ACM IMC, pp. 186–173, Oct. 2005.

[15] ——, “What signals do packet-pair dispersions carry?,” in Proc. IEEE
INFOCOM, Mar. 2005, pp. 281–292.

[16] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,” in
Proc. IEEE GLOBECOM Global Internet Symp., Nov.–Dec. 2000, pp.
415–420.

[17] ——, “First-come-first-served packet dispersion and implications for
TCP,” in Proc. IEEE GLOBECOM, 2002, pp. 2170–2174.

[18] ——, “Regression-based available bandwidth measurements,” in Proc.
SPECTS, Jul. 2002.

[19] A. Pasztor and D. Veitch, “On the scope of end-to-end probing
methods,” IEEE Commun. Lett., vol. 6, no. 11, pp. 509–511, 2002.

[20] ——, “The packet size dependence of packet pair like methods,” in
Proc. IWQoS, 2002, pp. 204–213.

[21] V. Paxson, “End-to-end Internet packet dynamics,” IEEE/ACM Trans.
Netw., vol. 7, no. 3, pp. 277–292, 1999.

[22] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks, and R.
Baraniuk, “Multifractal cross traffic estimation,” in ITC Specialist Sem-
inar on IP Traffic Measurement, Sep. 2000.

[23] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of avail-
able bandwidth estimation tools,” ACM IMC, pp. 39–44, 2003.

[24] R. Wolff, Stochastic Modeling and the Theory of Queues. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

Xiliang Liu (S’03–M’05) received the B.S. de-
gree (Hon.) in computer science from Zhejiang
University, Hangzhou, China, in 1994, the M.S.
degree in information science from the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 1997, and the Ph.D. degree in computer
science from the City University of New York, New
York, in 2005.

His research interests include Internet measure-
ment and monitoring, overlay networks, bandwidth
estimation, and stochastic modeling and analysis of

networked systems.

Kaliappa Ravindran received the Ph.D. degree in
computer science from the University of British Co-
lumbia, Vancouver, BC, Canada.

He is a faculty member of Department of Com-
puter Science, City University of New York, located
in the City College campus. Earlier, he had held fac-
ulty positions at Kansas State University, Manhattan,
and at the Indian Institute of Science, Bangalore. He
had worked in Canadian communication industries
for a short period before moving to U.S. His recent
project relationships with industries include IBM,

AT&T, Philips, ITT, and HP. Besides industries, some of his research has
been supported by grants and contracts from federal government agencies. His
research interests span the areas of service-level management of distributed
networks, compositional design of network protocols, system-level support
for information assurance, distributed collaborative systems, and Internet
architectures.

Dmitri Loguinov (S’99–M’03) received the B.S. de-
gree (Hon.) in computer science from Moscow State
University, Moscow, Russia, in 1995 and the Ph.D.
degree in computer science from the City University
of New York, New York, in 2002.

Since September 2002, he has been an Assistant
Professor of Computer Science at Texas A&M
University, College Station. His research inter-
ests include peer-to-peer networks, Internet video
streaming, congestion control, image and video
coding, Internet traffic measurement and modeling.


