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Abstract—This paper analyzes the asymptotic behavior of
packet-train probing over a multi-hop network path P carrying
arbitrarily routed bursty cross-traffic flows. We examine the
statistical mean of the packet-train output dispersions ad its
relationship to the input dispersion. We call this relationship the
response curvef path P. We show that the real response curve
Z is tightly lower-bounded by its multi-hop fluid counterpartF,
obtained when every cross-traffic flow onP is hypothetically
replaced with a constant-rate fluid flow of the same average
intensity and routing pattern. The real curve Z asymptotically
approaches its fluid counterpart F as probing packet size
or packet train length increases. Most existing measuremen
techniques are based upon theingle-hop fluid curve S associated
with the bottleneck link in . We note that the curveS coincides
with F in a certain large-dispersion input range, but falls belowF
in the remaining small-dispersion input ranges. As an implcation
of these findings, we show that bursty cross-traffic in multihop
paths causes negative bias (asymptotic underestimationy tmost
existing techniques. This bias can be mitigated by reducinghe
deviation of Z from S using large packet size or long packet-
trains. However, the bias is not completely removable for tk
techniques that use the portion ofS that falls below F.

I. INTRODUCTION

this paper, we explicitly target the measurement dbiag-

term averageavailable bandwidth, which is a stable metric

independent of observation time instances and observation

time intervals [10]. Consider av-hop network pathP =

(L1, Lo, ..., Ly), where the capacity of lini; is denoted

by C; and the long-term average of the cross-traffic arrival

rate atL; is given by \;, which is assumed to be less than

C;. The hop available bandwidth df; is A; = C; — A\;. The

path available bandwidtll» is given by
Ap = min (Cz - /\z)

1<i<N

1)

The hopL,, which carries the minimum available bandwidth,
is called thetight link or the bottleneck link. That is,

)

The main idea of packet-train bandwidth estimation is
to infer Ap from the relationship between the inter-packet
dispersions of the output packet-trains and those of thetinp
packet-trains. Due to the complexity of this relationship i
arbitrary network paths with bursty cross-traffic flows, pre
vious work simplifies the analysis using a single-hop path

b= arglg%iglN(Ci =)

End-to-end estimation of the spare capacity along a netwqgkh fluid? cross-traffic, while making the following two

path using packet-train probing has recently become antmpgssumptions without formal justification: first, crossffica
tant Internet measurement research area. Several memremrstiness on'y causes measurement Va”ab'“ty that can be
techniques such as TOPP [14], Pathload [7], IGI/PTR [6§moothed out by averaging multiple probing samples and
Pathchirp [16], and Spruce [17] have been developed. M@gcond, non-bottleneck links have negligible impact on the
of the current proposals use a single-hop path with constapfoposed techniques.

rate fluid cross-traffic to justify their methods. The beloavi  The validity of the first assumption is partially addressed i
and performance of these techniques in a multi-hop path W'[ﬂ_‘[)]’ where the authors use a single-hop path with burstysero
general bursty cross-traffic is limited to experimentallesa traffic to derive the statistical mean of the packet-traitpat
tions. Recent work [10] initiated the effort of developing adispersions as a function of the input probing dispersion,
analytical foundation for bandwidth measurement techesqu referred to as the single-hop response curve. Their analy-
Such a foundation is important in that it helps achieve gs shows that besides measurement variability, croffstra
clear understanding of both the validity and the inadequagystiness can also causeasurement bia® the techniques

of current techniques and provides a guideline to improygat are based on fluid analysis. This measurementciasot
them. However, the analysis in [10] is restricted to sing® pe reduced even when an infinite number of probing samples
paths. There is still a void to fill in understanding packeift are used, but can be mitigated using long packet-trainsoand/
bandwidth estimation over a multi-hop network path. large probing packet size.

Recall that the available bandwidth of a network hop is This paper addresses further the two assumptions that
its residual capacity after transmitting cross-traffichiita  current techniques are based on. To this end, we extend the
certain time interval. This metric varies over time as Wegsymptotic analysis in [10] to arbitrary network paths and
as a wide range of observation time intervals. However, {fhcover the nature of the measurement bias caused by bursty

. . _ cross-traffic flows in anulti-hopnetwork path. This problem is
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1In general, the tight link can be different from the link withe minimum
capacity, which we refer to as thearrow link of P.
2We use the term “fluid” and “constant-rate fluid” interchaalgly.



the following reasons. First, unlike single-hop measumsie to both elastic and non-elastic negative measurementsiase
where the input packet-trains have deterministic and equdie amount of bias can be substantially more than the actual
inter-packet separation formed by the probing source rtheti available bandwidth in certain common scenarios, leading t
packet-trains at any hop (except the first one) along a multiegative results by the measurement algorithm and a final
link path are output from the previous hop and have randogstimate of zero by the tool.
structure. Second and more importantly, the multi-hop @b The rest of the paper is organized as follows. Section I
asymptotics are strongly related to the routing patterrraés derives the multi-hop response cur# assuming arbitrarily
traffic flows. This issue never arises in a single-hop path anouted fluid cross-traffic flows and examines the deviatiomte
it has received little attention in prior investigation.\Mever, F — S. In Section Il and IV, we derive the real response
as we show in this paper, it is one of the most significasurve Z of a multi-hop path and show its relationship to its
factors that affect the accuracy of bandwidth measurenmentfiuid counterpart”. We provide practical evidence for our
multi-hop paths. theoretical results using testbed experiments and reatriet

To characterize packet-train bandwidth estimation in itmeasurements in Section V. We examine the impact of these
most general settings, we derive the probing response curesults on existing techniques in Section VI and summarize
Z of a multi-hop path? assuming arbitrarily routed burstyrelated work in Section VII. Finally, we briefly discuss futu
cross-traffic flows. We compar€ with its multi-hop fluid work and conclude in Section VIII.
counterparfF, which is a response curve obtained when every
cross-traffic flow inP is hypothetically replaced with a fluid II. MULTI-HOPFLUID ANALYSIS

flow of the same average _|nten_S|ty and ro!“'”g pattern. We, iq important to first thoroughly understand the response
ShO\_N’ under an ergodic S‘a"O”?r"Y assumption for eaci;serocurve]__ of a network path carrying fluid cross-traffic flows,
_trafnc_flow, that the real curves is tightly lower bound_ed bY' since as we show later, the fluid cur¥éis anapproachable

its fluid counterpart7” and that the curveZ asymptotically 1), 4 of the real response cung Initial investigation of
approaches its fluid bound in the entire input range 3Sthe fluid curves is due to Melandat al. [13] and Dovrolis

probing pfactl:et Size or pacI;et_-traln Iengtl? mc(;easesh. et al [4]. However, prior work only considers two special
h M(f)ISt, do the exstmg\/ﬁtec niques dar?h iseb 0? t eksl',n?(lt’?r'oss-traffic routing cases (one-hop persistent routirthpeath
op fluid response cure associated with the bottleneck fin persistent routing). In this section, we formulate and sdhe

n PI' 'I;]hereforeégany deV|at|c_>n”of the real curiefrom tge problem for arbitrary cross-traffic routing patterns, lthes
Emgde_'doﬁ curves can p;\cl)tentlﬁ y chauze measurement l;as Which, we discuss several important properties of the fluid
andwidth estimation. Note that the deviatign— S can be response curves that allow us to obtain the path available

decomposed as bandwidth information.
Z-8S=Z-F)+(F-9). 3)

The first termZ — F is always positive and causes asymptoti'é' Formulating A Multi-Hop Path

underestimation of4» for most of the existing techniques. We first introduce necessary notations to formulate a multi-
This deviation term and its resulting measurement bias 48P Path and the cross-traffic flows that traverse along the
“elastic” in the sense that they can be reduced to a negﬂigikﬂath- ]
level using packet-trains of sufficient lengttFor the second ~An N-hop network pathP = (L1, Lo, ..., Ly) is & se-
deviation termZ—S, we note that bott§ andF are piece-wise guence oflV interconnectedrirst-Come First-Served (FCFS)
linear curves. The first two linear segmentsfnassociated Store-and-forwardhops. For each forwarding hop; in P,
with large input dispersions coincide with (i.e., F—S = 0). We denote its link capacity by;, and assume that it has
The rest of the linear segments Jf associated witrsmall  infinite buffer space and a work-conserving queuing digogpl
input dispersions appear abagdi.e., 7—S > 0). The amount Suppose that there afe fluid cross-traffic flows traversing
of deviation and the additional negative measurement hiag®fthP. The rate of flow; is denoted byz; and the flow rate
causes are dependent on the routing patterns of cross-traffictor is given byx = (z1,z2,...,zar).
flows, and are maximized when every flow traverses only oneWWe impose two routing constraints on cross-traffic flows to
hop along the path (which is often callesie-hop persistent SImplify the discussion. The first constraint requires gitaw
cross-traffic routing [5]). Furthermore, the curve deviatF — 1O have a d_|fferent routing pattern. In the case of otherwise
S is "non-elastic” and stays constant with respect to probir{ge flows with the same routing pattern should be aggregated
packet size and packet-train length at any given input ratglo one single flow. The set_:ond routlr_lg constraint requires
Therefore, the measurement bias it causes cannot be overc§4grY flow to have only one link where it enters the path and
by adjusting the input packet-train parameters. also have only one (downstr.eam) link Whgre it exits from t_he
Among current measurement techniques, pathload and PR@N. In the case of otherwise, the flow is decomposed into
operate in the input probing range wheFe coincides with severr_all .s:eparate flows that me(_et '[.hIS routing constraint.
S, and consequently are only subject to the measurement bia®€finition 1: A flow aggregationis a set of flows, repre-
caused by the first deviation teri — F. Spruce may use Sented by a “selection vectop = (p1, p2, . .. ,pm)", where

the probing range wheré — S > 0. Hence it is subject »; = 1 if flow j belongs to the aggregation apg = 0 if
otherwise. We usé; to represent the selection vector of the

3The analysis assumes infinite buffer space at each router. aggregation that contains floyvalone.



There are several operations between flow aggregatiormuting matrixR and flow rate vectok, the output dispersion
First, the common flows to aggregatiopsendq form another at link L; can be recursively expressed as
aggregation, whose selection vector is givenpby q, where

the operatoro> represents “element-wise multiplication.” Sec- g1 1=0
ond, the aggregation that contains the flowpibut not inq 7= nax (%.1’ ng) i>0° 7
is given byp — p ® gq. Finally, note that the traffic intensity of Ci
aggregatiorp can be computed from the inner produgs. where(; is*
We now define several types of flow aggregation frequently i
used in this paper. First, the traversing flow aggregatidimkat Q; = Z {%4ka.¢] 8)
L;, denoted by its selection vectey, includes all fluid flows k=1
that pass through;. The M x N matrixR = (ry,r2,...,TN) Proof: Assuming that the first probing packet arrives at
becomes the routing matrix of pafA. For convenience, we |ink I, at time instances;. It gets immediate transmission
define an auxiliary selection vectes = 0. service and departs at +s/C;. The second packet arrives at

The second type of flow aggregation, denotedehyin- 4~ | The server of; needs to transmi-+; amount of
cludes all flows entering the path at link;, which can be gata before it can serve the second packet. If this is dordef
expressed ag; = r; —r; © r;_1 given the second routing time instance:; ++;_1, the second packet also gets immediate
constraint stated previously. The third type of flow aggregaervice andy; = +;_;. Otherwise, the sever undergoes a busy

tion, which includes flows that enter the path at lifk and period between the departure of the two packets, meanitg tha
traverse thg downstream link;, is denoted a¥'x ; = ex Ori,  ~, = (5 4+ Q;)/C;. Therefore, we have
wherek <.

The cross-traffic intensity at linl; is denoted by\;. We ~; = max (71,_1’ s+ Ql) ) 9)
assume\; < C; for 1 < i < N. Since none of the links iP Ci
is congested, the arrival rate of flgjvat any link it traverses This completes the proof of the theorem. m
is z;. Consequently, we have As a quick sanity check, we verify the compatibility be-
No=xr; <C;, 1<i<N. 4) tween Theorem 1 and the special one-hop persistent routing

case, where every flow that enters the path at linkvill exit
We further define th@ath configuratiorof P as the following the path at linkZ,, ;. For this routing pattern, we have

2 x N matrix

0 i#k
Ty = . 10
H— C1 Gy Cn . (5) k, {I‘i Pk (10)
/\1 /\2 . )\N
The hop available bandwidth @f; is given byA; = C;— ;. Therefore, equation (8) can be simplified as
We assume that every hop has different available bandwidth, Qi = Yi_1Xr; = Yic1 i, (12)

and consequently that the tight link is unique. Sometimesh_ i i
we also need to refer to the second minimum hop avaffNlich agrees with previous results [4], [13].
able bandwidth and the associated link, which we denote as

Apz = Cha — Mp2 and Ly,, respectively. That is C. Properties of Fluid Response Curves
b2 =arg min (C; — \;), (6) Theorem 1 leads to several important properties of the fluid
1=i<N,i#b response curver, which we discuss next. These properties
whereb is the index of the tight hop. tell us how bandwidth information can be extracted from the
curve F, and also show the deviation &, as one should be
B. Fluid Response Curves aware of, from the single-hop fluid cur of the tight link.

We now consider a packet-train of input dispersion (i.e, Property 1: The output dispersionw (g1, 5) is a continuous

inter-packet spacing); and packet size that is used to probe plece-wise Imear function of the input dispersign in the
input dispersion rangé), co).

path 7. We are |nt-erested n cqmputmg the qutput dispersion Proof: We apply mathematical induction o Wheni =
of the packet train and examining its relation ¢@. Such . . . : i
0, according to the first formulain (7)p = gr is a continuous

a relation is called theyap response curvef pathP. It is - . , .
X . o . < ;
easy to verify that under fluid conditions, the response((l;ur{}near function ofg;. Assuming for amy) < i < N, 7; is

does not depend on the packet-train lengifHence, we only continuous piece-wise linear function gf, we show thatyy

consider the case of packet-pair probing. We denote thesoutfy also a continuous piece-wise Imear_ fuqct|ongof From
: : . : FB), we know thatQ2 is a linear combination ofy;, where
dispersion at linkZ; as~;(grs, s) or +; for short, and again for

. . <7z . i i i -Wi i
notational convenience we let, — g;. Note thatyx (g, s) 1 <i < N. Therefore)y is a continuous piece-wise linear

corresponds to the nOtaU.Qﬁ we have used preV'OUSIy' 4The term(; represents the volume of fluid cross-traffic buffered betwee
Based on our formulations, the gap response curve of paih packet-pair in the outgoing queue of lidk. For an analogical under-
P has a recursive representation given below. standing, we can view the packet-pair as a bus, the crof§is-tna passengers,

Th 1-Wh k . ith i di . and the routers as bus stations. Th@n,is the amount of cross-traffic picked
eorem L. en a packet-pair with input dispersign up by the packet-pair at link.; as well as all the upstream links &f;. This

and packet size is used to probe av-hop fluid path with cross-traffic will traverse over linl; due to the flows’ routing decision.



function of g;. Combining this result with the second part of  Proof: First note that due to the second part of (7), When

(7) and the induction hypothesis which states the piece-wia packet-pair gets expanded at link, we have

linearity of yx_1, the desired property follows foyy . = s+
Let0 = axi1 < ag <...< a1 < ag = oo be the input C

dispersion turning points that split the gap response ctove !

K + 1 linear segmenfs Our next result discusses the turning M (8), we know thaf); < 5;_A;, Hence, we have;_; <

points and linear segments that are of major importance JA(Ci — Ai). Again recall thaty,—, > gr, we gets/g; >
bandwidth estimation. » — A;. That means in order to get expanded at two links, the

Property 2: The first turning pointa; corresponds to the input rate must be higher than the maximum of the available
path available bandwidth in the sense thgs = s/a1. The bandwidth of that two links, which is higher than the second
first linear segment in the input dispersion range, — Minimum hop available bandwidth. _ u
s/Ap,o0) has slope 1 and intercept 0. The second linear e slopes and intercepts for all but the first two linear
segment in the input dispersion ranga.,a;) has slope segments are related to the routing matrix. We skip the
\»/Cy and intercepts/Cy,, whereb is the index of the tight derivation of their expressions, but instead provide both a

> Yi-1- (16)

link: lower bound and an upper bound for the entire response curve.
gr a1 < gr < oo Property 4: For a given path configuration matrix, the gap
YN (g1,8) =< grhp + s ) (12) response curvg associated with any routing matrix is lower
C, azSgrso bounded by the single-hop response cusye, s) of the tight

. . . . ink, i <
These facts are irrespective of the routing matrix. link, i.e., F(gr,s) < S(g1, s), where

Proof: To prove the first part in (12), we apply mathe- g1 gr > s
matical induction toi to show that there is no link at which — Ap
i 8(9175) 5+gl/\b S (17)
the packet-pair gets expanded whgn> s/Ap. Fori = 0, — 0<gr< .
b P

~o = gr due to the first part of (7). N _
Suppose that fob < i < N, v; equalsg;. Then, we next In adqmon,]-"_ is upper bound_ed by the_ gap response curve
show thatyy = g;. Combining induction hypothesis and (8)associated with one-hop persistent routing.

we get Proof: The lower bound is obvious, so we only prove the
N N upper bound. We apply mathematical induction to show that
_ _ the output dispersion? (gz, s) for one-hop persistent routing
Qn = _xI = grx r ~n\gr,
N ; b—1xThn] = 91 ; N is no less than the output dispersigr(g;, s) associated with
= gIXTN = gI\N- (13) any other cross-traffic routing patterns. This obviousidbo
_ for i = 0 since~{ = ~0 = gr. Now assuming that” > ~; for
Further recalling that all i < N, we next show that% > yx. First, we establish
S5 < Ap < Ay = Cxn — An, (14) the fact thatQy < yn_1An as following:
gr N N
we have(s + grAn)/Cn < g1 = yn—1. Combining with (7), Oy = Z [Ye—1%xTk ] < vN-1 Z [xI'k,i]
we haveyy = g;. k=1 k=1
When oy < gr < ag, there is only the tight linkZ;, that = YN_-1XIN = YN_1AN. (18)

expands the packet-pair dispersion. Due to the same den'vat.l_

p > i
as in (13),92, = g1 \y. Combining the second part in (7) and hen we haveyy, =~y due to the following

=C) — s+Q
the fact thats/g; > A, = Cj, — )\, we get vw(gns) = max (7N_17 - N)
7 = max (gf ”‘”Ab) S ah ) \
-G Cy <  max <~le7 ‘Hé\[ﬂ)
Finally, notice thatyy = v, due to the fact thaL, is the only N N »
link that expands the packet-pair. [ ] < max <7§]17 s+ NVN—l) = 1% (19)
It helps to find the expression for the turning poimi, Cn

so that we can identify the exact range for the second linaghere the second inequality follows from the induction hy-
segment. However, unlike;, the turning pointas, is depen- pothesis. [
dent on the routing matrix. In fact, all other turning points We now make several observations regarding the deviation
are dependent on the routing matrix and can not be computsfdyy (g;, s) (i.e., F) from S(gs, s). Combing (12) and (17),
based on the path configuration matrix alone. Therefore, w@ see thatyx (g7, s) — S(gr,s) = 0 wheng; > ay. That is,
only provide a bound fory,. the first two linear segments df coincide withS. Wheng; <

Property 3: For any routing matrix, the term/asz is N0y, Property 4 implies that the deviatian; (g7, s)—S(gz, 5) is
less thanAz, which is the second minimum hop availablgyositive. The exact value depends on cross-traffic routirdy a
bandwidth of pathP. it is maximized in one-hop persistent routing for any given

s . o . . path configuration matrix.

Note that the turning points itF is indexed according to the decreasing . . .
order of their values. The reason will be clear shortly when discuss the Also note that there are three pieces of path information
rate response curve. that we can extract from the gap response cufvevithout



knowing the routing matrix. By locating the first turning poi O3 o, 04

a1, We can compute the path available bandwidth. From the 10 1 1 1
second linear segment, we can obtain the tight link capacity one-hbp persiétent ‘
and cross-traffic intensity (and consequently, the bodtté&n
link utilization) information. Other parts of the resporseve
F are less readily usable due to their dependence on crossz

traffic routing.

D. Rate Response Curves

To extract bandwidth information from the output dispensio
~vn, it is often more helpful to look at theate response curve,
i.e., the functional relation between the output rate= s/
and the input rate:; = s/g;. However, since this relation
is not linear, we adopt a transformed version first proposed 0 ‘ : : ‘
by Melanderet al. [14], which depicts the relation between 0 2 4 6 8 10
the ratior;/ro andr;. Denoting this rate response curve by

F(rr), we have

~ T ;S
Firr) = 2L - U0,

This transformed version of the rate response curve is also
piece-wise linear. It is easy to see that the first turningpoi P 1
in the rate curve is/a; = A, and that the rate curve in the 2.5 + one-hop persistent

input rate rang€0, s/az) can be expressed as

. 1 rr < Ap

Flr)=qX+rr s :
— —>r;>A

Cy ag_rl_ P

Finally, it is also important to notice that the rate resgons
curve F(r;) does not depend on the probing packet size
This is because, for any given input ratg, both yx (g1, s)
andg; are proportional ts. Consequently, the ratio between

these two terms remains a constant for any

E. Examples

g | path persistent
lower bound

(ms)

ispersion

outputd

input dispersion g, (ms)

(a) gap response curve

(20) sla,sla, slo,

path persistent
lower bound

(1) O

0 2 4 6 8 10
input rate r; (ms)

We use a simple example to illustrate the properties of the (b) rate response curve
fluid response curves. Suppose that we have a 3-hop path with

equal capacityC; = 10mb/s,i = 1,2,3. We consider two

Fig. 1. An example of multi-hop response curves.

routing matrices and flow rate settings that lead to the same

link load at each hop.

In the first setting, the flow rate vectar= (4,7, 8) and the
routing pattern isone-hoppersistent, i.e.R = diag1,1,1).
In the second setting, the flow rate vector= (4,3,1) and o3 = 2ms. Note that part of the curve for path-persistent

the routing pattern ipath persistent. That is,
1 1 1

R = 0 1 1

0 01

Both of the settings result in the same path configuration

matrix

H— 101010.
4 7 8

routing appears below the one for one-hop persistent rgutin

The lower boundS identified in Property 4 is also plotted in

the figure. This lower bound is the gap response curve of the
(22) single-hop path comprising only the tight lirks.

The rate response curves for the two examples are given
in Fig. 1(b), where the three turning points @&mb/s,3mb/s,
and6mb/s respectively. Due to the transformation we adopted,

(23) the rate curve for one-hop persistent routing still remaias
an upper bound for the rate curves associated with the other

The probing packet size is 1500 bytes. The fluid gap routing patterns. From Fig. 1(b), we also see that, simdar t
response curves for the two routing patterns are plotted tie gap curves, the two multi-hop rate response curves and
Fig. 1(a). In this example, both curves have 4 linear segmettteir lower boundS(r;) (i.e., the transformed rate version of

separated by turning points; = 6ms, as =

4ms, and S(gy, s)) share the same first and second linear segments.



E i TABLE |
F. Discussion RANDOM PROCESSNOTATIONS

We conclude this section by discussing several major chal-

. . . . {Vi(p,t)} Cumulative arrival process dt; w.r.t. p
lenges in extending the response curve analysis to a multi- - ;
h h . ffic fl = . h {Yi;s(p,t)}  Cross-traffic intensity process &; w.r.t. p
op pat carrylng)urs'gy cross-traffic flows. First, notice that {(Wi(p,t)}  Hop workload process ak; w.r.t. p
with bursty cross-traffic, even when the input dlspers!_od an {D;.s(p,t)}  Workload-difference process & W.r.t. p
packet-train parameters remain constant, the output idigpe {Us(p, 1)} Hop utilization process ak; w.r.t. p

becomes random, rather than deterministic as in fluid cross-  {B; ;(p,t)}  Available bandwidth process dt; w.r.t. p

traffic. The gap response cun#, defined as the functional

relation between the statistical mean of the output dispers

and the input dispersion, is much more difficult to penetraifean-square ergodic process with time-invariant distiobu
than the fluid curver. Second, unlike in the fluid case, whereynd ensemble meary .

both packet-train length and probing packet sizehave no \we explain this assumption in more details. First, the
impact on the rate response cut¥gr;), the response curvesstationary increment assumption implies that the incrémen
in bursty cross-traffic are strongly related to these twdpac process of{V;(f;,t)} for any given time intervab, namely
train parameters. Finally, a full characterization of adltlow Vi(£;,t + 6) — Vi(fj,t) = 0Y; 5(f;, 1)}, has a time-invariant
only requires one parameter — its arrival rate, while a fuflistribution. This further implies that thé-interval traffic
characterization of a bursty flow requires several stoahastensity processY; s(f;,t)} is identically distributed whose
processes. In what follows, we address these problems angrginal distribution at any time instantean be described by
extend our analysis to multi-hop paths with bursty crosghe same random variablé ;(f;). Second, the mean-square

traffic. ergodicity implies that, as the observation inter@ahcreases,
the random variablé’; s(f;) converges tox; in the mean-
[11. BASICS OFNON-FLUID ANALYSIS square sense. In other words, the varianc&qf(f;) decays
In this section, we present a stochastic formulation (t)? 0 as) — oo, i€,

the multi-hop bandwidth measurement problem and derive a .
recursive expression for the output dispersion randonakbi 51520 E {(Yiv‘s(fj) o Ij) ] =0. (24)
This expression is a fundamental result that the asymptotic
analysis in Section IV is based upon. Our next assumption states the independent relationship

between different flows that enter pgthat the same link.
_ Assumption 2:For any two flows; and ! that enter the

A. Formulating Bursty Flows path at link L;, the two processe§V;(f;,t)} and {V;(f;,t)}

We keep most of the notations the same as in the previare independent. Specifically, for any two time instantes
section, although some of the terms are extended to haveralt,, the two random variableg;(f;,¢,) and V;(f;, t2) are
different meaning, which we explain shortly. Since crasdfic  independent.
flows now become bursty flows of data packets, we adopt theAs a consequence of the two assumptions we made, the er-
definitions of several random processes (Definition 1-610] [ godic stationary property also holds for any flow aggreggtio
to characterize them. However, these definitions need to &etheir entering link.
refined to be specific to a given router and flow aggregation.Corollary 1: For any flow aggregatiop that enters the
In what follows, we only give the definitions of two randonpath at link L;, i.e., p ® e; = p, the process{Vi(p,t)}
processes and skip the others. The notations for all sixomndhas ergodic stationary increments. Consequently, thdictraf
processes are given in Table I. intensity random variabl&’; ;(p) converges toxp in the

Definition 2: The cumulative traffic arrival process of flowmean-square sense
aggregatiorp at link L;, denoted aqV;(p,t),0 < ¢ < oo}

is a random process counting the total amount of data (in lim E [(Ym(p) _Xp) 2} =0. (25)
bits) received by hogd.; from flow aggregatiorp up to time d—o0 '
Instancer. Due to Szczotka [18], [19], the workload process

Definition 3: Hop workload process of; with respect 0y, 1)1 will “inherit” the ergodic stationarity property from

T'O"_V aggregationp, de_noteq aS{Wi(p’t)’O_ St < >} the traffic arrival proces$V;(p,t)}. This property is further
|nd|cates_ the sum at time mstanceof service times of all carried over to thes-interval workload-difference process
packets_ in the_queue ano! the remaining service time of th’[lﬁi 5(p, )} and the available bandwidth proceds; 5(p, £)}.
packet in service, assuming that flow aggregations the g gistributional stationarity allows us to focus on the
only traffic passing through I'm_{’i' . corresponding random variabl&8;(p), D; s(p), andB; s(p).
We next make several modeling assumptions on cross-traffics easy to get, from their definitions, that the statidtin@ans
flows. First, we assume that all flows have stationary asival,¢ D 5(p) and B, s(p) are 0 and C; — xp, respectivel.

Assumption 1:For any cross-traffic flowj that enters the gy rher, the ergodicity property leads to the followingules
path from link L;, the cumulative traffic arrival process

{Vi(£;,0)} h"f‘s ergodic s_tat_ionarY increments. That iS'_for anysenote that the hop available bandwidth of lidk; that is of measurement
d > 0, the d-interval traffic intensity procesg§Y; s(f;,t)} is a interest, given byd; = C; — xr; can be less thad’; — xp.



Lemma 1:For any flow aggregatiop that enter the path at we explicitly target the measurement of long-term averaes
link L;, the random variablé3; s(p) converges in the mean-available bandwidth and/or cross-traffic intensity, iastef

square sense t0; — xp asé — oo, i.e., the corresponding metrics in a certain time interval.
2
lim F (Bi,é p) — (C; — xp)) } =0. (26)
d—r00 { ( ( B. Formulating Packet Train Probing

On the other hand, notice that unlikgY;s(p,?)} and  we now consider an infinite series of packet-trains with
{Bis(p,1)}, the workload-difference proceq®; s(p,t)} IS input inter-packet dispersiagy, packet sizes, and packet-train
not a moving average process by nature. Consequently, [88gth . This series is driven to patR by a point process
mean-square ergodicity ofD; ;(p,t)} does not cause the A(t) = max{m > 0 : T,, < t} with sufficient large inter-
variance ofD; ;(p) to decay with respect to the increase Oprobing separation. Let; (m, i) andd,, (m, i) be the departure

d. Instead, we have the following lemma. _ time instances from link; of the first and last probing packets
Lemma 2:The variance of the random variab;;(p) in them' packet-train. We define thempling intervabf the
converges t@Var[W;(p)] asd increases: packet-train as the total spacidg= d,,(m, i) —di(m, ), and

. 2 the output dispersioras the average spacirn@g = A/(n —
Jm E [(Dz‘,é(P) - 0) ] =2Var [Wi(p)].  (27) 1) of the packet-train. BothA and G are random variables,
o ) whose statistics might depend on several factors such as the
Proof: Due tq the Qef|n|tlon of workload-difference PrO5nput dispersiony;, the packet-train parametessand n, the
cess and the stationarity of workload process, we have packet-train indexn in the probing series, and the hdp
E[(D;s()%] = E[(Wi(t + 8) — Wi(1))?] that the output dispersio&' is associated with. Therefore, a

B _ 2 o _ 2 full version of G is written asG;(gs, s,n, m). However, for
= B[(Wi(t + 5)2) 2Wi()Wilt +0) + (Wi(t))] notation brevity, we often omit the parameters that havk it
2 (E[(Wi(t))"] — E[Wi(t)Wi(t +9)]) - (28)  relevance to the topic under discussion.

Notice that due to the mean-square ergodicity of workload We now formally state the questions we address in this
process, the random variabl&; (¢t + J) are asymptotically Paper. Note that a realization of the stochastic process

uncorrelated tdV;(t) asé increase. That is Gn(g1,s,m,m),1 < m < oo} is just a packet-train probing
experiment. We examine the sample-path time-average of thi

Jim E[(Wi(t) — E[W;(0)])(Wi(t +0) = E[Wi(t +9)])] = 0. process and its relationship tg; when keepings and n
(29) constant. This relationship, previously denotedzhyis called
As a consequence of (29), we get the gap response curve of pgth
lim E[W;(£)W;(t + 6)] Notice that the erquic stationarity of cross-traffic aatjv
500 as we assumed previously, can reduce our response curve
= lim E[W;(t)|E[W;(t + 6)] = E*[W,(t)]. (30) analysis to the investigation of a single random variabkés T
000 is because each packet-train comes to see a multi-hop system
Taking the limit of (28) and combining (30), we get (27W  of the same stochastic nature and the output dispersioegsoc
To obtain our later results, not only do we need to know they (m),1 < m < oo} is anidentically distributedrandom
asymptotic variance of; s(p), D;,s(p) and B;s(p) whend  sequence, which can be described by the output dispersion
approaches infinity, but also we often rely on their varianGgandom variableGGy. The sample-path time average of the
being uniformly bounded (for any) by some constant. This output dispersion process coincides with the mean of the
condition can be easily justified from a practical standpoinandom variables x 7. Therefore, in the rest of the paper, we
First note that cross-traffic arrival rate is bounded by thgcus on the statistics af ;v and drop the indexn.
capacities of incoming links at a given router. Suppose that|n qur later analysis, we compare the gap response curve of
the sum of all incoming link capacities at hdp is C., then p \ith that of thefluid counterpart of P and prove that the
Y; s(p) is distributed in a finite intervab, C';. ] and its variance former is lower-bounded by the latter.
is uniformly bounded by the constaﬁt’i for any observation  pefinition 4 Suppose that pat® has a routing matriR
interval 6. Similarly, the variance ofB; ;(p) is uniformly 414 4 flow rate vectox and that patt® has a routing matrix
bounded by the constar@?. The variance ofD;(p) iS R and a flow rate vectok. P is called the fluid counterpart
uniformly bounded by the constad¥ ar[W;(p)] for any d,  of p if 1) all cross-traffic flows traversin@ are constant-rate
which directly follows from the definition of; 5(p). fluid; 2) the two paths? and P have the same configuration
Finally, we remind that some of the notations mtroduce,qllatrix; and 3) there exists a row-exchange maffjsuch that
in Section 2.1 now are used with a different meaning. Ther — R and7Tx = x.
rate of the bursty cross-traffic flow, denoted byz;, is the From this definition, we see that for every floyvin P,
probabilistic mean of the traffic intensity random variablgqre is a corresponding fluid floy¢ in the fluid counterpart

Y;,5(f;), which is also thdong-term averagaarrival rate of ot p gych that flowj’ have the same average intensity and

flow j at any link it traverses. The ter; = xr; beCOMeS 1 ,ting pattern as those of floyv Note that the third condition
the long-term average arrival rate of the aggregated cross-

traffic at link L. _The term4; = G - A is the long-term  7Note that the output dispersion process can be correlatedievér, this
average hop available bandwidth at lidk. Again recall that does not affect the sample-path time average of the process.



in Definition 4 is made to allow the two flows have differen€Combining (35) and (36), the second part of (31) folloves.

indices, i.e., to allowj # j'. This result is very similar to Lemma 5 in [10]. However,
A second focus of this paper is to study the impact afue to the random input packet-train structure Iat all

packet-train parametersandn on the response curves. Thabut the terms/C; in (31) become random variables. Some

is, for any given input rate; and other parameters fixed, weterms, such a®; a, ,(e;) and¥j; a,_, (T'x.;), even have two

examine the convergence properties of the output dispersiimensions of randomness. To understand the behavior of

random variableZ y (s/r1, s,n) ass or n tends to infinity. probing response curves, we need to investigate the gtatist

properties of each term in (31).

C. Recursive Expression 6fy

We keep input packet-train parameters s, andn constant IV. RESPONSECURVES IN BURSTY CROSS TRAFFIC
and next obtain a basic expression for the output dispersiorin this section, we first show that the gap response curve
random variablez . Z = E[Gn (g1, s,n)] of a multi-hop pattP is lower bounded

Lemma 3:Letting Gy = g¢;, the random variabl€r; has by its fluid counterpartF = yn(gr,s). We then investigate
the following recursive expression the impact of packet-train parameters 8n

G =

" Yia,(Cri)Gio1 | s I; -
Z C. IoA + n_1 A. Deviation Phenomena &
Our next lemma shows that passing through a link can only
(31) increase the dispersion random variable in mean.
Lemma 4:For 1 < i < N, the output dispersion random

where the termR; is a random variable representing th§ariable G; has a mean no less than that @f_,. That is,

extra queuing deldy (besides the queuing delay caused bE[Gl-] > E[G;_1].

the workload proces§W;(e;,t)}) experienced af; by the Proof: Due to the second part of (31), we have
last probing packet in the train. The teris another random E[D (e)]  EIR)
A1\ €4 7
A + _

k=1

DiyAi—l(ei)_F R;

= G- )
1+ n—1 n—1

variable indicating the hop idle time df; during the sampling E[G,] = E[Gi_1] + (37)
interval of the packet train. n—1 n—1
Proof: For the first equality in (31), note that the follow-By conditioning onA;_1, it is easy to show
ing term (which is a random variable)
E[DiyAi—l (el)] =0 (38)
Vi (i) > (n = 1) x G (32) Also note that due to the properties of the intrusion redidua
is the amount of cross-traffic traversing litk that the packet- E[R;] > 0. HenceE[G;] > E[G;_1]. u
train picked up at linkZL,. The random variable Using the first part of (31), our next lemma shows that
i for any link L;, the output dispersion random varialdlg is
Q; = Z [Yiaps(Tri) X (n—1) x Gy—1]  (33) lower bounded in mean by a linear combination of the output
k=1 dispersion random variable€s;, wherek < i.

gives the total amount of cross-traffic thaf has to transmit ~Lemma 5:For 1 < i < N, the output dispersion random
between the departures of the first and last packets in iffiableG; satisfies the following inequality

packet-train. During that time interval, the server alseds 1 i
to transmitn — 1 probing packets, which takes — 1)s/C; E[G] > = <Z x[g:E[Gr—1] + s) . (39)
time units, and to idle fod; time units. Therefore, we have Ci k=1

(n—1) x G = Q; + (g— 1)s L (34) Proof: From (31),E|[G;] can be expressed as
Dividing by n—1 at both sides of (34), we get the first equality Ci (Z E [Yk,A,H (FM)Gk_l] + s) + ﬂll]l (40)
in (31). © \k=1 e

For the second equality in (31), note that the teRnis By conditioning onA,_1, we can prove
is the amount of extra queuing delay caused by all but thé '
last probing packets in the packet-train and the croséieraf E [Yia, (Tri)Gi-1] = XUk i B[Gr-1]. (41)
packets picked up by packet-train at the upstream links;of - ~
Let ¢; andgq, be the queuing delays experienced by the ﬁr%’.‘tombmmg (40). (41), and the fact thal{l;] > 0, the lemma

: : ollows. [ |
d last ket in the train, h
and fast packet in the train, we have From Lemma 4 and Lemma 5, we get
an— @1 = Din,_,(e:) + R;. (35)

i: XFIM'E Gr—_1|+ s
Further notice that E[G;] > max <E[Gi1]7 L=t (Gl ) . (42)

Cs

Ai=Aicr = =1)x(Gi = Gis1) =tn —a1. (38)  Tpis jeads to the following theorem.

8See section 3.2 in [10] for more discussions about this teresingle-hop Theorem 2:For any input q'spersl'o@lv packet-trgln pa-
context, whereR; is referred to asntrusion residual rameterss andn, the output dispersion random varialiley



of pathP is lower bounded in mean by the output dispersion Theorem 3:When hop utilization procesgU;(e;,t)} is
v~ (g1, s) of the fluid counterpart of: regenerative, condition (45) holds.
Proof: When the hop utilization proceg$/;(e;,t)} is re-
ElGn(gr,5,m)] 2 yx (g1, 5). (43) generative, the proce$€); (1—Uj(e;, 1))} isilsé reg)e}nerative
Proof: We apply mathematical induction to Wheni =  with the same stopping times and regeneration cycles. &urth
0, E[Go] = 70 = g7. Assuming that (43) holds far < i < NV, note that thej-interval available bandwidti®; s(e;,t) is the
we next prove that it also holds fer= N. Recalling (42), we time average of the regenerative proc¢€s(1 — Ui(e;, t))}.
have According to the regenerative central limit theorem [20yg=

ZN X N E[Gro ] + 5 124], the rar_1dom variabIBi,a_(ei) converges in distribution

ElGy] > maX(E[GN—l], k=1 " ! ) to a Gaussian random variabl¥ (C; — xe;,02/5) as §
N Cn approaches infinity, where is a constant. This implies that

Yope1 XL NYR—1 + S the mean of the Gaussian distribution remdiis- xe; for all

> maX(VN—la ) =IN,

Cn 0 while the variance is inversely proportional do Therefore,
where the second inequality is due to the induction hypaghedor sufficiently larges, we have

and the last equality is because of Theorem 1. [ ] 3

Theorem 2 shows that in the entire input gap range, the Pis(r) = 1 1+ erf (r—C+xe;) Vi ’ (46)
piece-wise linear fluid gap response cur¥#e discussed in o2
g Whereerf is the Gauss error function

Section Il is a lower bound of the real gap cunZ The
deviation between the real cun# and its fluid lower boun ] ) .

According to the asymptotic series eff (z) [3, pages 297-
309], we have

F, which is denoted byy(gs, s,n) or Sy for short, can be
recursively expressed in the following, where we figt= 0:

ER; -1
Bi—l""L Yi = Vi—1 (C] F -1 <0
Bi=q1 _. nl E[L}] (44) erf(z) = 1 . 47)
a Z;Zl XUy iBr—1 + n——ll Yi > Yi—1 (C] 2 +1 x>0

In what follows, we study the asymptotics of the curv&ombining (47) with (46), we have
deviation Sy when input packet-train parametessor n

becomes large and show that the fluid lower bouhds in o ( 1 ) _ (i) o
i =o0 r < C; — xe;

fact atight bound of the real response curiZe Pis(r) = V/oeks 62
7 1—@(—):1—0(—) r > C; — xe;
B. Convergence Properties af Voeks 62 48)

We now demonstrate that for any input probing ratethe wheref is a positive constant given below
curve deviatior3y (s/r1, s, n) vanishes as probing packet size

s approaches infinity. We prove this result under the conglitio b — (r— Xei)2
of one-hop persistent cross-traffic routing. We also jydtiis N 202
conclusion informally for arbitrary cross-traffic routirend
point out the major difficulty in obtaining a rigorous proof
First, we make an additional assumption as follows.
Assumption 3:Denoting by P, s(x) the distribution func-
tion of the §-interval available bandwidth random variableﬁc
B, s(e;), we assume that for all < i < N, the following

(49)

This proves the theorem, at the same time shows that the
‘convergence is exponential, much faster than required by
Assumption 3. [ ]
Note that regenerative queue is very common both in prac-
e and in stochastic modeling literature. In fact, all tbar
traffic types used in [10] lead to regenerative hop workload

holds and consequently lead to regenerative link utilization. ai¢®
Pis(r) =o (%) r<C; — xe; conjecture_ th_at (4'_5_) hqlds under a much milder condition, bu
J (45) Wwe leave its identification as future work.
Pstr)=1-o0 (i?) r>C; —xe; ~ An immediate consequence of Assumption 3 is the follow-
' 4 ing lemma.

Recall that the mean-square ergodicity assumption we madé-emma 6:For any link L; in P, assuminge; = r;, when
earlier implies that as the observation inter¥ajets large, the L: is probed by packet-pairs with input rate we have the
random variable3; s(e;) converges in distribution t6; —xe;. following two limits regarding the conditional second-erd
Assumption 3 further ensures that this convergendassin moments ofR; and I;.
the sense of (45). Even though this condition appears crapti

{nmﬁm E[R2Gi_1 =s/r] =0 r<C;—\

first, it is valid in a broad range of cross-traffic environrsen 5 )
limg_ o0 E[IﬂGl_l :S/T] =0 r>C;— X\

The next theorem shows the validity of this assumption under
the condition of regeneratiVdink utilization.

(50)

Proof: We first consider the case when< C; — \. Let
9Refer to [20, pages 89] for the definition of regenerativecpsses. 0 = s/r and denote byR,(4) the random variabl&?; under
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the condition that the input packet-pair dispers@n.; = 4. We now examine the asymptotic mean and asymptotic variance

We have of each term on the right hand side of (59). For the first term
— 6B s(e; G n_1, due to the induction hypothesis, we have
Ri(6) = Ri(s/r) = max (o, 2 C_"S(e )) . (51)
g E}m E[GN-1] = N-1, (60)
wheret is the arrival time of the packet-pair info;. Denoting e 2
by P;s(x) the distribution function of the random variable Jim, El(Gn-1 —yv-1)] < Kn-1. (61)
Bis(ei,t), we have By conditioning onGy_1, it is easy to show that the second
TS20n )2 2252 P, term in (59) is a zero-mean random variable. That is,
BRG] = [ a0 < 22000 2y =
0 i i lim F [DN_,GNfl(eN)} =0. (62)
Taking the limit of (52) and further recalling Assumption 3, e
we get The variance ofDy ¢, _,(en) converges t@Var[Wy (en)]
2252 P, 5(r) as s — oo, which is a constant with respect to To show
0< lim E[R2(5)] < lim ——1 — g (53) this, first note that
d—00 v d—o00 012

This leads to the first part in (50). Now consider the case E {(DN,GNA(GN))Q} :/ (Dns(en))*dP(z), (63)
whenr > C; — \;. Denoting by;(6) the random variable 0
I; under the condition that the input packet-pair dispersiomhereP(z) is the distribution function off;_;. The integral

G;—1 =6 = s/r, we have term in (63) can be decomposed into the sum of three integral
_ ~ 5Bis(es) — s terms as follows:
1;(0) = Li(s/r) = max (O, T) (54) E/2 3E/2 oo
: E[D?] = D?dP(z)+ / D?dP(x)+ D?dP(x),
Computing the second moment 6f(s/r), we get 0 E/2 3E/2 (64)

- C 82z —1)2 0%(Cs —1r)? whereD? = (Dy .(en))” andE = E[Gy_,]. Using Cheby-
E[I}(0)] = / %d&g(x) < %(1 16(r) khev's inequ(ality a(nd Rle fact thﬁ[D[Q] < 4]Var[WN(eN)],
" ’ ’ (55) it is easy to show that both the first and the third integral
Taking the limit of (55) and recalling Assumption 3, we getterms in (64) converges to 0 as— oco. In addition, using
(Ci — 1)25%(1 — Py (1)) Chebyshev’s inequality and Lemma 2, we can show that the
! u =0. second integral term in (64) converges2@ar[Wy (en)] as

0 < lim E[I?(5)] < lim

2
900 900 % 56) ° — oo. Omitting the intermediate steps, we get:
This leads to the second part in (50). [ ] im E (D 2 _ovarlw 65
Our next theorem states formally the convergence property 500 {( N"GN’I(eN)) } ar(W(en)) (69)

of the output dispersion random varialdley (s/rr,s,n) when  For the third termRy in (59), its first-order moment

s increases. converges to 0 as — oo as we show next. Note that
Theorem 4:Given one-hop persistent cross-traffic routing

. . . s/AN oo
and the three assumptions made in the paper, for any in th :/ EIR dP +/ EIR dP
ratery, the output dispersion random varialtle, of path P %}[ N 0 R (@) dP(z) s/Ax Ry (@)]dP (),

converges in mean to its fluid lower boung: (66)
whereAy = Cy— Ay is the available bandwidth diy, P(x)

lim E [GN ( s n) — N <_ 3)} =0. (57) s the distribution function of¥y_,, and E[Ry(z)] denotes
§7700 T r1 the conditional expectatio®’[Ry|Gy_1 = z]. Notice that
The asymptotic variance offy when s increases is upper Ry is upper bounded by/Cy. Hence due to Chebyshev’s
bounded by some constahty: inequality, for the first additive term in (66), we have
s s 2 s/An s s
lim F — — — < Ky. (58 < E dP < —P|—
Jim (GN (Tl,s,n) YN (TI,S)) < Kn. (58) 0 < /0 [Ry (z)]dP(x) < Cn <AN>
Proof: We only consider the case of packet-pair probing. < sVar[Gy 1] 5 - (67)
The proof can be easily extended to packet-train probing by Cn (/AN — E[GN-1])
applying mathematical induction te. In the proof of packet- Taking the limit of (67) whens — oo, we get
pair case, we apply mathematical inductionito /4
For the base case wheér= 0, Gy = s/r; = 70 andKy = 0, 0 < i SIaN EIR dP
the theorem holds trivially. Suppose that the theorem hiwds = I 0 R (@)l dP(z)
i =N —1, then we next show that it also holds fbe= N. < lim 2 Var|Gy-1] 68
First consider the case wheriyy_; < Cx — Ay. Due to = Ak Cy (5/An — E[Gn_1])? (68)
Lemma 3, we have: s K 1
< lim 2 — 1im © (—) =0,
GnN =Gn-1+ DNy ,(en)+ Bn. (59) 5200 ON (s/An —yn_1)" 7% \$
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where the last inequality is due to the induction hypothess&ze s, and E[I%,(z)] denotes the conditional second moment
and the second last equality is due to the fact that, is a E[I%|Gny_1 = z]. Note that the first term in (75) approaches

linear function ofs/r; as stated in Property 1. 0 ass — oco. That is,

For the second additive term in (66), first recall Theorem 6 s/AN
in [10], which says thaR (x) is @ monotonically decreasing lim F [?V(x)} dPs(x)
function of z. Therefore, we have 7 Jo -

o — i B2 (2)]ap,
0 < lim E[Rn(z)]dP () 500 J4 { N (r)} ()
§—00 /AN s
< Tim E[Ru(s/Ax)] =0, (69) < im 2|12 (2] =0 (76)

where the last equality is due to Lemma 6. From Lemma Qo165 (1 is the distribution function of the random variable

it follows that Ry (s/Ay) converges in mean-square sense tQ/GN 1 given thats is fixed. The inequality is due to fact that

0, which implies thatit (s/Ax) also converges to 0 in meany (z) is a monotonically decreasing function efgiven that
when s — oo. Combing (68) and (69), it follows that s is fixed, as stated in Theorem 6 in [10]. The last equality in
lim E[Ry] = 0. (70) (76) is due to Lemma 6.
s700 The second term in (75) also approaches @ as co. Note
Similar to the transition from (66) to (70), we can prove thahat Iy () < =, so we have

the asymptotic variance @t whens increases is bounded by

a constant. We omit the proof details of this step. Combining  1im E [ffv(x)} dP,(z) < lim 2dP,(z)
all this investigation, it follows that 570 Js/An 5700 Js/An
. . s/AN
Jim E[Gy] = lim E[Gya] =yva = (71) = lim <E[G?v_1(5)] - /0 IQdPs(I)>

The asymptotic variance offy is also bounded by a o 2 T 2 ~
constant irrespective of due to the fact that all the additive - 31320 ElGN-1(5)] 31320 ElGy-1(s)] =0. (77)
terms on the right hand side of (59) have bounded asymptoticcombining (76) and (77), it follows that
variance. We denote this variance upper boundshy. . - . .

So far, we finished the proof for the case wheryy_; < lim E[Iy] = lim E[Iy] =0 (78)
Ay . For the case whes/yy_1 > An, we have the following
due to Lemma 3 and the one-hop persistent routing assur%jmbInlng (78) and (73), we have

tion: ANYN=1+ S

v Cn ~ lim F[GNn] = ——— =~ (79)
Gy = N;GN—lc(’eN) N-1 + ; 1 Iy, (72) s—00 Cn

N Combining induction hypothesis, (74), and (79), we get an
We now examine the asymptotic mean and variance for eaghher bound of the asymptotic variance®@f

of the additive terms on the right hand side of (72). For the

2
first term, by conditioning or 1, we get lim Var[Gy] < é— lim Var[Gy_1] = Ky,  (80)
S§— 00 S—r00
. Ynan_i(en)Gr-1 ANTN o N .
Jim E Cn = oy (73)  which is a constant independent ef Combining the two
cases, we complete the inductive step for any probing input
Similarly, we can also get the asymptotic variance as fadlovy,ie 7. Hence, the theorem follows. -
) Yncon_i(en)Gn-1 Note that the bounded variance, as stated in (58), is an in-
Jim Var Cn separable part of the whole theorem. This is because Theorem
22 A2 KNy 4 is proved using mathematical induction, where the mean
CJQV 1Lm Var[Gy_1] < %, (74) convergence ofix to vy can be obtained only when both
S o0 N

the mean ofGy_; converges toyy_; and the variance of
where the last inequality is due to induction hypothesisteNoG _; remains bounded, as probing packet size cc.
that the limiting variance is bounded by a constant that doeswe further point out that by assuming one-hop persistent
not depend ors. cross-traffic routing, we have avoided analyzing the depart
The second additive term in (72) is a constant. For the thiglocesses of cross-traffic flows. When a traversing flow of
term Iy, we now show that it converges to 0 in the meanink I, enters the path from some upstream linklof the
square sense as— oo. Consequently, both the asymptotiGarrival process of the flow af; is its departure process at
mean and the asymptotic variance of this term is 0. Note that ;. Unfortunately, in the queueing theory literature, there
E[I%] can be decomposed as is no exact result for departure processes in FCFS queueing
s/AN 0o models if one goes beyond the assumption of Poisson arrivals
/ E {I?V(x)} dP,(z) +/ E [I?V(x)} dP,(z), (75) Motivated by the intractability of this problem, reseanche
0 s/AN have focused their attentions on approximations [12],.[15]
where Ay = Cn — Ay is the available bandwidth of. To accommodate arbitrary cross-traffic routing patterres, w
Ps(z) is the distribution function ofGx_; given packet also need an approximation assumption which says that any
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cross-traffic flow that traverses link; (regardless of wether it where the first equality is due to Lemma 2. The third term on
enters the path fronh; or some upstream link af;) exhibits the right hand side of (83) also converge to 0 in the mean-
ergodic stationary arrival at;. Under this assumption, which square sense:

we call “stationary departure approximation,” it becomasye 9 )
<max(0,s - Bg(p)5)) ] < lim s —0

to extend Theorem 4 to cover arbitrary cross-traffic routingi;, g

patterns. We skip the details of this step and next apply the’™ C(n—1) T noo0 CF(n — 1)2
stationary departure approximation to examine the impéct o (85)
packet-train lengt on the response cun. Combining (83), (84), and (85), we get

nh—>noloE [(G(gl, s,m) — 91)2} =0. (86)

C. Impact of Packet-Train Length Now consider the case wherig; > C'— ). We again examine
We now show that when packet-sizeis kept constant, as the sampling interval intervad, and according to Lemma 3,

the packet-train length — oo, the output dispersion random"€ have Ys(p)d s -
variableGy (g7, s,n) of path’P converges in the mean-square A=—F—tgt] (87)
sense to its fluid lower boundy (g;, s), for any g; and any
s. This means that not onlfZ[G ] converges teyy, but also
the variance of7 decays to 0 ag increases. We first prove
this result over a single-hop path. We then apply mathemiati
induction to extend this conclusion to any multi-hop patthwi
arbitrary cross-traffic routing under the stationary depar . _ Ys(p)d LS max (0, B5(p)d — s) (88)
approximation. (n—1)C  (n—-1)C C(n—-1) '

Theorem 5:Under the first assumption of this paper, for ghe first additive term in (88) converges in the mean-square
single-hop pathP with capacityC' and cross-traffic intensity sense to\g; + s)/C as shown in the following:
A < C, for any input dispersiory; € (0,00) and probing

The last term on the right side of (87) is the hop idle time
during the intervallt,t + A], and can be computed ds=
max (0, Bs(p)d — s) /C. The output dispersioty = A/(n —

(i) can be expressed as

packet sizes, the output dispersion random varialtlé con- lim E Y5(p)d — (n — 1)(A\gr + 5)\
verges to its fluid lower bound in the mean-square sense as n—oco (n—1)C
n — o0 2 2
) — I jim E (Yé(P) - <)\+ i)) =0, (89)
. )\gl + s C? s500 qgr
lim FE || G(gr,s,n) — max | g, c =0. (81)
nree where the second equality is due to the mean-square ergodici

_ ) of the flow aggregatiop. The second term in (88) is deter-
Proof: First consider the case whetlg; < C'— A. We  mjnistic, and its square converges to Oras+ co. The third
examine the output sampling interval random variable= term in (88) converges in the mean-square sense to 0 when
(n —1)G. The key is to view the first and last packets in thgycreases. To show this, first notice that since the arriate r

input packet-train as a packet-pair and view the other gackgs , is greater than hop capaciy, we have
in between as if they were from another cross-traffic flpw

The real cross-traffic and’ together form a flow aggregation Jm E[Bs(p)] = 0. (90)
denoted byp. Obviously, the packet arrival ip is still ergodic
stationary. The long term arrival rate pfis \+s/g; < C. The
workload-difference proces®;(p) is a zero-mean process.
According to Lemma 3. Further recall thAtcan be expressed
as follows 51Lm E [(B(;(p))z} -0 (91)

A =(n—1)gr + Ds(p) + R,

further notice thatB;(p) is distributed in afinite interval
[0, C]. Hence, (89) implies that the second momenfByfp)
also converges to 0 asincreases,

(82) This leads to the following
(max (0, Bs(p)d — s))j

whered = (n — 1)g; is the sampling interval of the input .
packet-train,R = max (0, (s — Bs(p)d)/C) is the intrusion 0 = ,}LII;OE
residual with respect to the flow aggregatipn The output

C(n—1)

dispersionG = A/(n — 1) can be expressed as < lim E ( Bs(p)d )21
T nooo C(n—1)
_ Ds(p) N ( s — Ba(p)5)
G=grt =7 tmax (0= ). (89 = lm (g—é)QE [(Bs(0))%] =0 92)

Notice that, as increases, the second additive term converg€ombining (88), (89), and (92), we get
to 0 in the mean-square sense. That is,

. Agr + s\
) nh_}rI;OE G(g1,s,n) — c =0. (93)
lim B (D é(p)) — i 2R g .
n—o0 n—1 n—oo  (n—1) Combining (86) and (93), the theorem follows. |
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Our next theorem extends this result to multi-hop path witlve omit the details. Hencé&; y converges toyy = yy_1 In
arbitrary cross-traffic routing. the mean square sense:

Theorem 6:Under the first two assumptions and the sta- : 21 _
tionary departure approximation, for amy-hop path? with JLIEOE [(GN — ) } =0 (100)

arbitrary cross-traffic routing, for any input dispersign € = For the case when, > C. From Theorem 1, we have
(0,00) and any probing packet sizg the random variable

Gn converges to its fluid lower boungy in the mean-square _ Zivzl XUy, NYk—1 + 8
YN = . (101)
sense as — oo, Cn
. Further, according to Lemma 3, we have
lim E |(Gylgr,5,n) = wlgr,9)°| 0. (94) ; (p)A
e Ynan_,(P)AN-1 5 =
Proof: We apply induction toi. When ¢ = 1, the An = Cy +a +1In, (102)

conclusion holds due to Theorem 5. Assuming that (94) holds - . . . .
for all i < N, we next show it also holds far= N. where Iy is the hop idle time ofL during the sampling

We apply the same method as in the proof of Theorem ig}erval of the packet train, which can be expressed as
We view the first and last probing packets and p,, as a

Iy =max (0 By.ay . (P)AN-1 =5 (103)
packet-pair, and view the rest of probing packets in thentrai N = max iy, Cxn :
as if they were from another cross-traffic floft. We denote _. . . .
the aggregation ofy and f’ as p. Due to the “stationary Dividing by n — 1 both sides of (102), we get~
departure approximation”, the traffic arrivaljincan be viewed G — Ynanv ,(P)GN-1 s In 104
as ergodic stationary when is sufficient large. We now N = Cn + (n—1)Cy + n—1 (104)
\(/avzagnc;rrlne ST: average arrival rate pfat link Ly. That is, The first additive term of (104) converges in the mean-square
P sense to\pyv—1/Cn. We omit the proof details but point out
) E[Qn] that it requires the condition that the varianceYof s(p) is
Ap = lim (95) ’

uniformly bounded by some constant for &)lwhich we have

oo (n— DE[GN_1(g1.5,n)] ° , | h we he
ustified previously. The second term is deterministic, &ad

\tNhf?.renglﬁf IS ;hg ;andom va(r:;able.z 'Tﬁ'cat”:g Fhe volume ]?tquare converges to 0 as— oo. The third term converges
raffic butiered betweeip, andpr, In he outgoing queue of 1, g i the mean-square asincreases. To prove this, we first

Ly Notice that show thatBy a,_,(p) converges in mean-square to 0. Let
N P(zx) be the distribution function of7 y_1, we have
BN =E Y Yia,,Ten)Ar 1| +(n—1)s, (96)

. 2
= lim B [(By.ay(p)’]
whereA,_; = (n — 1)Gg—1 is the sampling interval of the L o 2
input packet-paip; andp,, at L. Substituting (96) back into = Jm, 0 E {(BN’(”‘l)m(p)) } dP(z)
(95), we get the following due to the induction hypothesis: o< 9
" — [ Jim B[(Bro1a(p)*] aP@)
v = fin kot DA Ten)Groa] + 5 pos
P a5 E[GN_l(g], S,?’L)] = / OdP(x) = O, (105)
chvzl XLk, NYe—1 + 5 0

(97) where the interchange between the limit and the integration
is valid, because the second-order momentiy s(p) is

We now consider the case whey, < Cy. This leads to uniformly bounded byC%; for all 5. Next, recalling (103) and

vN = vyn—1 due to Theorem 1 and (97). Further, from Lemmasing an argument similar to (92), we can easily get

3, we have

YN-1

n—o00 n—1

. 2
. In
AN =ANn_1+ Dnay_,(P)+ Rn, (98) lim F ( ) =0. (106)

where Ry = maX(O,s — BN,AN,l(p)AN—l)/CN is the
intrusion residual ofp; on p, with respect toWx(p,1).
Dividing n — 1 at both sides of (98), we get the following
expression foiG y:

Combining the results for all three additive terms in (104¢,
conclude that when, > Cn, G converges in mean-square
to Apyv—1/Cn, Which equals toyy due to (97) and Theorem
1. Combining the two cases, we complete the inductive step
Dyay_(p)  max(0,s—Byay_,(p)Any—_1)  and the Theorem follows. |
n—1 Cn(n—1) : Let us make several comments on the conditions of this
(99) result. First note that Assumption 3 is not necessary in
As n — oo, the first additive ternGy_1 in (99) converges to this theorem. Also notice that in a single-hop path (i.e.,
vN—1 in mean-square sense due to the induction hypothesié.= 1), the theorem can be proved without the stationary
The other two terms converge to O in the mean-square serdgparture approximation. However, in the multi-hop cates,
The proofs are similar to what is shown in (84) and (85), arabproximation is needed even when cross-traffic routing is

Gn_1+
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one-hop persistent. The reason is that wheis large, the A. Testbed Experiments

probing packet-train is also viewed as a flow, whose arrval |, o r first experiment, we measure in the Emulab testbed

characteristics at all but the first hop are addressed by tﬁ?the response curves of a three-hop path with the follgwin

stationary departure approximation. . configuration matrix (all in mb/s) and one-hop persistenssr
Theorem 6 shows that when the packet-train length yaffic routing

increases while keepingconstant, not only¥'[G x] converges
to its fluid boundyy, but also the variance affy decays to 96 96 96
0. This means that we can expect almost the same output “\ 2 40 60 |- (107)
dispersion in different probings.
We generate cross-traffic using three NLANR [2] traces. All
inter-packet delays in each trace are scaled by a commar fact
D. Discussion so that the average rate during the trace duration becomes
the desired value. The trace durations after scaling are 1-2
Among the assumptions in this paper, some are critical jhinutes. We measure the average output dispersions at 100
leading to our results while others are only meant to simpliinput rates, from 1mb/s to 100mb/s with 1mb/s increasing.ste
discussion. We point out that the distributional statiélyar For each input rate, we use 500 packet-trains with packet siz
assumption on cross-traffic arrivals can be greatly relaxeg00 bytes. The packet train lengthis 65. The inter-probing
without harming our major results. However, this comes at tijelay is controlled by a random variable with sufficientlsgia
expense of much more intricate derivations. This is becausRan. The whole experiment lasts for about 73 minutes. All
when cross-traffic arrivals are allowed to be only seconthree traffic traces are replayed at random starting poimte o
order stationary or even non-stationary, the output dsper the previous round is finished. By recycling the same traces i
process{Gn(m)} will no longer be identically distributed. this fashion, we make the cross-traffic last until the experit
Consequently, the analysis of probing response curvesotansnds without creating periodicity. Also note that the packe
be reduced to the investigation ofsingle output dispersion trains are injected with their input rates so arranged that t
random variable. Moreover, we also have to rely on an ASTAQ0 trains for each input rate is evenly separated during the
assumption on packet-train probing [10] to derive the tssulyhole testing period.
in this paper, which we have avoided in the present setting. This experiment not only allows us to measure the response
Also note that the inter-flow independence assumption dsirve forn = 65, but also for any packet-train lengthsuch
made to maintain the distributional stationarity of crossfic that2 < k < n = 65, by simply taking the dispersions of the
arrivals at a flow aggregation level. It only helps us avoid utiirst & packets in each train. Fig. 2(a) shows the rate response
necessary mathematical rigor and is insignificant in sugmpr curve Z(r;, s,n) for k = 2,3,5,9,17,33 and 65 respectively.
our major conclusions. For comparison purposes, we also plot in the figure the multi-
On the other hand, the mean-square ergodicity playshap fluid curve F(r;), computed from Theorem 1, and the
central role in the (omitted) proofs for Theorem 4 and Theoresingle-hop fluid ~curveS‘(n) of the tight link L3. The rate
6. A cross-traffic flow with mean-square ergodicity, whenesponse curveg(ry, s,n) is defined as follows
observed in a large timescale, has an almost constant larriva . rr
rate. This “asymptotically fluid like” property, is very com Z(rr,s,m) = : (108)
L ! . . s/E[GnN(s/rr,s,n)]
mon among the vast majority of traffic models in stochastic
literature, and can be decoupled from any type of traffic sta-First note that the multi-hop fluid rate curve comprises four
tionarity. Consequently, our results have a broad applicab linear segments separated by turning poBtmb/s, 56mb/s,
in practice. and 76mb/s. The last two linear segments have very close
Next, we provide experimental evidence for our theoreticilopes and they are not easily distinguishable from eaatr oth

results using testbed experiments and real Internet meastift the figure. We also clearly see that the rate curve asymptot
ment data. ically approaches its fluid lower bound as packet-train feng

n increases. The curve far = 65 almost coincides with the
fluid bound. Also note that the smoothness of the measurement
V. EXPERIMENTAL VERIFICATION curve reflects the variance of the output dispersion random
variables. As the packet train length increases, the medsur
In this section, we measure the response curves in bethirve becomes smoother, indicating the fact that the veeian
testbed and real Internet environments. The results ngt oof the output dispersions is decaying. These observations a
provide experimental evidence to our theory, but also gial in agreement with those stated in Theorem 6.
guantitative ideas of the curve deviation given in (44). To Unlike single-hop response curves, which have no deviation
obtain the statistical mean of the probing output dispassio from the fluid bound when the input rate is greater than the
we rely on direct measurements using a number of probitigk capacity, multi-hop response curves usually deviabenf
samples. Even though this approach can hardly producetsafluid counterpart in the entire input range. As we see from
smooth response curve, the bright side is that it allows us k. 2(a), even when the input rate is larger than 96mb/s, the
observe the output dispersion variance, reflected by theedegmeasured curves still appear abake Also observe that the
of smoothness of the measured response curve. single-hop fluid curveS of the tight link L5 coincides with
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Fig. 2. Measured response curves using different packietigagth in the Fig. 3.  Measured response curves using different packets siz ns2
Emulab testbed. simulation.

the multi-hop fluid curveF within the input rate rangé), 56)

but falls below.F in the input rate range56, co). We repeat the same packet-train probing experiment and

Finally, we explain why we choose the link capacities tehe results are plotted in Fig. 2(b). The multi-hop fluid rate
be 96mb/s instead of the fast ethernet capadipmbl/s. In  curve F still coincides withS in the input rate rangéo, 56).
fact, we did set the link capacity to H@0mb/s. However, we When input rate is larger thasémb/s, the curveF positively
noticed that the measured curves can not get arbitrarilyeclajeviates fromS. However, the amount of deviation is smaller
to their fluid bound# computed based on the fast ethernghan that in one-hop persistent routing. The measured curve
capacity. Using pathload to examine the true capacity of eagpproaches the fluid lower boutfdwith decaying variance as
Emulab link, we found that their IP layer capacities are itt fapacket-train length increases. For= 65, the measured curve
96mb/s, not the same as their nominal value 100mb/s.  becomes hardly distinguishable fraf Next, we examine the

In our second experiment, we change the cross-traffic rouipact of probing packet size. Since in practice, packet siz
ing to path-persistent while keeping the path configuratias usually limited by ethernet MTU and can not be more than
matrix the same as given by (107). Therefore, the flow rat800 bytes. We decide to use ns2 simulation, where packet
vector now becomeg0, 20, 20). size can be set to any large value we wish.
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B. Simulation Results

The path settings and cross-traffic used in our simulatien ar
the same as those in Emulab testbed experiments. However,
the link capacities in ns2 simulation are what they are set to
be —100mb/s. In the first simulation experiment, cross-traffic
routing is one-hop persistent. We use packet-pairs ofrdiffe
sizes to measure the rate response curves. For each probirg
packet size, we probe the path at 45 input rates, from 10 mb.
to 100 mb/s with 2mb/s increasing step. For each input rateg
we use 500 packet-pairs to estimate the average output ra’t;é
s/E|Gy]. Fig. 3(a) plots the rate curves for probing packet
sizes 500, 1000, 2000, 4000, and 8000 (all in bytes). We see
that as packet-size increases, the response curve appsatgh
multi-hop fluid counterpart. This trend is obvious even tijlou
with the largest size used (8,000bytes), the convergerstdlis
not sufficient in certain input rate ranges.

In the second simulation experiment, we change the cross-
traffic routing to path-persistent while keep all other fast Probing Input Rate r| (mb/s)
the same. The rate curves associated with the five different (@) lulea— CMU
probing packet sizes are plotted in Fig. 3(b), where we see
the same convergence pattern even though the multi-hop fluid 2.4
curve becomes different.

—

20 40 60 80 100 120 140

22 ¢

C. Real Internet Measurements

We conducted packet-train probing experiments on several
Internet paths in the RON testbed to verify our analysis if= 18 |
real networks. Since neither the path configuration nor thé&D,
cross-traffic routing information is available for theseeimet 4 1.6 |
paths, we are unable to provide the fluid bounds. Therefore(;n;
we verify our theory by observing the convergence of the™ 14 |
measured curves to a piece-wise linear curve as packat-trai
length increases. 1.2 +

In the first experiment, we measure the rate response curve

of the path from the RON node lulea in Sweden to the 1

RON node at CMU. The path has 19 hops and a fast- : : : : : : :
ethernet minimum capacity, as we find out using traceroute 20 40 60 80 100 120 140
and pathrate. We probe the path at 29 different input rates, Probing Input Rate r, (mb/s)

from 10mb/s to 150mb/s with a 5mb/s increasing step. For
each input rate, we use 200 packet-trains of 33 packets each
to estimate the output probing rate/ E[Gx]. The whole Fig. 4. Measured response curves of two Internet paths in R@fted .
experiment takes about 24 minutes. Again, the 200 packet-
trains for each of the 29 input rates are so arranged that
they are approximately evenly separated during the 24-mindraffic intensity A, of the tight link and getC, = 96mb/s
testing period. The measured rate response curves agsbciahd \, = 2mb/s. Using these results, we retroactively plot the
with packet-train length 2, 3, 5, 9, 17, and 33 are plotted single-hop fluid bounds and observe that it almost overlaps
Fig. 4(a), where we see that the response curve approachéh the measured curve using packet-trains of 33-packet
a piece-wise linear bound as packet-train length increases length. Notice that the bottleneck link is under very light
the same time, response curves measured using long trainswutitization during our 24-minute measurement period. We
smoother than those measured using short trains, indictten can also infer based on our measurement that the available
decaying variance of output dispersions. In this experimeandwidth of the path is constrained mainly by the capacity
the curve measured using probing trains of 33-packet lengththe bottleneck link and that the probing packet-traingeha
exhibits sufficient smoothness and clear piece-wise lityear undergone significant interaction with cross-traffic at non
We have observed two linear segments from the figure. Bottleneck links. Otherwise, according to Theorem 3 in [10]
further investigation shows that the fluid bound of this I-h the response curves measured using short train lengthslwoul
path only has two linear segments. not have appeared above the single-hop fluid bound when
Based on (21), we apply linear regression on the secotie input rate is larger than the tight link capaciigmbl/s.
linear segment to compute the capacity and the cross- We believe that the tight link of the path is one of the last-

(b) pwh — NYU
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mile lightly utilized fast-ethernet links and that the bbhoke A ri/r
links are transmitting significant amount of cross-traffiere 150
though they still have available bandwidth much more than th
fast-ethernet capacity. Also notice that similar to outked
experiments, fast-ethernet links only hagémb/s IP-layer
capacity.

We repeat the same experiment on another path from thhe
RON node pwh in Sunnyvale California to the NYU RON
node. This path has 13 hops and a fast-ethernet minimu
capacity. Due to substantial cross-traffic burstiness qalie
path, we use packet-trains of 129-packet length in our pgbi
experiment. The other parameters such as the input rates 3
the number of trains used for each rate are the same as|in
the previous experiment. The whole measurement duration fs ; ; : ;
about20 minutes. The measured response curves are plotted A C !;/O[ C —
in Fig. 4(b). As we see, the results exhibit more measure- P b 2 b
ment variability compared to the luleaCMU path. However, Fig. 5. lllustration of two types of curve deviations.
as packet-train length increases, the variability is gadlglu
smoothed out and the response curve converges to a piece-
wise linear bound. We again apply linear regression on tMé&ere the probing packet sizes set tol500bytes, the packet-
response curve with packet-train length 129 to obtain et ti train lengthn = 2, and the bottleneck link capacity’, is
link information. We getC, = 80mb/s and), = 3mb/s, assumed known.
which does not agree with the minimum Capacity reported It is shown in [10] that the spruce estimator is unbiased in
by pathrate. We believe that pathrate reported the corrééigle-hop paths regardless of the packet-train parameter
information. Our underestimation is most probably due t@ndn. This means that the statistical mean of (109) is equal
the fact that there are links along the path with very simild® A7 for anys > 0 and anyn > 2. In a multi-hop pathP, a
available bandwidth. Consequently, the second linear sagmnecessary condition to maintain the unbiasedness property
become too short to detect. The linear segment we are actifig spruce estimator is
upon is likely to be a latter one. This experiment confirms
our analysis, at the same time shows some of the potential
difficulties in exacting tight link information from the rpense
curves.

Elastic Deviation

N

Rl

Non-elastic Deviation

O

N Elastic Deviation

rr

Ao + Cp
b

This means that at the input rate poiay, the real rate
response of patf® must be equal to the single-hop fluid rate
response at the tight link oP.

. S _ . This condition is usually not satisfied. Instead, due to
We now discuss the implications of our results on existing, o 5rem 2 and Property 4, we have

measurement proposals. Except for pathChirp, all othdr-tec ~ ~ ~
niques such as TOPP, pathload, PTR, and Spruce are related Z(Cy,s,n) > F(Cp) > S(Cy). (111)
to our analysis.

Z(Cy,s,n) = = S(Cy). (110)

VI. | MPLICATIONS

This implies that (109) is a negatively biased estimatoA pf

A TOPP The amount of bias is given by

TOPP is based on multi-hop fluid rate response curveCs (Z(vasvn) - ]:(Cb)) + Gy (]:(Cb) - S(Cb))- (112)
F with one-hop persistent cross-traffic routing. TOPP us
packet-pairs to measure the real rate response carvand
assumes that the measured curve will be the sanfewasen a
large number of packet-pairs are used. However, our asal
shows that the real curvg is different from F, especially
when packet-trains of short length are used (e.g., packies)p
Note that there is not much path information i that is
readily extractable unless it is sufficiently close to itsidflu
counterpartF. Hence, to put TOPP to work in practice, on
must use long packet-trains instead of packet-pairs.

q‘%e first additive term in (112) is the measurement bias chuse
by the curve deviation of from F at input rateC;, which
vanishes as — oo according to Theorem 6. Hence we call
Y} elastic bias The second additive term is the portion of
measurement bias caused by the curve deviatioh fbm S
at input rateCj,, which remains constant with respect to the
packet-train parameters and n. Therefore it isnon-elastic
We illustrate the two types of curve deviations in Fig. 5. &lot
?hat whenC, < s/ay, non-elastic bias is 0. Further recall
that s/ay > Ape as stated in Property 3. Hence, a sufficient
condition for zero non-elastic bias %, < Ay2. Conceptually,
B. Spruce elastic deviation stems from cross-traffic burstiness amat n
Using the notations in this paper, we can write sprucegastic deviation is a consequence of multi-hop effects.
available bandwidth estimator as follows In Table II, we give the amount measurement bias caused by
c (1 ~ Gn(s/Ch,s,n) — s/Cb> (109) the two types of curve deviations in both the Emulab testbed
b 5/Cy ’ experiments and the real Internet probing measurementeon th
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TABLE Il

SPRUCEBIAS IN EMULAB AND INTERNETEXPERIMENTS(IN MB/S) when there are multiple tight links along the path. Our ressul
demonstrate that the deviation 8{r;, s, n) from F in the in-
Experiment  Elastic bias Non-elastic bias  Total bias put rate rang€0, Ap) gives rise to a potential underestimation
Emulab-1  0.56 x 96 0.315 x 96 74.4 in pathload. The underestimation is maximized and becomes
Emulab-2  0.28 x 96 0.125 x 96 38.8 clearly noticeable when non-bottleneck links have the same
lulea-cmu__ 0.25 x 96 0 24 available bandwidth aslp, given that the other factors are

kept the same.

Even through multiple tight links cause one-way-delay

pa_th frorr;l;:lea to EML_J.hNote ;hat n th? testbed 9Xpe“memcreasing trend for packet-trains with input rate lessntha
using a S-hop path with one-hop persistent routing, sprugﬁ)' this isnot an indication that the network can not sustain

suffehrs abgut74mb/|s mer]asurglm;nt bbla(sj, ‘_’é%g/'s twu;]e 4Such an input rate. Rather, the increasing trend tiasient
much as the actual path available bandwi S. In the phenomenon resulting from probing intrusion residual, &nd

second Emulab experiment using path-persistent Cro&{ra yisa ynears when the input packet-train is sufficiently long
_the measurement bias is reduqecB&JSmb/s,_whlch however Hence, it is our new observation that by further increasing
is still more than the actual avaﬂable_bandWldth. In botsesa a packet-train length, the underestimation in pathload ¢
spruce estimator converges to negative values. We usedespiyl, mitigated.

to estimate the two paths and it did in fact give Omb/s results

in both cases. For the Internet path from lulea to CMU, spruce il

suffers 24mb/s negative bias and produces a measurement | ] . ,
result less thamomb/s, while the real value is arousdmb/s.  besides the measurement techniques we discussed earlier,

We also use pathload to measure the three paths and obsM@g‘nder_et al. [13] first discusseql the rate response curve
that it produces pretty accurate results. of a multi-hop network path carrying fluid cross-traffic with

The way to reduce elastic-bias is to use long pack&ne'hOp persistgnt routing pattern..Dovro_&s al. [4], [3]
trains instead of packet-pairs. In the lule&EMU experiment, cc_JnS|de_red the impact of cro;s-trafﬁc routing on the output
using packet-trains of 33-packet, spruce can almost cdeiple dispersion rate of a packet-train. _It was also pomteq oat th
overcome the24mb/s bias and produce an accurate resuffi€ Output rate of a back-to-back input packet-train (impie
However, there are two problems of using long packet-trairfg = €1, the capacity of the first hop,) converges to a point
First, there is not a deterministic train length that gusees €Y call “asymptotic dispersion rate (ADR)" as packetrira
negligible measurement bias on any network path. Secoﬁ?ﬂgth increases. The authors provujed an_lnformaljua.tlbo
when router buffer space is limited and packet-train lengft? {© Why ADR can be computed using fluid cross-traffic. They
are too large, the later probing packets in each train mdgmonstrated the computation of ADR for several special pat
experience frequent loss, making it impossible to acclyraté:ond't'ons' Note that using the notations in this paper, ADR
measureF (Cy). After all, spruce uses input ratg,, which ¢an be expressed as
can be too high for the bottleneck router to accommodate long lim S _ S . (113)
packet-trains. On the other hand, note that non-elasti isia n—oo GN(s/Cr,8,m)  N(s/Ch,s)
an inherit problem for spruce. There is no way to overcon@ur work not only formally explains previous findings, but
it by adjusting packet-train parameters. also generalizes them to such an extent that allows any input

rate and any path conditions.
C. PTR and pathload Kang et al. [9] analyzed the gap response of a single-hop

PTR searches the first turning point in the response cu@th with bursty cross-traffic using packet-pairs. The pape
Z(rr,s,n) and takes the input rate at the turning point a3ad & focus on large input probing rate. L8t al. extended
the path available bandwidtd». This method can produceth€ single-hop analysis for packet-pairs [11] and packens
accurate result when the real response cuvis close tof, [1Q] to arbitrary input rates and discussed the impact okegc
which requires packet-train length to be sufficiently large. train parameters.

Otherwise, PTR is also negatively biased and underestimate

Ap. The minimum packet-train length needed is dependent VIII. CONCLUSION

on the path conditions. The current version of PTR use packefThis paper provides a stochastic characterization of gacke
train lengthn = 60, which is probably insufficient for the train bandwidth estimation in a multi-hop path with arhitisa
Internet path from pwh to CMU experimented in this paperrouted cross-traffic flows. Our main contributions include

Pathload is in spirit similar to PTR. However, it searchederivation of the multi-hop fluid response curve as well as
the available bandwidth region by detecting one-way-deldlye real response curve and investigation of the conveggenc
increasing trend within a packet-train, which is differénoim  properties of the real response curve with respect to packet
examining whether the rate respor-, s, n) is greater than train parameters. The insights provided in this paper nt on
one [8]. However, since there is a strong statistical cati@h help understand and improve existing techniques, but nsay al
between a high rate responggr;,s,n) and the one-way- lead to a new technique that measures tight link capacity.
delay increasing tend within packet-trains, our analysis ¢ There are a few unaddressed issues in our theoretical
explain the behavior of pathload to a certain extent. Relsatl, framework. In our future work, we will identify how various
as reported in [7], pathload underestimates availablewaltl factors, such as path configuration and cross-traffic rgutin
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