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Motivation

• Structured P2P systems construct DHTs
(Distributed Hash Tables) for efficient routing
– Chord, CAN, de Bruijn

• Data objects are hashed into some virtual 
coordinate spaces

• Each user holds a zone 
in the DHT space
– Stores data objects within 

its zone and answers queries 
for these objects C
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Motivation 2

• Notice that the amount of user load is 
proportional to zone size
– Imbalance can lead to “hotspots” and lower 

performance

• In addition, graph structure is unbalanced
– Which leads to increased diameter, smaller node 

degree, lower bisection width

• Our paper studies how zone-balancing decisions 
during node join affect the resulting zone sizes 
– We derive the probability bounds on the maximum and 

minimum zone sizes
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Basics

• Consider a system with n users
– Assume a sequential join process

• Define two metrics for load balancing:

Even 
partition

maxmin

• We focus on the bounds of these two metrics 
that hold with probability 1 — n—ε (ε> 0)

avg

fmax =max / avg

avg

fmin = avg /min

Random 
partition
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Random Join Process

• Each new user randomly samples one or more 
existing peers and splits one of their zones

• The join decision includes two factors:

Splitting

Random Center
Sampling

Single-Point Multi-Point
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Random Join Process 2

• We will compare these algorithms in terms of 
fmax and fmin
– The optimal bound for the two metrics is 2

– No method can achieve better load-balancing

• Due to the time limit, we skip the single-point 
algorithms
– Summary for random and center splits:
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Multi-Point Center-Split
• Next we examine multi-point schemes

– We use center-split for the rest of the talk

• Greedy methods
– Motivated by the “power of two choices”

• Idea: extend the center-split model to sample d
random points before the actual join

• Intuitive observation:
– The more points sampled, the better the graph is 

balanced, but what are the actual bounds?
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Multi-Point Center-Split 2
• The extreme case is to sample every peer

– The resulting fmax is always optimal and concentrates 
on the ideal value 2

• However, this method will suffer from huge traffic 
overhead

• Thus, the tradeoff is between:
– The balancing performance of the algorithm, and

– The amount of sampling traffic

• Next we study two multi-point schemes and 
present our analysis of this problem
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Purely Random d-sampling
• The method samples d independent uniformly 

random points X1, X2,…, Xd

– Splits the largest zone among the d choices

• How does the performance improve as a function 
of d?

• Based on the “balls-into-bins” model, we derive 
an asymptotic bound on fmax
– The analysis is intractable when applying this model to 
fmin

– We leave this direction for future work
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Purely Random d-sampling 2
• Theorem 1: Under d-point sampling and center-

splits, the following bound holds with probability 
at least 1 — n—ε

• For d= 1, it reduces to the single-point model

• For d≥ 2, the term (1 + ε) log n is scaled down 
by a factor of d

– The “power of two choices” bound log log n / log d is 
not achieved here
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Simulating Random d-sampling
• Each of the following simulations is run for 1,000

graphs with 30,000 nodes each
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Further Discussion

• For d= c log n, 

• For c→∞, the second term goes to zero
– And fmax is bounded by 2 with high probability

• Recall from the single-point method,
– fmax · 28 for n= 106 with probability 1 — 1/n

• The improvement is significant 
– But results in additional traffic overhead
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Reducing Traffic Overhead

• How to reduce the join overhead?
– While keeping the graph balanced

• Idea:
– Randomly sample a peer 

– Then deterministically sample its neighbors

– Subsequently walk along the edges of the graph to 
find additional peers to sample

• Two walking strategies:
– Random walk selects arbitrary (random) neighbors

– Biased walk selects the largest neighbors
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Reducing Traffic Overhead 2
• Intuition: “larger” nodes are more likely to know 

additional “large” nodes

• This reduces the join overhead by a factor of 
Θ(kDav)

– k is graph degree and Dav is the average distance

• The exact analysis is nontrivial since the walk 
process depends on the state of peers
– We leave the exact model for future work

• Instead, we study a similar deterministic model 
– According to our analysis, it provides a lower bound 

on the performance of the other d-walk models
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Deterministic d-sampling
• The model samples a random point X1

– Then checks d — 1 additional points according to a 
simple deterministic rule

– Points X2,…,Xi…, Xd are obtained by adding i/d of 
the total size of the DHT space to X1

• An example of d= 4

– X1 is the first random sample

– The points X2, X3, X4

are found by adding 
¼, ½, and ¾ of the circle’s 
circumference to X1

X1

X2

X4

X3
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Deterministic d-sampling 2
• Theorem 2: In deterministic sampling, the 

following bound holds with probability at least 
1 — n—ε

• This result differs from that of random d-sampling 
by a constant η

• Notice that η is positive
– Thus, the deterministic model is worse than the 

random model
– But how much is the difference?

where
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Simulating Deterministic Sampling

• The model is conservative on some points
– Round-off errors at d not powers of 2
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Purely Random vs Deterministic

• With the previous results on fmax, we compare 
the two multi-point models (ε = 0.22)
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Purely Random vs Deterministic 

• Further question:
– How many samples does the deterministic model need 

to approximate the random model?

• Theorem 3: Assuming that the random method 
samples c1 logn points and the deterministic 
method samples c2 logn points, the corresponding 
upper bounds on fmax are equal if
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Pure Random vs Deterministic 3

• For c1 = 1 (fmax · 4) and ε = 1 (probability
1—1/n), the two methods are equivalent if 
– The deterministic model samples 2.2 times more 

points than the random model

• For c1 = 2 (fmax · 3.5) and ε= 2 (probability
1—1/n2), the difference is by a factor of 5.1

• In summary: 
– Each model has its benefits (low overhead vs. 

performance)

• What about graph properties?
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P2P Simulations

• We next compare the performance of multi-point 
methods in P2P simulations
– Our main metric of interest is the degree distribution

• Three models
– Purely random d-sampling 

– Random walk

– Biased walk

• De Bruijn DHT (based on ODRI, SIGCOMM 
2003) with n = 30,000 nodes and degree k = 8
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Degree Distribution - CDF

• Single-point, center-split scheme sets the basis 
for comparison

0

0.2

0.4

0.6

0.8

1

1 10 100
Degree

C
D

F

• 100 iterations

• Largest degree 81

• 5.7% of all nodes 
have degree 1

• 13% with degree 1
or 2



28

Degree Distribution - CDF

• Multi-point schemes perform much better

• Purely random

– d1 = 11 

• Deterministic
– d2 = 24 = 2.2d1

• 40% of the nodes 
have the ideal 
degree 8
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Degree Distribution - PDF

• Overhead: random 55 messages per join and 
deterministic 7 per join, but performance is similar
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Conclusion
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