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Overview
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Motivation

o Structured P2P systems construct DHTSs
(Distributed Hash Tables) for efficient routing

— Chord, CAN, de Bruijn

« Data objects are hashed into some virtual
coordinate spaces

e Each user holds a zone
In the DHT space

— Stores data objects within
its zone and answers queries
for these objects

An instance of zone partition



Motivation 2

* Notice that the amount of user load Is
proportional to zone size

— Imbalance can lead to “hotspots” and lower
performance
* |n addition, graph structure is unbalanced
— Which leads to increased diameter, smaller node
degree, lower bisection width

* Our paper studies how zone-balancing decisions
during node join affect the resulting zone sizes

— We derive the probability bounds on the maximum and
minimum zone sizes 4



Basics

 Consider a system with n users

— Assume a sequential join process

e Define two metrics for load balancing:

Random | many | max | L
partition | | | | | | |
0
Even | | | | | |
partition (l) I avg I I avg I I I
foin = avg  min frnaw = mazx [ avg

 We focus on the bounds of these two metrics
that hold with probability 1 —n= (¢ > 0)



Random Join Process

 Each new user randomly samples one or more
existing peers and splits one of their zones

e The join decision includes two factors:

Splitting

Random Center

Sampling

Single-Point Multi-Point




Random Join Process 2

 We will compare these algorithms in terms of
fmax and fmin

— The optimal bound for the two metrics is 2

— No method can achieve better load-balancing

e Due to the time limit, we skip the single-point
algorithms

— Summary for random and center splits:

Random | Center
fﬂm:c < (1 -+ E) logn fma-;r < (1 -+ E) logn

fm"f”: E nl—l—g fT.i"}ti'.l'.-.’f: E 3.246\/409 i
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Multi-Point Center-Split

Next we examine multi-point schemes

— We use center-split for the rest of the talk

Greedy methods

— Motivated by the “power of two choices”

ldea: extend the center-split model to sample d
random points before the actual join

Intuitive observation:

— The more points sampled, the better the graph is
balanced, but what are the actual bounds?



Multi-Point Center-Split 2

The extreme case Is to sample every peer

— The resulting f, .. IS always optimal and concentrates

on the ideal value 2

However, this method will suffer from huge traffic
overhead

Thus, the tradeoff is between:
— The balancing performance of the algorithm, and
— The amount of sampling traffic

Next we study two multi-point schemes and
present our analysis of this problem 10



A Big Map




Purely Random d-sampling

 The method samples d independent uniformly
random points X, X,,..., X,

— Splits the largest zone among the d choices

 How does the performance improve as a function
of d?

e Based on the “balls-into-bins” model, we derive
an asymptotic bound on f

max

— The analysis is intractable when applying this model to

f min

— We leave this direction for future work
12



Purely Random d-sampling 2

 Theorem 1: Under d-point sampling and center-

splits, the following bound holds with probabillity
atleast1-n-—=

<D (14+¢e)logn ©(log(d—+ logn))
rearr d o {]E

 Ford=1, it reduces to the single-point model
f?]".!'ﬂ,_‘_‘[: ‘:_:: (1 -+ E) |Gg n — @('Dg IDg T.-'.-)

e Ford> 2, theterm (1 + ¢) log n Is scaled down
by a factor of d

— The “power of two choices” bound log logn / log d is
not achieved here o



Simulating Random d-sampling

« Each of the following simulations is run for 1,000
graphs with 30,000 nodes each

16
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Further Discussion

For d =clog n,

fmaz < 24 1+E_U(1)

C

For c—o0, the second term goes to zero
— And f

max

IS bounded by 2 with high probability

Recall from the single-point method,
— < 28 for n = 10° with probability 1-1/n

max

The improvement is significant

— But results in additional traffic overhead

15



Reducing Traffic Overhead

 How to reduce the join overhead?
— While keeping the graph balanced

e |dea:
— Randomly sample a peer
— Then deterministically sample its neighbors
— Subsequently walk along the edges of the graph to
find additional peers to sample
 Two walking strategies:
— Random walk selects arbitrary (random) neighbors
— Biased walk selects the largest neighbors

16



Reducing Traffic Overhead 2

Intuition: “larger” nodes are more likely to know
additional “large” nodes

This reduces the join overhead by a factor of
O(kD,,)

— k Is graph degree and D, is the average distance

The exact analysis Is nontrivial since the walk
process depends on the state of peers

— We leave the exact model for future work

Instead, we study a similar deterministic model

— According to our analysis, it provides a lower bound
on the performance of the other d-walk models

17
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Deterministic d-sampling

 The model samples a random point X,

— Then checks d — 1 additional points according to a
simple deterministic rule

— Points X,,...,X,..., X, are obtained by adding :/d of
the total size of the DHT space to X,
X
« An example of d =4 :

— X, Is the first random sample

— The points X,, X, X, X3 X1
are found by adding
Ya, Y2, and % of the circle’s
circumference to X, X,

19



Deterministic d-sampling 2

 Theorem 2: In deterministic sampling, the

following bound holds with probabillity at least
1l-n¢

f‘f?’LﬂlI {_: 2 I

(14¢)logn | ©(loglogn)
- —
d d
wherenzlﬂg(l e Img(l R

* This result differs from that of random d-sampling
by a constant 7

* Notice that 7 is positive

— Thus, the deterministic model is worse than the
random model

— But how much is the difference? 20



Simulating Deterministic Sampling

 The model is conservative on some points

— Round-off errors at d not powers of 2

16
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Purely Random vs Deterministic

» With the previous results on f,_ ., we compare

the two multi-point models (¢ = 0.22)

20 - 24 -

1 random 1 random
16 | m deterministic 20 - m deterministic
16 -
12 -
8 812 -
S =
Y 8 | —
8 _
0 T T I l 0 ; “ m
1 2 100 1 100
Number Of Samples d Number of samples d

n=10° n=10" -



Purely Random vs Deterministic

e Further question:

— How many samples does the deterministic model need
to approximate the random model?

 Theorem 3: Assuming that the random method
samples ¢, logn points and the deterministic
method samples ¢, logn points, the corresponding
upper bounds on f___ are equal If

max

_ (1+¢)c
c2

 14¢e—cqlog(l- ite)
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Pure Random vs Deterministic 3

Forc,=1 (f,, . <4)ande=1 (probability
1-1/n), the two methods are equivalent if

— The deterministic model samples 2.2 times more
points than the random model

Forc, =2 (f,,. < 3.5) and e =2 (probability
1-1/7n2), the difference is by a factor of 5.1

In summary:

— Each model has its benefits (low overhead vs.
performance)

What about graph properties?

24
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P2P Simulations

* We next compare the performance of multi-point
methods in P2P simulations

— Our main metric of interest is the degree distribution

 Three models
— Purely random d-sampling
— Random walk
— Biased walk

e De Bruijn DHT (based on ODRI, SIGCOMM
2003) with n = 30,000 nodes and degree k£ = 8

26



Degree Distribution - CDF

« Single-point, center-split scheme sets the basis
for comparison

e 100 iterations
e Largest degree 81

e 5.7% of all nodes
have degree 1

e 13% with degree 1
or 2

1 10 100
Degree
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Degree Distribution - CDF

e Multi-point schemes perform much better

e Purely random

0.8 | —d; =11
05 e Deterministic
(o)
04 —d,=24 = 2.2d,

0.2 ~4 puelyrandom o 4095 of the nodes
& randomw alk _
; L ~® biasedwak have the ideal
1 10 100 degree 8

degree
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Degree Distribution - PDF

0.5 -
—aA— purely random
¢ randomw alk
04 - —e— biased w alk

0.3 -

PDF

0.2 -

0.1 -

1 10 100
degree

e QOverhead: random 55 messages per join and
deterministic 7 per join, but performance is similar
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Conclusion
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