
8

IRLbot: Scaling to 6 Billion Pages
and Beyond

HSIN-TSANG LEE, DEREK LEONARD, XIAOMING WANG, and
DMITRI LOGUINOV

Texas A&M University

This article shares our experience in designing a Web crawler that can download billions of pages
using a single-server implementation and models its performance. We first show that current
crawling algorithms cannot effectively cope with the sheer volume of URLs generated in large
crawls, highly branching spam, legitimate multimillion-page blog sites, and infinite loops created
by server-side scripts. We then offer a set of techniques for dealing with these issues and test their
performance in an implementation we call IRLbot. In our recent experiment that lasted 41 days,
IRLbot running on a single server successfully crawled 6.3 billion valid HTML pages (7.6 billion
connection requests) and sustained an average download rate of 319 mb/s (1,789 pages/s). Unlike
our prior experiments with algorithms proposed in related work, this version of IRLbot did not
experience any bottlenecks and successfully handled content from over 117 million hosts, parsed
out 394 billion links, and discovered a subset of the Web graph with 41 billion unique nodes.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems—Measurement techniques; H.3.3 [Information Storage And Retrieval]: Information
Search and Retrieval—Search process; C.2.0 [Computer-Communication Networks]: General

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: IRLbot, large scale, crawling

ACM Reference Format:
Lee, H.-T., Leonard, D., Wang, X., and Loguinov, D. 2009. IRLbot: Scaling to 6 billion pages and
beyond. ACM Trans. Web. 3, 3, Article 8 (June 2009), 34 pages.
DOI = 10.1145/1541822.1541823 http://doi.acm.org/10.1145/1541822.1541823

1. INTRODUCTION

Over the last decade, the World Wide Web (WWW) has evolved from a handful
of pages to billions of diverse objects. In order to harvest this enormous data
repository, search engines download parts of the existing Web and offer Internet

An earlier version of the article appeared in the World Wide Web Conference (WWW’08) 2008.
Authors’ addresses: H.-T. Lee, Microsoft Corp., Redmond, WA 98052; D. Leonard, X. Wang, D.
Loguinov, Department of Computer Science, Texas A&M University, College Station, TX 77843;
email: {h0l9314, dleonard, xmwang, dmitri}@cs.tamu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1559-1131/2009/06-ART8 $10.00
DOI 10.1145/1541822.1541823 http://doi.acm.org/10.1145/1541822.1541823

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:2 • H.-T. Lee et al.

users access to this database through keyword search. Search engines consist of
two fundamental components: Web crawlers, which find, download, and parse
content in the WWW, and data miners, which extract keywords from pages,
rank document importance, and answer user queries. This article does not deal
with data miners, but instead focuses on the design of Web crawlers that can
scale to the size of the current1 and future Web, while implementing consistent
per-Web site and per-server rate-limiting policies and avoiding being trapped
in spam farms and infinite Webs. We next discuss our assumptions and explain
why this is a challenging issue.

1.1 Scalability

With the constant growth of the Web, discovery of user-created content by Web
crawlers faces an inherent trade-off between scalability, performance, and re-
source usage. The first term refers to the number of pages N a crawler can
handle without becoming “bogged down” by the various algorithms and data
structures needed to support the crawl. The second term refers to the speed S
at which the crawler discovers the Web as a function of the number of pages
already crawled. The final term refers to the CPU and RAM resources � that
are required to sustain the download of N pages at an average speed S. In
most crawlers, larger N implies higher complexity of checking URL uniqueness,
verifying robots.txt, and scanning the DNS cache, which ultimately results in
lower S and higher �. At the same time, higher speed S requires smaller
data structures, which often can be satisfied only by either lowering N or
increasing �.

Current research literature [Boldi et al. 2004a; Brin and Page 1998; Cho et al.
2006; Eichmann 1994; Heydon and Najork 1999; Internet Archive; Koht-arsa
and Sanguanpong 2002; McBryan 1994; Najork and Heydon 2001; Pinkerton
2000, 1994; Shkapenyuk and Suel 2002] generally provides techniques that can
solve a subset of the problem and achieve a combination of any two objectives
(i.e., large slow crawls, small fast crawls, or large fast crawls with unbounded
resources). They also do not analyze how the proposed algorithms scale for very
large N given fixed S and �. Even assuming sufficient Internet bandwidth and
enough disk space, the problem of designing a Web crawler that can support
large N (hundreds of billions of pages), sustain reasonably high speed S (thou-
sands of pages/s), and operate with fixed resources � remains open.

1.2 Reputation and Spam

The Web has changed significantly since the days of early crawlers [Brin and
Page 1998; Najork and Heydon 2001; Pinkerton 1994], mostly in the area of
dynamically generated pages and Web spam. With server-side scripts that can
create infinite loops, high-density link farms, and unlimited number of host-
names, the task of Web crawling has changed from simply doing a BFS scan of

1Adding the size of all top-level domains using site queries (e.g., “site:.com”, “site:.uk”), Google’s
index size in January 2008 can be estimated at 30 billion pages and Yahoo’s at 37 billion. Further-
more, Google recently reported [Official Google Blog 2008] that its crawls had accumulated links
to over 1 trillion unique pages.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:3

the WWW [Najork and Wiener 2001] to deciding in real time which sites contain
useful information and giving them higher priority as the crawl progresses.

Our experience shows that BFS eventually becomes trapped in useless con-
tent, which manifests itself in multiple ways: (a) the queue of pending URLs
contains a nonnegligible fraction of links from spam sites that threaten to over-
take legitimate URLs due to their high branching factor; (b) the DNS resolver
succumbs to the rate at which new hostnames are dynamically created within a
single domain; and (c) the crawler becomes vulnerable to the delay attack from
sites that purposely introduce HTTP and DNS delays in all requests originating
from the crawler’s IP address.

No prior research crawler has attempted to avoid spam or document its im-
pact on the collected data. Thus, designing low-overhead and robust algorithms
for computing site reputation during the crawl is the second open problem that
we aim to address in this work.

1.3 Politeness

Even today, Web masters become easily annoyed when Web crawlers slow down
their servers, consume too much Internet bandwidth, or simply visit pages with
“too much” frequency. This leads to undesirable consequences including block-
ing of the crawler from accessing the site in question, various complaints to the
ISP hosting the crawler, and even threats of legal action. Incorporating per-
Web site and per-IP hit limits into a crawler is easy; however, preventing the
crawler from “choking” when its entire RAM gets filled up with URLs pending
for a small set of hosts is much more challenging. When N grows into the bil-
lions, the crawler ultimately becomes bottlenecked by its own politeness and
is then faced with a decision to suffer significant slowdown, ignore politeness
considerations for certain URLs (at the risk of crashing target servers or wast-
ing valuable bandwidth on huge spam farms), or discard a large fraction of
backlogged URLs, none of which is particularly appealing.

While related work [Boldi et al. 2004a; Cho et al. 2006; Heydon and Najork
1999; Najork and Heydon 2001; Shkapenyuk and Suel 2002] has proposed
several algorithms for rate-limiting host access, none of these studies has ad-
dressed the possibility that a crawler may stall due to its politeness restrictions
or discussed management of rate-limited URLs that do not fit into RAM. This
is the third open problem that we aim to solve in this article.

1.4 Our Contributions

The first part of the article presents a set of Web crawler algorithms that ad-
dress the issues raised earlier and the second part briefly examines their per-
formance in an actual Web crawl. Our design stems from three years of Web
crawling experience at Texas A&M University using an implementation we call
IRLbot [IRLbot 2007] and the various challenges posed in simultaneously: (1)
sustaining a fixed crawling rate of several thousand pages/s; (2) downloading
billions of pages; and (3) operating with the resources of a single server.

The first performance bottleneck we faced was caused by the complexity of
verifying uniqueness of URLs and their compliance with robots.txt. As N scales

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:4 • H.-T. Lee et al.

into many billions, even the disk algorithms of Najork and Heydon [2001] and
Shkapenyuk and Suel [2002] no longer keep up with the rate at which new
URLs are produced by our crawler (i.e., up to 184K per second). To understand
this problem, we analyze the URL-check methods proposed in the literature and
show that all of them exhibit severe performance limitations when N becomes
sufficiently large. We then introduce a new technique called Disk Repository
with Update Management (DRUM) that can store large volumes of arbitrary
hashed data on disk and implement very fast check, update, and check+update
operations using bucket-sort. We model the various approaches and show that
DRUM’s overhead remains close to the best theoretically possible as N reaches
into the trillions of pages and that for common disk and RAM size, DRUM can
be thousands of times faster than prior disk-based methods.

The second bottleneck we faced was created by multimillion-page sites (both
spam and legitimate), which became backlogged in politeness rate-limiting to
the point of overflowing the RAM. This problem was impossible to overcome
unless politeness was tightly coupled with site reputation. In order to deter-
mine the legitimacy of a given domain, we use a very simple algorithm based
on the number of incoming links from assets that spammers cannot grow to
infinity. Our algorithm, which we call Spam Tracking and Avoidance through
Reputation (STAR), dynamically allocates the budget of allowable pages for
each domain and all of its subdomains in proportion to the number of in-degree
links from other domains. This computation can be done in real time with lit-
tle overhead using DRUM even for millions of domains in the Internet. Once
the budgets are known, the rates at which pages can be downloaded from each
domain are scaled proportionally to the corresponding budget.

The final issue we faced in later stages of the crawl was how to prevent live-
locks in processing URLs that exceed their budget. Periodically rescanning the
queue of over-budget URLs produces only a handful of good links at the cost of
huge overhead. As N becomes large, the crawler ends up spending all of its time
cycling through failed URLs and makes very little progress. The solution to this
problem, which we call Budget Enforcement with Anti-Spam Tactics (BEAST),
involves a dynamically increasing number of disk queues among which the
crawler spreads the URLs based on whether they fit within the budget or not.
As a result, almost all pages from sites that significantly exceed their budgets
are pushed into the last queue and are examined with lower frequency as N
increases. This keeps the overhead of reading spam at some fixed level and
effectively prevents it from “snowballing.”

The aforesaid algorithms were deployed in IRLbot [IRLbot 2007] and tested
on the Internet in June through August 2007 using a single server at-
tached to a 1gb/s backbone of Texas A&M. Over a period of 41 days, IRL-
bot issued 7,606,109,371 connection requests, received 7,437,281,300 HTTP
responses from 117,576,295 hosts in 33,755,361 domains, and successfully
downloaded N= 6,380,051,942 unique HTML pages at an average rate of 319
mb/s (1,789 pages/s). After handicapping quickly branching spam and over
30 million low-ranked domains, IRLbot parsed out 394,619,023,142 links and
found 41,502,195,631 unique pages residing on 641,982,061 hosts, which ex-
plains our interest in crawlers that scale to tens and hundreds of billions of

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:5

pages as we believe a good fraction of 35B URLs not crawled in this experiment
contains useful content.

The rest of the article is organized as follows. Section 2 overviews re-
lated work. Section 3 defines our objectives and classifies existing approaches.
Section 4 discusses how checking URL uniqueness scales with crawl size and
proposes our technique. Section 5 models caching and studies its relationship
with disk overhead. Section 6 discusses our approach to ranking domains and
Section 7 introduces a scalable method of enforcing budgets. Section 8 summa-
rizes our experimental statistics and Section 10 concludes.

2. RELATED WORK

There is only a limited number of articles describing detailed Web crawler
algorithms and offering their experimental performance. First-generation de-
signs [Eichmann 1994; McBryan 1994; Pinkerton 2000, 1994], were developed
to crawl the infant Web and commonly reported collecting less than 100,000
pages. Second-generation crawlers [Boldi et al. 2004a; Cho et al. 2006; Heydon
and Najork 1999; Hirai et al. 2000; Najork and Heydon 2001; Shkapenyuk and
Suel 2002] often pulled several hundred million pages and involved multiple
agents in the crawling process. We discuss their design and scalability issues
in the next section.

Another direction was undertaken by the Internet Archive [Burner 1997;
Internet Archive], which maintains a history of the Internet by downloading
the same set of pages over and over. In the last 10 years, this database has
collected over 85 billion pages, but only a small fraction of them are unique.
Additional crawlers are Brin and Page [1998], Edwards et al. [2001], Hafri
and Djeraba [2004], Koht-arsa and Sanguanpong [2002], Singh et al. [2003],
and Suel et al. [2003]; however, their focus usually does not include the large
scale assumed in this article and their fundamental crawling algorithms are
not presented in sufficient detail to be analyzed here.

The largest prior crawl using a fully disclosed implementation appeared in
Najork and Heydon [2001], where Mercator downloaded 721 million pages in
17 days. Excluding non-HTML content, which has a limited effect on scalability,
this crawl encompassed N = 473 million HTML pages. The fastest reported
crawler was Hafri and Djeraba [2004] with 816 pages/s, but the scope of their
experiment was only N = 25 million. Finally, to our knowledge, the largest Web
graph used in any article was AltaVista’s 2003 crawl with 1.4B pages and 6.6B
links [Gleich and Zhukov 2005].

3. OBJECTIVES AND CLASSIFICATION

This section formalizes the purpose of Web crawling and classifies algorithms
in related work, some of which we study later in the article.

3.1 Crawler Objectives

We assume that the ideal task of a crawler is to start from a set of seed URLs
�0 and eventually crawl the set of all pages �∞ that can be discovered from �0
using HTML links. The crawler is allowed to dynamically change the order in

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:6 • H.-T. Lee et al.

Table I. Comparison of Prior Crawlers and Their Data Structures

URLseen RobotsCache

Crawler Year RAM Disk RAM Disk DNScache Q
WebCrawler [Pinkerton 1994] 1994 database – – database
Internet Archive [Burner 1997] 1997 site-based – site-based – site-based RAM
Mercator-A [Heydon and Najork 1999] 1999 LRU seek LRU – – disk
Mercator-B [Najork and Heydon 2001] 2001 LRU batch LRU – – disk
Polybot [Shkapenyuk and Suel 2002] 2001 tree batch database database disk
WebBase [Cho et al. 2006] 2001 site-based – site-based – site-based RAM
UbiCrawler [Boldi et al. 2004a] 2002 site-based – site-based – site-based RAM

which URLs are downloaded in order to achieve a reasonably good coverage of
“useful” pages �U ⊆ �∞ in some finite amount of time. Due to the existence of
legitimate sites with hundreds of millions of pages (e.g., ebay.com, yahoo.com,
blogspot.com), the crawler cannot make any restricting assumptions on the
maximum number of pages per host, the number of hosts per domain, the num-
ber of domains in the Internet, or the number of pages in the crawl. We thus
classify algorithms as nonscalable if they impose hard limits on any of these
metrics or are unable to maintain crawling speed when these parameters be-
come very large.

We should also explain why this article focuses on the performance of a single
server rather than some distributed architecture. If one server can scale to N
pages and maintain speed S, then with sufficient bandwidth it follows that m
servers can maintain speed mS and scale to mN pages by simply partitioning
the set of all URLs and data structures between themselves (we assume that
the bandwidth needed to shuffle the URLs between the servers is also well pro-
visioned) [Boldi et al. 2004a; Cho and Garcia-Molina 2002; Heydon and Najork
1999; Najork and Heydon 2001; Shkapenyuk and Suel 2002]. Therefore, the
aggregate performance of a server farm is ultimately governed by the char-
acteristics of individual servers and their local limitations. We explore these
limits in detail throughout the work.

3.2 Crawler Operation

The functionality of a basic Web crawler can be broken down into several phases:
(1) removal of the next URL u from the queue Q of pending pages; (2) download
of u and extraction of new URLs u1, . . . , uk from u’s HTML tags; (3) for each
ui, verification of uniqueness against some structure URLseen and checking
compliance with robots.txt using some other structure RobotsCache; (4) addition
of passing URLs to Q and URLseen; (5) update of RobotsCache if necessary. The
crawler may also maintain its own DNScache structure when the local DNS
server is not able to efficiently cope with the load (e.g., its RAM cache does not
scale to the number of hosts seen by the crawler or it becomes very slow after
caching hundreds of millions of records).

A summary of prior crawls and their methods in managing URLseen,
RobotsCache, DNScache, and queue Q is shown in Table I. The table demon-
strates that two approaches to storing visited URLs have emerged in the liter-
ature: RAM-only and hybrid RAM-disk. In the former case [Boldi et al. 2004a;

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:7

Burner 1997; Cho et al. 2006], crawlers keep a small subset of hosts in mem-
ory and visit them repeatedly until a certain depth or some target number of
pages have been downloaded from each site. URLs that do not fit in memory
are discarded and sites are assumed to never have more than some fixed vol-
ume of pages. This methodology results in truncated Web crawls that require
different techniques from those studied here and will not be considered in our
comparison. In the latter approach [Heydon and Najork 1999; Najork and Hey-
don 2001; Pinkerton 1994; Shkapenyuk and Suel 2002], URLs are first checked
against a buffer of popular links and those not found are examined using a
disk file. The RAM buffer may be an LRU cache [Heydon and Najork 1999;
Najork and Heydon 2001], an array of recently added URLs [Heydon and Na-
jork 1999; Najork and Heydon 2001], a general-purpose database with RAM
caching [Pinkerton 1994], and a balanced tree of URLs pending a disk check
[Shkapenyuk and Suel 2002].

Most prior approaches keep RobotsCache in RAM and either crawl each host
to exhaustion [Boldi et al. 2004a; Burner 1997; Cho et al. 2006] or use an LRU
cache in memory [Heydon and Najork 1999; Najork and Heydon 2001]. The
only hybrid approach is used in Shkapenyuk and Suel [2002], which employs a
general-purpose database for storing downloaded robots.txt. Finally, with the
exception of Shkapenyuk and Suel [2002], prior crawlers do not perform DNS
caching and rely on the local DNS server to store these records for them.

4. SCALABILITY OF DISK METHODS

This section describes algorithms proposed in prior literature, analyzes their
performance, and introduces our approach.

4.1 Algorithms

In Mercator-A [Heydon and Najork 1999], URLs that are not found in mem-
ory cache are looked up on disk by seeking within the URLseen file and loading
the relevant block of hashes. The method clusters URLs by their site hash and
attempts to resolve multiple in-memory links from the same site in one seek.
However, in general, locality of parsed out URLs is not guaranteed and the
worst-case delay of this method is one seek/URL and the worst-case read over-
head is one block/URL. A similar approach is used in WebCrawler [Pinkerton
1994], where a general-purpose database performs multiple seeks (assuming a
common B-tree implementation) to find URLs on disk.

Even with RAID, disk seeking cannot be reduced to below 3 to 5 ms, which is
several orders of magnitude slower than required in actual Web crawls (e.g., 5 to
10 microseconds in IRLbot). General-purpose databases that we have examined
are much worse and experience a significant slowdown (i.e., 10 to 50 ms per
lookup) after about 100 million inserted records. Therefore, these approaches
do not appear viable unless RAM caching can achieve some enormously high
hit rates (i.e., 99.7% for IRLbot). We examine whether this is possible in the
next section when studying caching.

Mercator-B [Najork and Heydon 2001] and Polybot [Shkapenyuk and Suel
2002] use a so-called batch disk check; they accumulate a buffer of URLs in

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:8 • H.-T. Lee et al.

Table II. Parameters of the Model

Variable Meaning Units
N Crawl scope pages
p Probability of URL uniqueness –
U Initial size of URLseen file pages
R RAM size bytes
l Average number of links per page –
n Links requiring URL check –
q Compression ratio of URLs –
b Average size of URLs bytes
H URL hash size bytes
P Memory pointer size bytes

memory and then merge it with a sorted URLseen file in one pass. Mercator-B
stores only hashes of new URLs in RAM and places their text on disk. In order to
retain the mapping from hashes to the text, a special pointer is attached to each
hash. After the memory buffer is full, it is sorted in place and then compared
with blocks of URLseen as they are read from disk. Nonduplicate URLs are
merged with those already on disk and written into the new version of URLseen.
Pointers are then used to recover the text of unique URLs and append it to the
disk queue.

Polybot keeps the entire URLs (i.e., actual strings) in memory and organizes
them into a binary search tree. Once the tree size exceeds some threshold, it
is merged with the disk file URLseen, which contains compressed URLs already
seen by the crawler. Besides being CPU intensive, this method has to perform
more frequent scans of URLseen than Mercator-B due to the less-efficient usage
of RAM.

4.2 Modeling Prior Methods

Assume the crawler is in some steady state where the probability of uniqueness
p among new URLs remains constant (we verify that this holds in practice later
in the article). Further assume that the current size of URLseen is U entries,
the size of RAM allocated to URL checks is R, the average number of links
per downloaded page is l , the average URL length is b, the URL compression
ratio is q, and the crawler expects to visit N pages. It then follows that n = l N
links must pass through URL check, np of them are unique, and bq is the
average number of bytes in a compressed URL. Finally, denote by H the size of
URL hashes used by the crawler and P the size of a memory pointer (Table II
summarizes this notation). Then we have the following result.

THEOREM 1. The combined read-write overhead of URLseen batch disk check
in a crawl of size N pages is ω(n, R) = α(n, R)bn bytes, where for Mercator-B

α(n, R) = 2(2UH + pHn)(H + P)
bR

+ 2 + p (1)

and for Polybot

α(n, R) = 2(2Ubq + pbqn)(b + 4P)
bR

+ p. (2)

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:9

PROOF. To prevent locking on URL check, both Mercator-B and Polybot must
use two buffers of accumulated URLs (i.e., one for checking the disk and the
other for newly arriving data). Assume this half-buffer allows storage of m URLs
(i.e., m = R/[2(H + P)] for Mercator-B and m = R/[2(b+ 4P)] for Polybot) and
the size of the initial disk file is f (i.e., f = UH for Mercator-B and f = Ubq
for Polybot).

For Mercator-B, the ith iteration requires writing/reading of mb bytes of ar-
riving URL strings, reading the current URLseen, writing it back, and appending
mp hashes to it, namely, 2 f + 2mb + 2mpH (i − 1) + mpH bytes. This leads to
the following after adding the final overhead to store pbn bytes of unique URLs
in the queue:

ω(n) =
n/m∑
i=1

(
2 f + 2mb + 2mpHi − mpH

) + pbn

= nb
(

2(2UH + pHn)(H + P)
bR

+ 2 + p
)

. (3)

For Polybot, the ith iteration has overhead 2 f + 2mpbq(i − 1) + mpbq, which
yields

ω(n) =
n/m∑
i=1

(
2 f + 2mpbqi − mpbq

) + pbn

= nb
(

2(2Ubq + pbqn)(b + 4P)
bR

+ p
)

(4)

and leads to (2).

This result shows that ω(n, R) is a product of two elements: the number
of bytes bn in all parsed URLs and how many times α(n, R) they are written
to/read from disk. If α(n, R) grows with n, the crawler’s overhead will scale
superlinearly and may eventually become overwhelming to the point of stalling
the crawler. As n → ∞, the quadratic term in ω(n, R) dominates the other terms,
which places Mercator-B’s asymptotic performance at

ω(n, R) = 2(H + P)pH
R

n2 (5)

and that of Polybot at

ω(n, R) = 2(b + 4P)pbq
R

n2. (6)

The ratio of these two terms is
(H + P)H
bq(b + 4P)

, (7)

which for the IRLbot case with H = 8 bytes/hash, P = 4 bytes/pointer,
b = 110 bytes/URL, and using very optimistic bq = 5.5 bytes/URL shows that
Mercator-B is roughly 7.2 times faster than Polybot as n → ∞.

The best performance of any method that stores the text of URLs on disk
before checking them against URLseen (e.g., Mercator-B) is αmin = 2+ p, which is

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:10 • H.-T. Lee et al.

Fig. 1. Operation of DRUM.

the overhead needed to write all bn bytes to disk, read them back for processing,
and then append bpn bytes to the queue. Methods with memory-kept URLs (e.g.,
Polybot) have an absolute lower bound of α′

min = p, which is the overhead needed
to write the unique URLs to disk. Neither bound is achievable in practice,
however.

4.3 DRUM

We now describe the URL-check algorithm used in IRLbot, which belongs to
a more general framework we call Disk Repository with Update Management
(DRUM). The purpose of DRUM is to allow for efficient storage of large col-
lections of <key,value> pairs, where key is a unique identifier (hash) of some
data and value is arbitrary information attached to the key. There are three
supported operations on these pairs: check, update, and check+update. In the
first case, the incoming set of data contains keys that must be checked against
those stored in the disk cache and classified as being duplicate or unique. For
duplicate keys, the value associated with each key can be optionally retrieved
from disk and used for some processing. In the second case, the incoming list
contains <key,value> pairs that need to be merged into the existing disk cache.
If a given key exists, its value is updated (e.g., overridden or incremented); if
it does not, a new entry is created in the disk file. Finally, the third operation
performs both check and update in one pass through the disk cache. Also note
that DRUM may be supplied with a mixed list where some entries require just
a check, while others need an update.

A high-level overview of DRUM is shown in Figure 1. In the figure, a contin-
uous stream of tuples <key,value,aux> arrives into DRUM, where aux is some
auxiliary data associated with each key. DRUM spreads pairs <key,value>
between k disk buckets Q H

1 , . . . , Q H
k based on their key (i.e., all keys in the

same bucket have the same bit-prefix). This is accomplished by feeding pairs
<key,value> into k memory arrays of size M each and then continuously writ-
ing them to disk as the buffers fill up. The aux portion of each key (which usually
contains the text of URLs) from the ith bucket is kept in a separate file QT

i in
the same FIFO order as pairs <key,value> in Q H

i . Note that to maintain fast
sequential writing/reading and avoid segmentation in the file-allocation table,
all buckets are preallocated on disk before they are used.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:11

Once the largest bucket reaches a certain size r < R, the following process
is repeated for i = 1, . . . , k: (1) bucket Q H

i is read into the bucket buffer shown
in Figure 1 and sorted; (2) the disk file Z is sequentially read in chunks of �

bytes and compared with the keys in bucket Q H
i to determine their uniqueness;

(3) those <key,value> pairs in Q H
i that require an update are merged with the

contents of the disk cache and written to the updated version of Z ; (4) after all
unique keys in Q H

i are found, their original order is restored, QT
i is sequentially

read into memory in blocks of size �, and the corresponding aux portion of each
unique key is sent for further processing (see the following). An important
aspect of this algorithm is that all buckets are checked in one pass through disk
file Z .2

We now explain how DRUM is used for storing crawler data. The most
important DRUM object is URLseen, which implements only one operation:
check+update. Incoming tuples are <URLhash,-,URLtext>, where the key is an
8-byte hash of each URL, the value is empty, and the auxiliary data is the URL
string. After all unique URLs are found, their text strings (aux data) are sent
to the next queue for possible crawling. For caching robots.txt, we have another
DRUM structure called RobotsCache, which supports asynchronous check and
update operations. For checks, it receives tuples <HostHash,-,URLtext> and
for updates <HostHash,HostData,->, where HostData contains the robots.txt
file, IP address of the host, and optionally other host-related information. The
last DRUM object of this section is called RobotsRequested and is used for stor-
ing the hashes of sites for which a robots.txt has been requested. Similar to
URLseen, it only supports simultaneous check+update and its incoming tuples
are <HostHash,-,HostText>.

Figure 2 shows the flow of new URLs produced by the crawling threads.
They are first sent directly to URLseen using check+update. Duplicate URLs are
discarded and unique ones are sent for verification of their compliance with the
budget (both STAR and BEAST are discussed later in the article). URLs that
pass the budget are queued to be checked against robots.txt using RobotsCache.
URLs that have a matching robots.txt file are classified immediately as passing
or failing. Passing URLs are queued in Q and later downloaded by the crawling
threads. Failing URLs are discarded.

URLs that do not have a matching robots.txt are sent to the back of queue Q R
and their hostnames are passed through RobotsRequested using check+update.
Sites whose hash is not already present in this file are fed through queue Q D
into a special set of threads that perform DNS lookups and download robots.txt.
They subsequently issue a batch update to RobotsCache using DRUM. Since in
steady state (i.e., excluding the initial phase) the time needed to download
robots.txt is much smaller than the average delay in Q R , each URL makes
no more than one cycle through this loop. In addition, when RobotsCache de-
tects that certain robots.txt or DNS records have become outdated, it marks
all corresponding URLs as “unable to check, outdated records,” which forces

2Note that disk bucket-sort is a well-known technique that exploits uniformity of keys; however,
its usage in checking URL uniqueness and the associated performance model of Web crawling has
not been explored before.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:12 • H.-T. Lee et al.

Fig. 2. High-level organization of IRLbot.

RobotsRequested to pull a new set of exclusion rules and/or perform another
DNS lookup. Old records are automatically expunged during the update when
RobotsCache is rewritten.

It should be noted that all queues in Figure 2 are stored on disk and can
support as many hostnames, URLs, and robots.txt exception rules as disk space
allows.

4.4 DRUM Model

Assume that the crawler maintains a buffer of size M = 256KB for each open file
and that the hash bucket size r must be at least � = 32MB to support efficient
reading during the check-merge phase. Further assume that the crawler can
use up to D bytes of disk space for this process. Then we have the following
result.

THEOREM 2. Assuming that R ≥ 2�(H + P)/H, DRUM’s URLseen overhead
is ω(n, R) = α(n, R)bn bytes, where

α(n, R) =
{

8M (H+P)(2U H+pHn)
bR2 + 2 + p + 2H

b R2 < �
(H+b)(2U H+pHn)

bD + 2 + p + 2H
b R2 ≥ �

(8)

and � = 8MD (H + P)/(H + b).

PROOF. Memory R needs to support 2k open file buffers and one block of URL
hashes that are loaded from Q H

i . In order to compute block size r, recall that it
gets expanded by a factor of (H + P)/H when read into RAM due to the addition
of a pointer to each hash value. We thus obtain that r(H + P)/H + 2Mk = R or

r = (R − 2Mk)H
H + P

. (9)

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:13

Our disk restriction then gives us that the size of all buckets kr and their text
krb/H must be equal to D.

kr + krb
H

= k(H + b)(R − 2Mk)
H + P

= D (10)

It turns out that not all pairs (R, k) are feasible. The reason is that if R is set too
small, we are not able to fill all of D with buckets since 2Mk will leave no room
for r ≥ �. Rewriting (10), we obtain a quadratic equation 2Mk2 − Rk + A = 0,
where A = (H + P)D/(H + b). If R2 < 8M A, we have no solution and thus
R is insufficient to support D. In that case, we need to maximize k(R − 2Mk)
subject to k ≤ km, where

km = 1
2M

(
R − �(H + P)

H

)
(11)

is the maximum number of buckets that still leave room for r ≥ �. Maximizing
k(R − 2Mk), we obtain the optimal point k0 = R/(4M). Assuming that R ≥
2�(H + P)/H, condition k0 ≤ km is always satisfied. Using k0 buckets brings
our disk usage to D′ = (H + b)R2/[8M (H + P)], which is always less than D.

In the case R2 ≥ 8MA, we can satisfy D and the correct number of buckets
k is given by two choices.

k = R ± √
R2 − 8MA
4M

(12)

The reason why we have two values is that we can achieve D either by using few
buckets (i.e., k is small and r is large) or many buckets (i.e., k is large and r is
small). The correct solution is to take the smaller root to minimize the number
of open handles and disk fragmentation. Putting things together,

k1 = R − √
R2 − 8MA
4M

. (13)

Note that we still need to ensure k1 ≤ km, which holds when

R ≥ �(H + P)
H

+ 2MAH
�(H + P)

. (14)

Given that R ≥ 2�(H + P)/H from the statement of the theorem, it is easy to
verify that (14) is always satisfied.

Next, for the ith iteration that fills up all k buckets, we need to write/read QT
i

once (overhead 2krb/H) and read/write each bucket once as well (overhead 2kr).
The remaining overhead is reading/writing URLseen (overhead 2 f +2krp(i −1))
and appending the new URL hashes (overhead krp). We thus obtain that we
need nH/(kr) iterations and

ω(n, R) =
nH/(kr)∑

i=1

(
2 f + 2krb

H
+ 2kr + 2krpi − krp

)
+ pbn

= nb
(

(2UH + pHn)H
bkr

+ 2 + p + 2H
b

)
. (15)

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:14 • H.-T. Lee et al.

Table III. Overhead α(n, R) for R = 1GB,
D = 4.39TB

N Mercator-B Polybot DRUM
800M 11.6 69 2.26
8B 93 663 2.35
80B 917 6,610 3.3
800B 9,156 66,082 12.5
8T 91,541 660,802 104

Recalling our two conditions, we use k0r = HR2
/[8M (H + P)] for R2 < 8MA to

obtain

ω(n, R) = nb
(

8M (H + P)(2U H + pHn)

bR2
+ 2 + p + 2H

b

)
. (16)

For the other case R2 ≥ 8MA, we have k1r = DH/(H + b) and thus get

ω(n, R) = nb
(

(H + b)(2UH + pHn)
bD

+ 2 + p + 2H
b

)
, (17)

which leads to the statement of the theorem.

It follows from the proof of Theorem 2 that in order to match D to a given
RAM size R and avoid unnecessary allocation of disk space, we should operate
at the optimal point given by R2 = �.

Dopt = R2(H + b)
8M (H + P)

(18)

For example, R = 1GB produces Dopt = 4.39TB and R = 2GB produces Dopt =
17TB. For D = Dopt, the corresponding number of buckets is kopt = R/(4M),
the size of the bucket buffer is ropt = RH/[2(H + P)] ≈ 0.33R, and the lead-
ing quadratic term of ω(n, R) in (8) is now R/(4M) times smaller than in
Mercator-B. This ratio is 1, 000 for R = 1GB and 8, 000 for R = 8GB. The
asymptotic speedup in either case is significant.

Finally, observe that the best possible performance of any method that stores
both hashes and URLs on disk is α′′

min = 2 + p + 2H/b.

4.5 Comparison

We next compare disk performance of the studied methods when nonquadratic
terms in ω(n, R) are nonnegligible. Table III shows α(n, R) of the three studied
methods for fixed RAM size R and disk D as N increases from 800 million to
8 trillion (p = 1/9, U = 100M pages, b = 110 bytes, l = 59 links/page). As N
reaches into the trillions, both Mercator-B and Polybot exhibit overhead that
is thousands of times larger than the optimal and invariably become “bogged
down” in rewriting URLseen. On the other hand, DRUM stays within a factor
of 50 from the best theoretically possible value (i.e., α′′

min = 2.256) and does not
sacrifice nearly as much performance as the other two methods.

Since disk size D is likely to be scaled with N in order to support the newly
downloaded pages, we assume for the next example that D(n) is the maximum
of 1TB and the size of unique hashes appended to URLseen during the crawl

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:15

Table IV. Overhead α(n, R) for D = D(n)

R = 4GB R = 8GB
N Mercator-B DRUM Mercator-B DRUM
800M 4.48 2.30 3.29 2.30
8B 25 2.7 13.5 2.7
80B 231 3.3 116 3.3
800B 2,290 3.3 1,146 3.3
8T 22,887 8.1 11,444 3.7

of N pages, namely, D(n) = max(pHn, 1012). Table IV shows how dynamically
scaling disk size allows DRUM to keep the overhead virtually constant as N
increases.

To compute the average crawling rate that the previous methods support,
assume that W is the average disk I/O speed and consider the next result.

THEOREM 3. Maximum download rate (in pages/s) supported by the disk
portion of URL uniqueness checks is

Sdisk = W
α(n, R)bl

. (19)

PROOF. The time needed to perform uniqueness checks for n new URLs is
spent in disk I/O involving ω(n, R) = α(n, R)bn = α(n, R)bl N bytes. Assuming
that W is the average disk I/O speed, it takes N/S seconds to generate n new
URLs and ω(n, R)/W seconds to check their uniqueness. Equating the two
entities, we have (19).

We use IRLbot’s parameters to illustrate the applicability of this theorem.
Neglecting the process of appending new URLs to the queue, the crawler’s read
and write overhead is symmetric. Then, assuming IRLbot’s 1GB/s read speed
and 350MB/s write speed (24-disk RAID-5), we obtain that its average disk
read-write speed is equal to 675MB/s. Allocating 15% of this rate for checking
URL uniqueness,3 the effective disk bandwidth of the server can be estimated at
W = 101.25MB/s. Given the conditions of Table IV for R = 8GB and assuming
N = 8 trillion pages, DRUM yields a sustained download rate of Sdisk = 4, 192
pages/s (i.e., 711mb/s using IRLbot’s average HTML page size of 21.2KB). In
crawls of the same scale, Mercator-B would be 3, 075 times slower and would
admit an average rate of only 1.4 pages/s. Since with these parameters Polybot
is 7.2 times slower than Mercator-B, its average crawling speed would be 0.2
pages/s.

5. CACHING

To understand whether URL caching in memory provides improved perfor-
mance, we must consider a complex interplay between the available CPU ca-
pacity, spare RAM size, disk speed, performance of the caching algorithm, and
crawling rate. This is a three-stage process: We first examine how cache size and
crawl speed affect the hit rate, then analyze the CPU restrictions of caching, and

3Additional disk I/O is needed to verify robots.txt, perform reputation analysis, and enforce budgets.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:16 • H.-T. Lee et al.

Table V. LRU Hit Rates Starting at N0
Crawled Pages

Cache elements E N0 = 1B N0 = 4B
256K 19% 16%
4M 26% 22%
8M 68% 59%
16M 71% 67%
64M 73% 73%
512M 80% 78%

finally couple them with RAM/disk limitations using analysis in the previous
section.

5.1 Cache Hit Rate

Assume that c bytes of RAM are available to a URLseen cache whose entries incur
fixed overhead γ bytes. Then E = c/γ is the maximum number of elements
stored in the cache at any time. Then define π (c, S) to be the cache miss rate
under crawling speed S pages/s and cache size c. The reason why π depends
on S is that the faster the crawl, the more pages it produces between visits to
the same site, which is where duplicate links are most prevalent. Defining τh to
be the per-host visit delay, common sense suggests that π (c, S) should depend
not only on c, but also on τhl S, which is the number of links parsed from all
downloaded pages before the crawler returns to the same Web site.

Table V shows LRU cache hit rates 1 − π (c, S) during several stages of our
crawl. We seek in the trace file to the point where the crawler has downloaded
N0 pages and then simulate LRU hit rates by passing the next 10E URLs
discovered by the crawler through the cache. As the table shows, a significant
jump in hit rates happens between 4M and 8M entries. This is consistent with
IRLbot’s peak value of τhl S ≈ 7.3 million. Note that before cache size reaches
this value, most hits in the cache stem from redundant links within the same
page. As E starts to exceed τhl S, popular URLs on each site survive between
repeat visits and continue staying in the cache as long as the corresponding
site is being crawled. Additional simulations confirming this effect are omitted
for brevity.

Unlike Broder et al. [2003], which suggests that E be set 100 to 500 times
larger than the number of threads, our results show that E must be slightly
larger than τhl S to achieve a 60% hit rate and as high as 10τhl S to achieve
73%.

5.2 Cache Speed

Another aspect of keeping a RAM cache is the speed at which potentially large
memory structures must be checked and updated as new URLs keep pouring
in. Since searching large trees in RAM usually results in misses in the CPU
cache, some of these algorithms can become very slow as the depth of the search
increases. Define 0 ≤ φ(S) ≤ 1 to be the average CPU utilization of the server
crawling at S pages/s and μ(c) to be the number of URLs/s that a cache of size
c can process on an unloaded server. Then, we have the following result.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:17

Table VI. Insertion Rate and Maximum Crawling Speed from (22)

Method μ(c) URLs/s Size c Scache(c)
Balanced tree (strings) 113K 2.2GB 1, 295

Tree-based LRU (8-byte int) 185K 1.6GB 1, 757
Balanced tree (8-byte int) 416K 768MB 2, 552

CLOCK (8-byte int) 2M 320MB 3, 577

THEOREM 4. Assuming φ(S) is monotonically nondecreasing, the maximum
download rate Scache (in pages/s) supported by URL caching is

Scache(c) = g−1(μ(c)), (20)

where g−1 is the inverse of g (x) = l x/(1 − φ(x)).

PROOF. We assume that caching performance linearly depends on the avail-
able CPU capacity, that is, if fraction φ(S) of the CPU is allocated to crawling,
then the caching speed is μ(c)(1 − φ(S)) URLs/s. Then, the maximum crawling
speed would match the rate of URL production to that of the cache, namely,

l S = μ(c)(1 − φ(S)). (21)

Rewriting (21) using g (x) = l x/(1 − φ(x)), we have g (S) = μ(c), which has a
unique solution S = g−1(μ(c)) since g (x) is a strictly increasing function with
a proper inverse.

For the common case φ(S) = S/Smax, where Smax is the server’s maximum
(i.e., CPU-limited) crawling rate in pages/s, (20) yields a very simple expression.

Scache(c) = μ(c)Smax

l Smax + μ(c)
(22)

To show how to use the preceding result, Table VI compares the speed of several
memory structures on the IRLbot server using E = 16M elements and displays
model (22) for Smax = 4,000 pages/s. As can be seen in the table, insertion of text
URLs into a balanced tree (used in Polybot [Shkapenyuk and Suel 2002]) is the
slowest operation that also consumes the most memory. The speed of classical
LRU caching (185K/s) and search trees with 8-byte keys (416K/s) is only slightly
better since both use multiple (i.e., log2 E) jumps through memory. CLOCK
[Broder et al. 2003], which is a space- and time-optimized approximation to
LRU, achieves a much better speed (2M/s), requires less RAM, and is suitable
for crawling rates up to 3,577 pages/s on this server. The important lesson
of this section is that caching may be detrimental to a crawler’s performance
if it is implemented inefficiently or c is chosen too large, which would lead
to Scache(c) < Sdisk and a lower crawling speed compared to the noncaching
scenario.

After experimentally determining μ(c) and φ(S), we can easily compute
Scache(c) from (20); however, this metric by itself does not determine whether
caching should be enabled or even how to select the optimal cache size c. Even
though caching reduces the disk overhead by sending πn rather than n URLs
to be checked against the disk, it also consumes more memory and leaves less
space for the buffer of URLs in RAM, which in turn results in more scans

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:18 • H.-T. Lee et al.

Table VII. Overhead α(πn, R − c) for
D = D(n), π = 0.33, c = 320MB

R = 4GB R = 8GB
N Mercator-B DRUM Mercator-B DRUM
800M 3.02 2.27 2.54 2.27
8B 10.4 2.4 6.1 2.4
80B 84 3.3 41 3.3
800B 823 3.3 395 3.3
8T 8, 211 4.5 3, 935 3.3

through disk to determine URL uniqueness. Understanding this trade-off in-
volves careful modeling of hybrid RAM-disk algorithms, which we perform next.

5.3 Hybrid Performance

We now address the issue of how to assess the performance of disk-based
methods with RAM caching. Mercator-A improves performance by a factor
of 1/π since only πn URLs are sought from disk. Given common values of
π ∈ [0.25, 0.35] in Table V, this optimization results in a 2.8 to 4 times speedup,
which is clearly insufficient for making this method competitive with the other
approaches.

Mercator-B, Polybot, and DRUM all exhibit new overhead

ω(n, R) = α(π (c, S)n, R − c)bπ (c, S)n (23)

with α(n, R) taken from the appropriate model. As n → ∞ and assuming c � R,
all three methods decrease ω by a factor of π−2 ∈ [8, 16] for π ∈ [0.25, 0.35].
For n � ∞, however, only the linear factor bπ (c, S)n enjoys an immediate re-
duction, while α(π (c, S)n, R −c) may or may not change depending on the dom-
inance of the first term in (1), (2), and (8), as well as the effect of reduced RAM
size R − c on the overhead. Table VII shows one example where c = 320MB
(E = 16M elements, γ = 20 bytes/element, π = 0.33) occupies only a small
fraction of R. Notice in the table that caching can make Mercator-B’s disk
overhead close to optimal for small N , which nevertheless does not change its
scaling performance as N → ∞.

Since π (c, S) depends on S, determining the maximum speed a hybrid ap-
proach supports is no longer straightforward.

THEOREM 5. Assuming π (c, S) is monotonically nondecreasing in S, the
maximum download rate Shybrid supported by disk algorithms with RAM
caching is

Shybrid(c) = h−1
(

W
bl

)
, (24)

where h−1 is the inverse of

h(x) = xα(π (c, x)n, R − c)π (c, x).

PROOF. From (19), we have

S = W
α(π (c, S)n, R − c)bπ (c, S)l

, (25)

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:19

Table VIII. Maximum Hybrid Crawling Rate
maxc Shybrid(c) for D = D(n)

R = 4GB R = 8GB
N Mercator-B DRUM Mercator-B DRUM
800M 18,051 26,433 23,242 26,433
8B 6,438 25,261 10,742 25,261
80B 1,165 18,023 2,262 18,023
800B 136 18,023 274 18,023
8T 13.9 11,641 27.9 18,023

which can be written as h(S) = W/(bl). The solution to this equation is S =
h−1(W/(bl)) where as before the inverse h−1 exists due to the strict monotonicity
of h(x).

To better understand (24), we show an example of finding the best cache size c
that maximizes Shybrid(c) assuming π (c, S) is a step function of hit rates derived
from Table V. Specifically, π (c, S) = 1 if c = 0, π (c, S) = 0.84 if 0 < c < γτhl S,
0.41 if c < 4γ τhl S, 0.27 if c < 10γ τhl S, and 0.22 for larger c. Table VIII shows
the resulting crawling speed in pages/s after maximizing (24) with respect to
c. As before, Mercator-B is close to optimal for small N and large R, but for
N → ∞ its performance degrades. DRUM, on the other hand, maintains at
least 11,000 pages/s over the entire range of N . Since these examples use large
R in comparison to the cache size needed to achieve nontrivial hit rates, the
values in this table are almost inversely proportional to those in Table VII,
which can be used to ballpark the maximum value of (24) without inverting
h(x).

Knowing function Shybrid from (24), we need to couple it with the performance
of the caching algorithm to obtain the true optimal value of c. We have

copt = arg max
c∈[0,R]

min(Scache(c), Shybrid(c)), (26)

which is illustrated in Figure 3. On the left of the figure, we plot some hypothet-
ical functions Scache(c) and Shybrid(c) for c ∈ [0, R]. Assuming that μ(0) = ∞, the
former curve always starts at Scache(0) = Smax and is monotonically nonincreas-
ing. For π (0, S) = 1, the latter function starts at Shybrid(0) = Sdisk and tends to
zero as c → R, but not necessarily monotonically. On the right of the figure,
we show the supported crawling rate min(Scache(c), Shybrid(c)) whose maximum
point corresponds to the pair (copt, Sopt). If Sopt > Sdisk, then caching should
be enabled with c = copt; otherwise, it should be disabled. The most common
case when the crawler benefits from disabling the cache is when R is small
compared to γ τhl S or the CPU is the bottleneck (i.e., Scache < Sdisk).

6. SPAM AND REPUTATION

This section explains the necessity for detecting spam during crawls and pro-
poses a simple technique for computing domain reputation in real time.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:20 • H.-T. Lee et al.

Fig. 3. Finding optimal cache size copt and optimal crawling speed Sopt.

6.1 Problems with Breadth-First Search

Prior crawlers [Cho et al. 2006; Heydon and Najork 1999; Najork and Heydon
2001; Shkapenyuk and Suel 2002] have no documented spam-avoidance algo-
rithms and are typically assumed to perform BFS traversals of the Web graph
[Najork and Wiener 2001]. Several studies [Arasu et al. 2001; Boldi et al. 2004b]
have examined in simulations the effect of changing crawl order by applying
bias towards more popular pages. The conclusions are mixed and show that
PageRank order [Brin and Page 1998] can be sometimes marginally better than
BFS [Arasu et al. 2001] and sometimes marginally worse [Boldi et al. 2004b],
where the metric by which they are compared is the rate at which the crawler
discovers popular pages.

While BFS works well in simulations, its performance on infinite graphs
and/or in the presence of spam farms remains unknown. Our early experiments
show that crawlers eventually encounter a quickly branching site that will start
to dominate the queue after 3 to 4 levels in the BFS tree. Some of these sites
are spam-related with the aim of inflating the page rank of target hosts, while
others are created by regular users sometimes for legitimate purposes (e.g.,
calendars, testing of asp/php engines), sometimes for questionable purposes
(e.g., intentional trapping of unwanted robots), and sometimes for no apparent
reason at all. What makes these pages similar is the seemingly infinite number
of dynamically generated pages and/or hosts within a given domain. Crawling
these massive Webs or performing DNS lookups on millions of hosts from a
given domain not only places a significant burden on the crawler, but also wastes
bandwidth on downloading largely useless content.

Simply restricting the branching factor or the maximum number of
pages/hosts per domain is not a viable solution since there is a number of legit-
imate sites that contain over a hundred million pages and over a dozen million
virtual hosts (i.e., various blog sites, hosting services, directories, and forums).
For example, Yahoo currently reports indexing 1.2 billion objects just within
its own domain and blogspot claims over 50 million users, each with a unique
hostname. Therefore, differentiating between legitimate and illegitimate Web
“monsters” becomes a fundamental task of any crawler.

Note that this task does not entail assigning popularity to each potential
page as would be the case when returning query results to a user; instead, the

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:21

crawler needs to decide whether a given domain or host should be allowed to
massively branch or not. Indeed, spam sites and various auto-generated Webs
with a handful of pages are not a problem as they can be downloaded with
very little effort and later classified by data miners using PageRank or some
other appropriate algorithm. The problem only occurs when the crawler assigns
to domain x download bandwidth that is disproportionate to the value of x ’s
content.

Another aspect of spam classification is that it must be performed with very
little CPU/RAM/disk effort and run in real time at speed SL links per second,
where L is the number of unique URLs per page.

6.2 Controlling Massive Sites

Before we introduce our algorithm, several definitions are in order. Both host
and site refer to Fully Qualified Domain Names (FQDNs) on which valid
pages reside (e.g., motors.ebay.com). A server is a physical host that accepts
TCP connections and communicates content to the crawler. Note that multiple
hosts may be colocated on the same server. A Top-Level Domain (TLD) or a
country-code TLD (cc-TLD) is a domain one level below the root in the DNS
tree (e.g., .com, .net, .uk). A Pay-Level Domain (PLD) is any domain that re-
quires payment at a TLD or cc-TLD registrar. PLDs are usually one level below
the corresponding TLD (e.g., amazon.com), with certain exceptions for cc-TLDs
(e.g., ebay.co.uk, det.wa.edu.au). We use a comprehensive list of custom rules
for identifying PLDs, which have been compiled as part of our ongoing DNS
project.

While PageRank [Arasu et al. 2001; Brin and Page 1998; Kamvar et al.
2003b], BlockRank [Kamvar et al. 2003a], SiteRank [Feng et al. 2006; Wu
and Aberer 2004], and OPIC [Abiteboul et al. 2003] are potential solutions
to the spam problem, and these methods become extremely disk intensive
in large-scale applications (e.g., 41 billion pages and 641 million hosts found
in our crawl) and arguably with enough effort can be manipulated [Gyöngyi
and Garcia-Molina 2005] by huge link farms (i.e., millions of pages and sites
pointing to a target spam page). In fact, strict page-level rank is not abso-
lutely necessary for controlling massively branching spam. Instead, we found
that spam could be “deterred” by budgeting the number of allowed pages per
PLD based on domain reputation, which we determine by domain in-degree
from resources that spammers must pay for. There are two options for these
resources: PLDs and IP addresses. We chose the former since classification
based on IPs (first suggested in Lycos [Mauldin 1997]) has proven less effective
since large subnets inside link farms could be given unnecessarily high prior-
ity and multiple independent sites cohosted on the same IP were improperly
discounted.

While it is possible to classify each site and even each subdirectory based
on their PLD in-degree, our current implementation uses a coarse-granular
approach of only limiting spam at the PLD level. Each PLD x starts with a
default budget B0, which is dynamically adjusted using some function F (dx) as
x ’s in-degree dx changes. Budget Bx represents the number of pages that are

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:22 • H.-T. Lee et al.

Fig. 4. Operation of STAR.

allowed to pass from x (including all hosts and subdomains in x) to crawling
threads every T time units.

Figure 4 shows how our system, which we call Spam Tracking and Avoidance
through Reputation (STAR), is organized. In the figure, crawling threads aggre-
gate PLD-PLD link information and send it to a DRUM structure PLDindegree,
which uses a batch update to store for each PLD x its hash hx , in-degree dx , cur-
rent budget Bx , and hashes of all in-degree neighbors in the PLD graph. Unique
URLs arriving from URLseen perform a batch check against PLDindegree, and
are given Bx on their way to BEAST, which we discuss in the next section.

Note that by varying the budget function F (dx), it is possible to implement
a number of policies: crawling of only popular pages (i.e., zero budget for low-
ranked domains and maximum budget for high-ranked domains), equal distri-
bution between all domains (i.e., budget Bx = B0 for all x), and crawling with
a bias toward popular/unpopular pages (i.e., budget directly/inversely propor-
tional to the PLD in-degree).

7. POLITENESS AND BUDGETS

This section discusses how to enable polite crawler operation and scalably en-
force budgets.

7.1 Rate Limiting

One of the main goals of IRLbot from the beginning was to adhere to strict
rate-limiting policies in accessing poorly provisioned (in terms of bandwidth or
server load) sites. Even though larger sites are much more difficult to crash,
unleashing a crawler that can download at 500mb/s and allowing it unrestricted
access to individual machines would generally be regarded as a denial-of-service
attack.

Prior work has only enforced a certain per-host access delay τh (which varied
from 10 times the download delay of a page [Najork and Heydon 2001] to 30
seconds [Shkapenyuk and Suel 2002]), but we discovered that this presented
a major problem for hosting services that colocated thousands of virtual hosts
on the same physical server and did not provision it to support simultaneous

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:23

access to all sites (which in our experience is rather common in the current
Internet). Thus, without an additional per-server limit τs, such hosts could be
easily crashed or overloaded.

We keep τh = 40 seconds for accessing all low-ranked PLDs, but then for
high-ranked PLDs scale it down proportional to Bx , up to some minimum value
τ 0

h . The reason for doing so is to prevent the crawler from becoming “bogged
down” in a few massive sites with millions of pages in RAM. Without this rule,
the crawler would make very slow progress through individual sites in addition
to eventually running out of RAM as it becomes clogged with URLs from a few
“monster” networks. For similar reasons, we keep per-server crawl delay τs at
the default 1 second for low-ranked domains and scale it down with the average
budget of PLDs hosted on the server, up to some minimum τ 0

s .
Crawling threads organize URLs in two heaps: the IP heap, which enforces

delay τs, and the host heap, which enforces delay τh. The URLs themselves are
stored in a searchable tree with pointers to/from each of the heaps. By properly
controlling the coupling between budgets and crawl delays, it is possible to
ensure that the rate at which pages are admitted into RAM is no less than
their crawl rate, which results in no memory backlog.

We should also note that threads that perform DNS lookups and download
robots.txt in Figure 2 are limited by the IP heap, but not the host heap. The
reason is that when the crawler is pulling robots.txt for a given site, no other
thread can be simultaneously accessing that site.

7.2 Budget Checks

We now discuss how IRLbot’s budget enforcement works in a method we call
Budget Enforcement with Anti-Spam Tactics (BEAST). The goal of this method
is not to discard URLs, but rather to delay their download until more is known
about their legitimacy. Most sites have a low rank because they are not well
linked to, but this does not necessarily mean that their content is useless or
they belong to a spam farm. All other things equal, low-ranked domains should
be crawled in some approximately round-robin fashion with careful control of
their branching. In addition, as the crawl progresses, domains change their
reputation and URLs that have earlier failed the budget check need to be re-
budgeted and possibly crawled at a different rate. Ideally, the crawler should
shuffle URLs without losing any of them and eventually download the entire
Web if given infinite time.

A naive implementation of budget enforcement in prior versions of IRLbot
maintained two queues Q and Q F , where Q contained URLs that had passed
the budget and Q F those that had failed. After Q was emptied, Q F was read
in its entirety and again split into two queues – Q and Q F . This process was
then repeated indefinitely.

We next offer a simple overhead model for this algorithm. As before, assume
that S is the number of pages crawled per second and b is the average URL
size. Further define E[Bx] < ∞ to be the expected budget of a domain in the
Internet, V to be the total number of PLDs seen by the crawler in one pass
through Q F , and L to be the number of unique URLs per page (recall that l

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:24 • H.-T. Lee et al.

Fig. 5. Operation of BEAST.

in our earlier notation allowed duplicate links). The next result shows that the
naive version of BEAST must increase disk I/O performance with crawl size N .

THEOREM 6. Lowest disk I/O speed (in bytes/s) that allows the naive budget-
enforcement approach to download N pages at fixed rate S is

λ = 2Sb (L − 1)αN , (27)

where

αN = max
(
1,

N
E[Bx]V

)
. (28)

PROOF. Assume that N ≥ E[Bx]V . First notice that the average number of
links allowed into Q is E[Bx]V and define interval T to be the time needed
to crawl these links, that is, T = E[Bx]V/S. Note that T is a constant, which
is important for the analysis that follows. Next, by the ith iteration through
Q F , the crawler has produced TiSL links and TiS of them have been consumed
through Q . Thus, the size of Q F is TiS (L−1). Since Q F must be both read and
written in T time units for any i, the disk speed λ must be 2TiS (L − 1)/T =
2iS (L − 1) URLs/s. Multiplying this by URL size b, we get 2ibS (L − 1) bytes/s.
The final step is to realize that N = TSi (i.e., the total number of crawled pages)
and substitute i = N/(TS) into 2ibS (L − 1).

For N < E[Bx]V observe that queue size E[Bx]V must be no larger than
N and thus N = E[Bx]V must hold since we cannot extract from the queue
more elements than have been placed there. Combining the two cases, we get
(28).

This theorem shows that λ ∼ αN =
(N) and that rechecking failed URLs
will eventually overwhelm any crawler regardless of its disk performance. For
IRLbot (i.e., V = 33M, E[Bx] = 11, L = 6.5, S = 3, 100 pages/s, and b = 110),
we get λ = 3.8MB/s for N = 100 million, λ = 83MB/s for N = 8 billion, and
λ = 826MB/s for N = 80 billion. Given other disk-intensive tasks, IRLbot’s
bandwidth for BEAST was capped at about 100MB/s, which explains why this
design eventually became a bottleneck in actual crawls.

The correct implementation of BEAST rechecks Q F at exponentially increas-
ing intervals. As shown in Figure 5, suppose the crawler starts with j ≥ 1

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:25

queues Q1, . . . , Q j , where Q1 is the current queue and Q j is the last queue.
URLs are read from the current queue Q1 and written into queues Q2, . . . , Q j
based on their budgets. Specifically, for a given domain x with budget Bx , the
first Bx URLs are sent into Q2, the next Bx into Q3, and so on. BEAST can
always figure out where to place URLs using a combination of Bx (attached by
STAR to each URL) and a local array that keeps for each queue Q j the leftover
budget of each domain. URLs that do not fit in Qj are all placed in Q F as in
the previous design.

After Q1 is emptied, the crawler moves to reading the next queue Q2 and
spreads newly arriving pages between Q3, . . . , Q j , Q1 (note the wrap-around).
After it finally empties Q j , the crawler rescans Q F and splits it into j additional
queues Q j+1, . . . , Q2 j . URLs that do not have enough budget for Q2 j are placed
into the new version of Q F . The process then repeats starting from Q1 until j
reaches some maximum OS-imposed limit or the crawl terminates.

There are two benefits to this approach. First, URLs from sites that exceed
their budget by a factor of j or more are pushed further back as j increases.
This leads to a higher probability that good URLs with enough budget will
be queued and crawled ahead of URLs in Q F . The second benefit, shown in
the next theorem, is that the speed at which the disk must be read does not
skyrocket to infinity.

THEOREM 7. Lowest disk I/O speed (in bytes/s) that allows BEAST to down-
load N pages at fixed rate S is

λ = 2Sb
[

2αN

1 + αN
(L − 1) + 1

]
≤ 2Sb (2L − 1). (29)

PROOF. Assume that N ≥ E[Bx]V and suppose one iteration involves reach-
ing Q F and doubling j . Now assume the crawler is at the end of the ith iteration
(i = 1 is the first iteration), which means that it has emptied 2i+1 − 1 queues
Qi and j is currently equal to 2i. The total time taken to reach this stage is
T = E[Bx]V (2i+1 − 1)/S. The number of URLs in Q F is then TS (L − 1), which
must be read/written together with j smaller queues Q1, . . . , Q j in the time it
takes to crawl these j queues. Thus, we get that the speed must be at least

λ = 2
TS (L − 1) + j E[Bx]V

j T0
URL/s, (30)

where T0 = E[Bx]V/S is the time to crawl one queue Qi. Expanding, we have

λ = 2S[(2 − 2−i)(L − 1) + 1] URL/s. (31)

To tie this to N , notice that the total number of URLs consumed by the crawler
is N = E[Bx]V (2i+1 − 1) = T S. Thus,

2−i = 2E[Bx]V
N + E[Bx]V

(32)

and we directly arrive at (29) after multiplying (31) by URL size b. Finally, for
N < E[Bx]V , we use the same reasoning as in the proof of the previous theorem
to obtain N = E[Bx]V , which leads to (28).

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:26 • H.-T. Lee et al.

Fig. 6. Download rates during the experiment.

For N → ∞ and fixed V , disk speed λ → 2Sb (2L − 1), which is roughly four
times the speed needed to write all unique URLs to disk as they are discovered
during the crawl. For the examples used earlier in this section, this implemen-
tation needs λ ≤ 8.2MB/s regardless of crawl size N . From the preceding proof,
it also follows that the last stage of an N -page crawl will contain

j = 2�log2(αN +1)�−1 (33)

queues. This value for N = 8B is 16 and for N = 80B only 128, neither of which
is too imposing for a modern server.

8. EXPERIMENTS

This section briefly examines the important parameters of the crawl and high-
lights our observations.

8.1 Summary

Between June 9 and August 3, 2007, we ran IRLbot on a quad-CPU AMD
Opteron 2.6 GHz server (16GB RAM, 24-disk RAID-5) attached to a 1gb/s link
at the campus of Texas A&M University. The crawler was paused several times
for maintenance and upgrades, which resulted in the total active crawling span
of 41.27 days. During this time, IRLbot attempted 7,606,109,371 connections
and received 7,437,281,300 valid HTTP replies. Excluding non-HTML content
(92M pages), HTTP errors and redirects (964M), IRLbot ended up with N =
6,380,051,942 responses with status code 200 and content-type text/html.

We next plot average 10-minute download rates for the active duration of
the crawl in Figure 6, in which fluctuations correspond to day/night bandwidth
limits imposed by the university.4 The average download rate during this crawl
was 319mb/s (1,789 pages/s) with the peak 10-minute average rate of 470mb/s
(3,134 pages/s). The crawler received 143TB of data, out of which 254GB were

4The day limit was 250mb/s for days 5 through 32 and 200mb/s for the rest of the crawl. The night
limit was 500mb/s.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:27

Fig. 7. Evolution of p throughout the crawl and effectiveness of budget control in limiting low-
ranked PLDs.

robots.txt files, and transmitted 1.8TB of HTTP requests. The parser processed
161TB of HTML code (i.e., 25.2KB per uncompressed page) and the gzip library
handled 6.6TB of HTML data containing 1,050,955,245 pages, or 16% of the
total. The average compression ratio was 1:5, which resulted in the peak pars-
ing demand being close to 800mb/s (i.e., 1.64 times faster than the maximum
download rate).

IRLbot parsed out 394,619,023,142 links from downloaded pages. After dis-
carding invalid URLs and known non-HTML extensions, the crawler was left
with K = 374,707,295,503 potentially “crawlable” links that went through URL
uniqueness checks. We use this number to obtain l = K /N ≈ 59 links/page
used throughout the article. The average URL size was 70.6 bytes (after remov-
ing “http://”), but with crawler overhead (e.g., depth in the crawl tree, IP address
and port, timestamp, and parent link) attached to each URL, their average size
in the queue was b ≈ 110 bytes. The size of URLseen on disk was 332GB and it
contained M = 41,502,195,631 unique pages hosted by 641, 982, 061 different
sites. This yields L = M/N ≈ 6.5 unique URLs per crawled page.

As promised earlier, we now show in Figure 7(a) that the probability of
uniqueness p stabilizes around 0.11 once the first billion pages have been down-
loaded. The fact that p is bounded away from 0 even at N = 6.3B suggests that
our crawl has discovered only a small fraction of the Web. While there are cer-
tainly at least 41 billion pages in the Internet, the fraction of them with useful
content and the number of additional pages not seen by the crawler remain a
mystery at this stage.

8.2 Domain Reputation

The crawler received responses from 117,576,295 sites, which belonged to
33,755,361 Pay-Level Domains (PLDs) and were hosted on 4,260,532 unique
IPs. The total number of nodes in the PLD graph was 89,652,630 with the
number of PLD-PLD edges equal to 1, 832, 325, 052. During the crawl, IRLbot
performed 260,113,628 DNS lookups, which resolved to 5,517,743 unique IPs.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:28 • H.-T. Lee et al.

Table IX. Top-Ranked PLDs, Their PLD In-Degree, Google
PageRank, and Total Pages Crawled

Rank Domain In-degree PageRank Pages
1 microsoft.com 2,948,085 9 37,755
2 google.com 2,224,297 10 18,878
3 yahoo.com 1,998,266 9 70,143
4 adobe.com 1,287,798 10 13,160
5 blogspot.com 1,195,991 9 347,613
7 wikipedia.org 1,032,881 8 76,322
6 w3.org 933,720 10 9,817
8 geocities.com 932,987 8 26,673
9 msn.com 804,494 8 10,802
10 amazon.com 745,763 9 13,157

Without knowing how our algorithms would perform, we chose a conservative
budget function F (dx) where the crawler would give only moderate preference
to highly ranked domains and try to branch out to discover a wide variety of
low-ranked PLDs. Specifically, top-10K ranked domains were given budget Bx
linearly interpolated between 10 and 10K pages. All other PLDs received the
default budget B0 = 10. Figure 7(b) shows the average number of downloaded
pages per PLD x based on its in-degree dx . IRLbot crawled on average 1.2 pages
per PLD with dx = 1 incoming link, 68 pages per PLD with dx = 2, and 43K
pages per domain with dx ≥ 512K. The largest number of pages pulled from
any PLD was 347,613 (blogspot.com), while 90% of visited domains contributed
to the crawl fewer than 586 pages each and 99% fewer than 3, 044 each. As
seen in the figure, IRLbot succeeded at achieving a strong correlation between
domain popularity (i.e., in-degree) and the amount of bandwidth allocated to
that domain during the crawl.

Our manual analysis of top-1000 domains shows that most of them are highly
ranked legitimate sites, which attests to the effectiveness of our ranking algo-
rithm. Several of them are listed in Table IX together with Google Toolbar
PageRank of the main page of each PLD and the number of pages downloaded
by IRLbot. The exact coverage of each site depended on its link structure, as
well as the number of hosts and physical servers (which determined how polite
the crawler needed to be). By changing the budget function F (dx), much more
aggressive crawls of large sites could be achieved, which may be required in
practical search-engine applications.

We believe that PLD-level domain ranking by itself is not sufficient for pre-
venting all types of spam from infiltrating the crawl and that additional fine-
granular algorithms may be needed for classifying individual hosts within a do-
main and possibly their subdirectory structure. Future work will address this
issue, but our first experiment with spam-control algorithms demonstrates that
these methods are not only necessary, but also very effective in helping crawlers
scale to billions of pages.

9. CAVEATS

This section provides additional details about the current status of IRLbot and
its relationship to other algorithms.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:29

9.1 Potential for Distributed Operation

Partitioning of URLs between crawling servers is a well-studied problem with
many insightful techniques [Boldi et al. 2004a; Cho and Garcia-Molina 2002;
Heydon and Najork 1999; Najork and Heydon 2001; Shkapenyuk and Suel
2002]. The standard approach is to localize URLs to each server based on the
hash of the Web site or domain the URL belongs to. Due to the use of PLD
budgets, our localization must be performed on PLDs rather than hosts, but
the remainder of the approach for distributing IRLbot is very similar to prior
work, which is the reason we did not dwell on it in this article. Our current
estimates suggest that DRUM with RAM caching can achieve over 97% local
hit-rate (i.e., the sought hash is either in RAM or on local disk) in verification
of URL uniqueness. This means that only 3% of parsed URL hashes would
normally require transmission to other hosts. For actual crawling, over 80% of
parsed URLs stay on the same server, which is consistent with the results of
prior studies [Najork and Heydon 2001].

Applying a similar technique to domain reputation (i.e., each crawling node
is responsible for the in-degree of all PLDs that map to it), it is possible to
distribute STAR between multiple hosts with a reasonably small effort. Finally,
it is fairly straightforward to localize BEAST by keeping separate copies of
queues of backlogged URLs at each crawling server, which only require budgets
produced by the local version of STAR. The amount of traffic needed to send
PLD-PLD edges between servers is also negligible due to the localization and
the small footprint of each PLD-PLD edge (i.e., 16 bytes). Note, however, that
more sophisticated domain reputation algorithms (e.g., PageRank [Brin and
Page 1998]) may require a global view of the entire PLD graph and may be
more difficult to distribute.

9.2 Duplicate Pages

It is no secret that the Web contains a potentially large number of syntactically
similar pages, which arises due to the use of site mirrors and dynamic URLs that
retrieve the same content under different names. A common technique, origi-
nally employed in Heydon and Najork [1999] and Najork and Heydon [2001], is
to hash page contents and verify uniqueness of each page-hash before process-
ing its links. Potential pitfalls of this method are false positives (i.e., identical
pages on different sites with a single link to /index.html may be flagged as
duplicates even though they point to different targets) and inability to detect
volatile elements of the page that do not affect its content (e.g., visitor coun-
ters, time of day, weather reports, different HTML/javascript code rendering
the same material).

As an alternative to hashing entire page contents, we can rely on signifi-
cantly more complex analysis that partitions pages into elements and studies
their similarity [Bharat and Broder 1999; Broder et al. 1997; Charikar 2002;
Henzinger 2006; Manku et al. 2007], but these approaches often require sig-
nificant processing capabilities that must be applied in real time and create
nontrivial storage overhead (i.e., each page hash is no longer 8 bytes, but may
consist of a large array of hashes). It has been reported in Henzinger [2006]

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:30 • H.-T. Lee et al.

that 25% to 30% of downloaded pages by Google are identical and an additional
1.7% to 2.2% are near-duplicate. The general consensus between the various
datasets [Broder et al. 1997; Manasse and Najork 2003; Henzinger 2006] shows
that 20% to 40% of downloaded pages can be potentially eliminated from pro-
cessing; however, the false positive and false negative rates of these algorithms
remain an open question.

Due to the inherent inability of HTML to flag objects as mirrors of other ob-
jects, it is impossible for a crawler to automatically detect duplicate content with
100% certainty. Even though the current version of IRLbot does not perform
any prevention of duplicates due to its high overhead and general uncertainty
about the exact trade-off between false positives and bandwidth savings, future
work will examine this issue more closely and some form of duplicate reduction
will be incorporated into the crawler.

In general, our view is that the ideal path to combat this problem is for the
Internet to eventually migrate to DNS-based mirror redirection (e.g., as done
in CDNs such as Akamai) and for Web sites to consolidate all duplicate pages,
as well as multiple hostnames, using 301/302 HTTP redirects. One incentive to
perform this transition would be the bandwidth savings for Web masters and
their network providers. Another incentive would be for commercial search
engines to publicly offer benefits (e.g., higher ranking) to sites where each page
maps to a single unique URL.

9.3 Hash Collisions

Given the size of IRLbot crawls, we may wonder about the probability of collision
on 8-byte hashes and the possibility of missing important pages during the
crawl. We offer approximate analysis of this problem to show that for N smaller
than a few hundred billion pages the collision rate is negligible to justify larger
hashes, but high enough that a few pages may indeed be missed in some crawls.
Assume that N is the number of crawled URLs and M = 264 is the hash size. A
collision event happens when two or more pages produce the same hash. Define
Vi to be the number of pages with hash i for i = 0, 1, . . . , M −1. Assuming N �
M , each Vi is approximately Poisson with rate λ = N/M and the probability of
a collision on hash i is

P (Vi ≥ 2) = 1 − e−λ − e−λλ = λ2

2
+ O(λ3), (34)

where the last step uses Taylor expansion for λ → 0. Now define V = ∑M
i=1 1Vi≥2

to be the number of collision events, where 1A is an indicator variable of event
A. Neglecting small terms, it then follows that the average number of collisions
and therefore missed URLs per crawl is E[V] ≈ N 2/2M . Using N = 6.3 billion,
we get E[V] = 1.075 pages/crawl. Ignoring the mild dependency in the set
{Vi}N

i=1, notice that V also tends to a Poisson random variable with rate Mλ2/2
as N/M → 0, which means that the deviation of V from the mean is very
small. For N = 6.3 billion, P (V = 0) ≈ e−N2/2M = 0.34, and P (V ≤ 4) ≈ 0.995,
indicating that 34% of crawls do not have any collisions and almost every crawl
has fewer than four missed URLs.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:31

Analysis of the frontier (i.e., pages in the queue that remain to be crawled)
shows similar results. For N = 35 billion, the average number of missed URLs
in the queue is E[V] = 33 and P (V ≤ 50) = 0.997, but the importance of this
omission may not be very high since the crawler does not attempt to download
any of these pages anyway. The final question is how large a crawl needs to be for
8-byte hashes to be insufficient. Since E[V] grows as a quadratic function of N ,
the collision rate will quickly become noticeable and eventually unacceptable
as N increases. This transition likely occurs for N between 100 billion and 10
trillion, where E[V] jumps from 271 to 2.7 million pages. When IRLbot reaches
this scale, we will consider increasing its hash size.

9.4 Optimality of Disk Sort

It may appear that DRUM’s quadratic complexity as N → ∞ is not very exciting
since algorithms such as merge-sort can perform the same task in
(N log N)
disk I/Os. We elaborate on this seeming discrepancy next. In general, the per-
formance of sorting algorithms depends on the data being sorted and the range
of N under consideration. For example, quick-sort is 2 to 3 times faster than
merge-sort on randomly ordered input and selection-sort is faster than quick-
sort for very small N despite its
(N 2) complexity. Furthermore, if the array
contains uniformly random integers, bucket-sort can achieve
(N) complexity
if the number of buckets is scaled with N . For RAM-based sorting, this is not
a problem since N → ∞ implies that RAM size R → ∞ and the number of
buckets can be unbounded.

Returning to our problem with checking URL uniqueness, observe that
merge-sort can be implemented using
(N log N) disk overhead for any N → ∞
[Vitter 2001]. While bucket-sort in RAM-only applications is linear, our results
in Theorem 2 show that with fixed RAM size R, the number of buckets k can-
not be unbounded as N increases. This arises due to the necessity to maintain
2k open file handles and the associated memory buffers of size 2kM. As a re-
sult, DRUM exhibits
(N 2) complexity for very large N ; however, Theorem 2
also shows that the quadratic term is almost negligible for N smaller than
several trillion pages. Therefore, unless N is so exorbitant that the quadratic
term dominates the overhead, DRUM is in fact almost linear and very close to
optimal.

As an additional improvement, bucket-sort can be recursively applied to each
of the buckets until they become smaller than R. This modification achieves
N logk(N/R) overhead, which is slightly smaller (by a linear term) than that
of k-way merge-sort. While both algorithms require almost the same number
of disk I/O bytes, asymmetry in RAID read/write speed introduces further dif-
ferences. Each phase of multilevel bucket-sort requires simultaneous writing
into k files and later reading from one file. The situation is reversed in k-way
merge-sort whose phases need concurrent reading from k files and writing into
one file. Since reading is usually faster than writing, memory buffer M cur-
rently used in DRUM may not support efficient reading from k parallel files. As
a result, merge-sort may need to increase its M and reduce k to match the I/O
speed of bucket-sort. On the bright side, merge-sort is more general and does

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:32 • H.-T. Lee et al.

not rely on uniformity of keys being sorted. Exact analysis of these trade-offs
is beyond the scope of the article and may be considered in future work.

9.5 Robot Expiration

IRLbot’s user-agent string supplied Web masters with a Web page describing
the project and ways to be excluded from the crawl (both manual through email
and automatic through robots.txt files). While the robots draft RFC specifies the
default expiration delay of 7 days, we used an adaptive approach based on the
changes detected in the file. The initial delay was set to one day, which was then
doubled at each expiration (until it reached 7 days) if the file did not change
and reset to one day otherwise. We also honored the crawl-delay parameter
and wildcards in robots.txt, even though they are not part of the draft RFC.

Interestingly, Web masters had conflicting expectations about how often the
file should be loaded; some wanted us to load it for every visit, while others
complained that only one time per crawl was sufficient since doing otherwise
wasted their bandwidth. In the end, a compromise between the two extremes
seemed like an appropriate solution.

9.6 Caching

The article has shown that URL checks with RAM-caching can speed up the
crawl if the system is bottlenecked on disk I/O and has spare CPU capacity. In
our case, the disk portion of DRUM was efficient enough for download rates well
above our peak 3, 000 pages/s, which allowed IRLbot to run without caching and
use the spare CPU resources for other purposes. In faster crawls, however, it is
very likely that caching will be required for all major DRUM structures.

10. CONCLUSION

This article tackled the issue of scaling Web crawlers to billions and even tril-
lions of pages using a single server with constant CPU, disk, and memory speed.
We identified several impediments to building an efficient large-scale crawler
and showed that they could be overcome by simply changing the BFS crawling
order and designing low-overhead disk-based data structures. We experimen-
tally tested our techniques in the Internet and found them to scale much better
than the methods proposed in prior literature.

Future work involves refining reputation algorithms, assessing their perfor-
mance, and mining the collected data.

ACKNOWLEDGMENTS

We are grateful to Texas A&M University and its network administrators for
providing the enormous amount of bandwidth needed for this project and pa-
tiently handling Web master complaints. We are also thankful to the anony-
mous ACM Transactions on the Web reviewers for their insightful comments
and helpful feedback.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

IRLbot: Scaling to 6 Billion Pages and Beyond • 8:33

REFERENCES

ABITEBOUL, S., PREDA, M., AND COBENA, G. 2003. Adaptive on-line page importance computation.
In Proceedings of the World Wide Web Conference (WWW’03). 280–290.

ARASU, A., CHO, J., GARCIA-MOLINA, H., PAEPCKE, A., AND RAGHAVAN, S. 2001. Searching the Web.
ACM Trans. Internet Technol.1, 1, 2–43.

BHARAT, K. AND BRODER, A. 1999. Mirror, mirror on the Web: A study of hst pairs with replicated
content. In Proceedings of the World Wide Web Conference (WWW’99). 1579–1590.

BOLDI, P., CODENOTTI, B., SANTINI, M., AND VIGNA, S. 2004a. Ubicrawler: A scalable fully distributed
Web crawler. Softw. Pract. Exper. 34, 8, 711–726.

BOLDI, P., SANTINI, M., AND VIGNA, S. 2004b. Do your worst to make the best: Paradoxical effects
in pagerank incremental computations. In Algorithms and Models for the Web-Graph. Lecture
Notes in Computer Science, vol. 3243. Springer,168–180.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In
Proceedings of the World Wide Web Conference (WWW’98). 107–117.

BRODER, A. Z., GLASSMAN, S. C., MANASSE, M. S., AND ZWEIG, G. 1997. Syntactic clustering of the
Web. Comput. Netw. ISDN Syst. 29, 8-13, 1157–1166.

BRODER, A. Z., NAJORK, M., AND WIENER, J. L. 2003. Efficient url caching for World Wide Web
crawling. In Proceedings of the World Wide Web Conference (WWW’03). 679–689.

BURNER, M. 1997. Crawling towards eternity: Building an archive of the World Wide Web. Web
Techn. Mag. 2, 5.

CHARIKAR, M. S. 2002. Similarity estimation techniques from rounding algorithms. In Proceed-
ings of the Annual ACM Symposium on Theory of Computing (STOC’02). 380–388.

CHO, J. AND GARCIA-MOLINA, H. 2002. Parallel crawlers. In Proceedings of the World Wide Web
Conference (WWW’02). 124–135.

CHO, J., GARCIA-MOLINA, H., HAVELIWALA, T., LAM, W., PAEPCKE, A., AND WESLEY, S. R. G. 2006.
Stanford Web base components and applications. ACM Trans. Internet Technol. 6, 2, 153–
186.

EDWARDS, J., MCCURLEY, K., AND TOMLIN, J. 2001. An adaptive model for optimizing performance
of an incremental Web crawler. In Proceedings of the World Wide Web Conference (WWW’01).
106–113.

EICHMANN, D. 1994. The rbse spider – Balancing effective search against Web load. In World Wide
Web Conference.

FENG, G., LIU, T.-Y., WANG, Y., BAO, Y., MA, Z., ZHANG, X.-D., AND MA, W.-Y. 2006. Aggregaterank:
Bringing order to Web sites. In Proceedings of the Annual ACM SIGIR Conference on Research
and Development in Information Retrieval. 75–82.

GLEICH, D. AND ZHUKOV, L. 2005. Scalable computing for power law graphs: Experience with
parallel pagerank. In Proceedings of SuperComputing.

GYÖNGYI, Z. AND GARCIA-MOLINA, H. 2005. Link spam alliances. In Proceedings of the International
Conference on Very Large Databases (VLDB’05). 517–528.

HAFRI, Y. AND DJERABA, C. 2004. High-performance crawling system. In Proceedings of the ACM
International Conference on Multimedia Information Retrieval (MIR’04). 299–306.

HENZINGER, M. R. 2006. Finding near-duplicate Web pages: A large-scale evaluation of algo-
rithms. In Proceedings of the Annual ACM SIGIR Conference on Research and Development in
Information Retrieval. 284–291.

HEYDON, A. AND NAJORK, M. 1999. Mercator: A scalable, extensible Web crawler. World Wide Web
2, 4, 219–229.

HIRAI, J., RAGHAVAN, S., GARCIA-MOLINA, H., AND PAEPCKE, A. 2000. Web base: A repository of Web
pages. In Proceedings of the World Wide Web Conference (WWW’00). 277–293.

INTERNET ARCHIVE. Internet archive homepage. http://www.archive.org/.
IRLBOT. 2007. IRLbot project at Texas A&M. http://irl.cs.tamu.edu/crawler/.
KAMVAR, S. D., HAVELIWALA, T. H., MANNING, C. D., AND GOLUB, G. H. 2003a. Exploiting the block

structure of the Web for computing pagerank. Tech. rep., Stanford University.
KAMVAR, S. D., HAVELIWALA, T. H., MANNING, C. D., AND GOLUB, G. H. 2003b. Extrapolation meth-

ods for accelerating pagerank computations. In Proceedings of the World Wide Web Conference
(WWW’03). 261–270.

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

8:34 • H.-T. Lee et al.

KOHT-ARSA, K. AND SANGUANPONG, S. 2002. High-performance large scale Web spider architecture.
In International Symposium on Communications and Information Technology.

MANASSE, D. F. M. AND NAJORK, M. 2003. Evolution of clusters of near-duplicate Web pages. In
Proceedings of the Latin American Web Congress (LAWEB’03). 37–45.

MANKU, G. S., JAIN, A., AND SARMA, A. D. 2007. Detecting near duplicates for Web crawling. In
Proceedings of the World Wide Web Conference (WWW’07). 141–149.

MAULDIN, M. 1997. Lycos: Design choices in an Internet search service. IEEE Expert Mag. 12, 1,
8–11.

MCBRYAN, O. A. 1994. Genvl and wwww: Tools for taming the Web. In World Wide Web Conference
(WWW’94).

NAJORK, M. AND HEYDON, A. 2001. High-performance Web crawling. Tech: rep. 173, Compaq
Systems Research Center.

NAJORK, M. AND WIENER, J. L. 2001. Breadth-first search crawling yields high-quality pages. In
Proceedings of the World Wide Web Conference (WWW’01). 114–118.

OFFICIAL GOOGLE BLOG. 2008. We knew the Web was big...
http://googleblog.blogspot.com/ 2008/07/we- knew- web- was- big.html.

PINKERTON, B. 1994. Finding what people want: Experiences with the Web crawler. In World Wide
Web Conference (WWW’94).

PINKERTON, B. 2000. Web crawler: Finding what people want. Ph.D. thesis, University of
Washington.

SHKAPENYUK, V. AND SUEL, T. 2002. Design and implementation of a high-performance distributed
Web crawler. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’02).
357–368.

SINGH, A., SRIVATSA, M., LIU, L., AND MILLER, T. 2003. Apoidea: A decentralized peer-to-peer ar-
chitecture for crawling the World Wide Web. In Proceedings of the ACM SIGIR Workshop on
Distributed Information Retrieval. 126–142.

SUEL, T., MATHUR, C., WU, J., ZHANG, J., DELIS, A., KHARRAZI, M., LONG, X., AND SHANMUGASUNDARAM, K.
2003. Odissea: A peer-to-peer architecture for scalable Web search and information retrieval.
In Proceedings of the International Workshop on Web and Databases (WebDB’03). 67–72.

VITTER, J. 2001. External memory algorithms and data structures: Dealing with massive data.
ACM Comput. Surv. 33, 2, 209–271.

WU, J. AND ABERER, K. 2004. Using siterank for decentralized computation of Web document
ranking. In Proceedings of the International Conference on Adaptive Hypermedia, 265–274.

Received March 2008; revised February 2009; accepted March 2009

ACM Transactions on The Web, Vol. 3, No. 3, Article 8, Publication date: June 2009.

