On High-Latency Bowtie Data Streaming

Gabriel Stella, Dmitri Loguinov

Internet Research Lab (IRL)
Department of Computer Science and Engineering
Texas A&M University

December 18, 2022
Agenda

• Motivation
• Bowtie Streaming
• Optimizing Run Length
• Multi-Pass Optimization
• Experiments
Motivation

• Many applications use external-memory (EM) algorithms to process datasets larger than RAM

• This often requires *concurrent* I/O with multiple files
 - Sorting (merging/distribution)
 - MapReduce computation
 - Graph mining
 - Database join/group/aggregate queries

• Parallel I/O is challenging because large-scale storage frequently uses arrays of HDDs
 - High sequential read/write transfer speed (S_r, S_w), but large seek delays, i.e., switching between files is expensive
Motivation

• Long history of EM research [Aggarwal88], [Vitter94], [Dementiev08], [Blelloch15], [Shatnawi15], [Arge17]
 – Does not account for seeking and not concerned with runtime
 – More recent theory [Bender19] goes to the other extreme and assumes that every I/O incurs a seek

• Instead, a realistic EM model should
 – Focus on the runtime of the application
 – Explicitly account for the fact that EM algorithms perform bursts of sequential I/Os interleaved with random seeks

• We fill this void by introducing a novel I/O model called bowtie streaming and modeling its performance
Agenda

- Introduction
- **Bowtie Streaming**
- Optimizing Run Length
- Multi-Pass Optimization
- Experiments
Bowtie Streaming

- **Definition**: a stream is an external data object without support for random access.

- **Definition**: a $n \times m$ bowtie is an EM computation that runs a user-supplied function f, which reads from n input streams, each at some average rate λ_{in}, and writes to m output streams, each at some other rate λ_{out}.

- A bowtie is called *high-latency* if the inter-stream seek delay δ is non-negligible compared to the time spent sequentially accessing each file.
Bowtie Streaming

- Let N be the total amount of data across all streams, with fraction α coming from input, and $M < N$ the amount of memory available to the I/O scheduler.

- **Definition**: assuming s is the total number of stream switches, the runtime of a bowtie application is

 $$ T = \frac{\alpha N}{S_r} + \frac{(1 - \alpha)N}{S_w} + s\delta $$

- It is often more useful to view performance in terms of the *average sequential run length* $L = N/s$.

- **Definition**: the *throughput* of a bowtie application is

 $$ \lambda = \left[\frac{\alpha}{S_r} + \frac{1 - \alpha}{S_w} + \frac{\delta}{L} \right]^{-1} $$
Bowtie Streaming

- The optimal solution to an $n \times m$ bowtie may require a decomposition into smaller bowties
 - A 6x4 case may be split into three 2x1 merge bowties, followed by a 3x2 interconnect, and then two 1x2 distribution bowties
 - But can we do better and under what conditions?

- **Objective**: assuming a d-pass bowtie with rate λ_i in level i, maximize the overall throughput
 $$\left(\sum_{i=0}^{d-1} \frac{1}{\lambda_i} \right)^{-1}$$
Agenda

- Introduction
- Bow Streaming
- Optimizing Run Length
- Multi-Pass Optimization
- Experiments
Optimizing Run Length

- The first step is to optimize single-pass bowtie performance, which translates into maximizing L.
- Discussion here focuses on one particular scenario; see the paper for the other four.
 - In *distribute-from-file*, data from a single input stream is split into m destinations.
- Most existing methods (Spark, Hadoop, STXXL, [Vitter94]) perform I/O *on demand*, i.e., without buffering ahead, minimizing seeks, or taking into account memory size M.
Optimizing Run Length

- Baseline memory-aware approach:
 - Split memory in half between input and output
 - Read $M/2$ from input, distribute the data, empty all buckets

- **Theorem**: the baseline algorithm yields $L = M/(m+1)$
 - But we can do even better with a new formalism

- **Definition**: the buffer of pending data for each stream i is called a *bucket* and its size at time t is $X_i(t)$, where $\sum X_i(t) \leq M$

- **Definition**: a *bucket game* is an in-memory scheduler that decides which buffer(s) to empty when the memory is exhausted (i.e., $\sum X_i(t) = M$)
Optimizing Run Length

- Note that the bucket game assumes negligible buffering on the reader side (e.g., two blocks)
- The objective is to design a scheduler that achieves the largest L
 - If e_i is the set of buckets emptied during step i, each bucket game is described by some vector $q = (e_1, e_2, \ldots)$
 - Selection of optimal q for general cases is complicated, but is tractable for certain scenarios of interest
- Emptying the single largest bucket seems like a reasonable solution, but we consider a more general problem that removes the $c \geq 1$ largest buckets
 - A simulation is available at gabrielrstella.com/buckets.php
Optimizing Run Length

• **Theorem**: the $1 \times m$ bucket-game system of recurrences converges to a unique steady state whose run length is optimized by $c = \sqrt{m}$

• **Theorem**: The optimal run length for the $1 \times m$ bowtie is $L = 4M/(\sqrt{m} + 1)^2$
 - This is almost 4x better than baseline
 - With $m = 64$ files and memory size $M = 16$ GB, the baseline gets $L = 252$ MB, $c = 1$ yields 500 MB, while the optimal approach with $c = 8$ reaches $L = 809$ MB
Agenda

- Introduction
- Bowtie Streaming
- Optimizing Run Length
- Multi-Pass Optimization
- Experiments
Multi-Pass Optimization

• Throughput $\lambda(m)$ begins relatively flat for small fan-out factors, but then exhibits a sharp decline after some threshold
 - To increase performance at large $n + m$, multiple passes over the data are usually beneficial

• **Idea**: use dynamic programming to find the optimal set of intermediate bowties that minimizes the total runtime

• **Alg 1**: find optimal $n \times 1$ and $1 \times m$ bowties under arbitrary λ functions

• **Alg 2**: determine the best interconnect $i \times j$ that creates the optimal $(n \rightarrow i \times j \rightarrow m)$ multi-pass bowtie
Multi-Pass Optimization

- **Example:** for an $1 \times m$ bowtie, the algorithm finds a list of split factors (m_1, \ldots, m_d), where $\prod_{i=0}^{d-1} m_i = m$, such that the total throughput $[\sum_i 1/\lambda(m_i)]^{-1}$ is maximized
 - The single-pass solution runs $\lambda(m) \sim 1/m$ as $m \to \infty$, while the multi-pass has much better scalability $\lambda(m) \sim 1/\log(m)$

- Consider a 1×8000 bowtie outputting 64 TB using $M = 8$ GB on a 24-HDD RAID system with sequential I/O speed $S_r = S_w = 4$ GB/s and seek delay $\delta = 10$ ms
 - Prior work often suggests one pass, which runs @ 208 MB/s
 - Binary splits, another alternative that appears in related work, require 13 passes, which gives 273 MB/s
 - The optimal split vector (90, 89), however, pushes 1353 MB/s
Agenda

• Introduction
• Bowtie Streaming
• Optimizing Run Length
• Multi-Pass Optimization
• Experiments
I/O Tracing

- Due to CPU bottlenecks and various OS-related side-effects (fragmentation, buffering) in most real systems, comparison of I/O performance is complex

- We develop a novel I/O measurement platform that:
 - Intercepts and records all I/O calls from a process and its children (with negligible measured performance impact)
 - Merges and converts log files into a single list of instructions
 - Replays the I/Os in a standalone, performance-optimized, and defragmented file system

- This enables not only analysis of process I/O patterns (e.g., seek counts, run length L), but also a systematic evaluation of throughput λ across the methods
Java Frameworks

- We start with Hadoop and Spark, two popular Apache data-processing frameworks (24 HDD, 160 TB RAID)

<table>
<thead>
<tr>
<th>Framework</th>
<th>RAM (GB)</th>
<th>Sort (hr)</th>
<th>Replay (min)</th>
<th>Seeks</th>
<th>L (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop</td>
<td>25</td>
<td>6.6</td>
<td>90</td>
<td>415M</td>
<td>517</td>
</tr>
<tr>
<td>Spark</td>
<td>10</td>
<td>10.2</td>
<td>32</td>
<td>34M</td>
<td>6316</td>
</tr>
</tbody>
</table>

- Even though the volume delivers 4 GB/s sequential speed, the replay was 2 orders of magnitude slower
 - Hadoop spawned 2K processes that executed 2.83 TB of I/O across 569M API calls, including 11M calls to CreateFile
 - Spark required 511 GB of I/O and issued 20.5M calls to CreateFile, interacting with 16K unique filenames
C++ Frameworks

• To build on the theory developed earlier, our platform Tuxedo implements optimal multi-pass I/O-scheduling for general bowties
 – We test it by constructing a sorting application for large files consisting of 64-bit uniform keys
 – The in-memory component runs an m-way depth-first-search distribution bowtie, followed by the Vortex framework [Hanel20] that sorts memory-size chunks at the leaves

• Benchmarks also include
 – STXXL: an open-source high-performance EM algorithm suite
 – nsort: popular commercial sorting software that has been used as the backbone of several large sorting systems
C++ Frameworks

Average Sequential Run Length L (MB/seek)

<table>
<thead>
<tr>
<th>RAM (GB)</th>
<th>Input (GB)</th>
<th>STXXL</th>
<th>nsort</th>
<th>Tuxedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>3.9</td>
<td>1.5</td>
<td>260</td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td>4.0</td>
<td>1.9</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>1024</td>
<td>3.6</td>
<td>1.0</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>8192</td>
<td>1.3</td>
<td>0.8</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>512</td>
<td>4.0</td>
<td>1.8</td>
<td>396</td>
</tr>
<tr>
<td>8</td>
<td>4096</td>
<td>4.0</td>
<td>1.7</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>1280</td>
<td>4.0</td>
<td>1.9</td>
<td>993</td>
</tr>
</tbody>
</table>

- Tuxedo achieves 2-3 orders of magnitude larger L
 - This benefit gets larger as M increases
- Note that in the three highlighted cases, Tuxedo exhibits perfect linear scaling with M
When looking at just the bowtie I/O scheduling, Tuxedo is up to 17x faster
- Our performance will continue to get better when given more memory and/or faster storage hardware
C++ Frameworks

• We finish with full sort results

• When comparing sort and replay rates, the numbers here will be significantly lower for several reasons:
 ─ Sort rates are calculated as $\alpha N/T$ (only input is counted)
 ─ Sort times include both the bowtie passes and the run-formation phase (replays are bowtie-only)
 ─ STXXL and nsort are both heavily CPU-bottlenecked

• Tuxedo’s low computational cost makes our full sorts only \(\sim 10\%\) slower than the corresponding replays
C++ Frameworks

<table>
<thead>
<tr>
<th>RAM (GB)</th>
<th>Input (GB)</th>
<th>STXXL</th>
<th>nsort</th>
<th>Tuxedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>57</td>
<td>56</td>
<td>561</td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td>56</td>
<td>69</td>
<td>554</td>
</tr>
<tr>
<td>2</td>
<td>1024</td>
<td>51</td>
<td>50</td>
<td>434</td>
</tr>
<tr>
<td>2</td>
<td>8192</td>
<td>39</td>
<td>32</td>
<td>343</td>
</tr>
<tr>
<td>8</td>
<td>512</td>
<td>56</td>
<td>55</td>
<td>650</td>
</tr>
<tr>
<td>8</td>
<td>4096</td>
<td>55</td>
<td>73</td>
<td>528</td>
</tr>
<tr>
<td>20</td>
<td>1280</td>
<td>55</td>
<td>55</td>
<td>688</td>
</tr>
</tbody>
</table>

- Tuxedo’s **7-12x** improvement over the existing systems offers an appealing big-data engine for various EM tasks (e.g., analytics, graph mining, databases)
- **Questions?**