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ABSTRACT 
This paper presents a trace-driven simulation study of two classes 
of retransmission timeout (RTO) estimators in the context of real-
time streaming over the Internet. We explore the viability of em-
ploying retransmission timeouts in NACK-based (i.e., rate-based) 
streaming applications to support multiple retransmission attempts 
per lost packet. The first part of our simulation is based on trace 
data collected during a number of real-time streaming tests be-
tween dialup clients in all 50 states in the U.S. (including 653 
major U.S. cities) and a backbone video server. The second part 
of the study is based on streaming tests over DSL and ISDN ac-
cess links. First, we define a generic performance measure for 
assessing the accuracy of hypothetical RTO estimators based on 
the samples of the round-trip delay (RTT) recorded in the trace 
data. Second, using this performance measure, we evaluate the 
class of TCP-like estimators and find the optimal estimator given 
our performance measure. Third, we introduce a new class of 
estimators based on delay jitter and show that they significantly 
outperform TCP-like estimators in NACK-based applications with 
low-frequency RTT sampling. Finally, we show that high-
frequency sampling of the RTT completely changes the situation 
and makes the class of TCP-like estimators as accurate as the 
class of delay-jitter estimators.  

1. INTRODUCTION 
Many Internet transport protocols rely on retransmission to 
recover lost packets. Reliable protocols (such as TCP) util-
ize a well-established sender-initiated retransmission 
scheme that employs retransmission timeouts (RTO) and 
duplicate acknowledgements (ACKs) to detect lost packets 
[9]. RTO estimation in the context of retransmission refers 
to the problem of predicting the next value of the round-trip 
delay (RTT) based on the previous samples of the RTT. 
RTO estimation is usually a more complicated problem 
than simply predicting the most likely value of the next 
RTT. For example, an RTO estimator that always underes-

timates the next RTT by 10% is significantly worse than 
the one that always overestimates the next RTT by 10%. 
Although both estimators are within 10% of the correct 
value, the former estimator generates 100% duplicate pack-
ets, while the latter one avoids all duplicate packets with 
only 10% unnecessary waiting. 

Even though Jacobson’s RTO estimator [9] is readily ac-
cepted by many TCP-like protocols, the problem of esti-
mating the RTO in streaming protocols has not been ad-
dressed before. Current streaming protocols [22] deployed 
in the Internet rely on NACK-based flow control and usu-
ally do not implement congestion control, and the question 
of whether TCP’s RTO estimator is suitable for such proto-
cols remains an open issue. This paper sheds new light on 
the problem of RTO estimation in NACK-based protocols 
and shows the performance of several classes of RTO esti-
mators in realistic Internet streaming scenarios.  

Traditionally, NACK-based protocols sample the RTT only 
at times of packet loss (see below for details of how this is 
done). Even though there is nothing that inherently stops 
NACK-based protocols from sampling the RTT at a higher 
rate, our study for the most part follows the assumptions of 
the existing NACK-based applications [22] (i.e., the re-
ceiver sends messages to the server only upon packet loss 
and the RTT is measured only for the retransmitted pack-
ets).  

As a result of our investigation, we found that TCP’s RTO 
was an inadequate predictor of future values of the RTT 
when used in a NACK-based protocol over paths with low-
frequency RTT sampling (i.e., low packet loss). We further 
found that along such paths, the accuracy of estimation 
could be substantially improved if the client used delay 
jitter in its computation of the RTO. On the other hand, 
when the RTT sampling rate was increased, TCP’s RTO 
performed very well and the benefits of delay jitter were 
much less significant. Since an application typically does 
not know its future packet loss rates, we find that NACK-
based protocols, augmented with high-frequency (i.e., in 
the order of once per RTT) sampling of the round-trip de-
lay, will perform very well regardless of the end-to-end 
characteristics of a particular path (for example, high-
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frequency RTT sampling in real-time streaming can be 
implemented by using congestion control messages and 
once-per-RTT receiver-based feedback [13]).  

In addition, this paper presents a generalized (i.e., suitable 
for many real-time applications) NACK-based, real-time 
retransmission model for multimedia streaming over the 
Internet and assess the effectiveness of various RTO esti-
mators in the context of Internet streaming and our re-
transmission model. While the primary goal of our study is 
to develop a better retransmission mechanism for real-time 
applications, our retransmission model and new perform-
ance measure introduced in this paper are generic enough 
to apply to TCP as well.  

Our characterization of RTO estimators is based on a rea-
sonably large number of real-time streaming tests con-
ducted between dialup clients from all 50 states in the U.S. 
and a backbone server during a seven-month period. We 
believe that this setup accurately reflects the current situa-
tion with real-time streaming in the Internet since the ma-
jority (i.e., 87-89%) of households in the U.S. still connect 
to the Internet through dialup modems [5], [8].  

A good RTO estimator is the basis of any retransmission 
scheme. An application utilizing an RTO estimator that 
consistently underestimates the round-trip delay generates 
a large number of duplicate packets. The effect of duplicate 
packets ranges from being simply wasteful to actually caus-
ing serious network congestion. Note that in NACK-based 
applications, the receiver (i.e., the client) is responsible for 
estimating the RTO and the server is no longer in charge of 
deciding when to initiate a particular retransmission. This is 
illustrated in Figure 1 (left), in which the client sends three 
NACKs in response to a single lost packet and produces 
two duplicate packets due to insufficient RTO. 

On the other hand, overestimation of the RTT defers the 
generation of subsequent retransmission requests and leads 
to lower throughput performance in TCP and causes an 
increased number of underflow events (which are generated 
by packets arriving after their decoding deadlines) in real-
time applications. In either case, the amount of overestima-
tion can be measured by the duration of unnecessary wait-
ing for timeouts (i.e., waiting longer than the RTT of the 
lost retransmission). This is illustrated in Figure 1 (right). 
In the figure, the first retransmission is lost as well, and the 

generation of the second NACK is significantly delayed 
because the RTO is higher than the network RTT. 
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Therefore, the performance (i.e., accuracy) of an RTO es-
timator is fully described by two parameters (quantified 
later in this paper) – the number of duplicate packets and 
the amount of unnecessary timeout waiting. These two pa-
rameters cannot be minimized at the same time, since they 
represent a basic trade-off of any RTO estimator (i.e., de-
creasing one parameter will increase the other). To study 
the performance of RTO estimators, we define a weighted 
sum of these two parameters and study a multidimensional 
optimization problem in order to find the tuning parameters 
that make an RTO estimator optimal within its class. The 
minimization problem is not straightforward because the 
function to be minimized is non-continuous, has unknown 
(and often non-existent) derivatives, and contains a large 
number of local minima.  

Figure 1. Underestimation results in duplicate packets (left) 
and overestimation results in unnecessary waiting (right). 

The paper is organized as follows. Section 2 provides the 
background on the problem of estimating retransmission 
timeouts and discusses some of the related work. Section 3 
describes the methodology of our experiment. Section 4 
introduces a novel performance measure that is used to 
judge the accuracy of hypothetical RTO estimators 
throughout this paper. Section 5 studies the class of TCP-
like RTO estimators and models their performance. Section 
6 discusses a new class of jitter-based RTO estimators and 
shows their superior performance in our modem datasets. 
Section 7 studies the performance of RTO estimators along 
high-speed Internet paths with high-frequency RTT sam-
pling and shows that these paths require a different estima-
tor. Section 8 concludes the paper.  

2. BACKGROUND AND RELATED WORK 
Recall that TCP’s RTO estimation consists of three algo-
rithms. The first algorithm, smoothed RTT estimator 
(SRTT), is an exponentially-weighted moving average 
(EWMA) of the past RTT samples [1], [9], [19]: 
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where RTTi is the i-th sample of the round-trip delay pro-
duced at time ti and α (set by default to 1/8) is a smoothing 
factor that can be varied to give more or less weight to the 
history of RTT samples. In the original RFC 793 [20], the 
RTO was obtained by multiplying the latest value of the 
SRTT by a fixed factor between 1.3 and 2.0. In the late 
1980s, Jacobson [9] found that the RFC 793 RTO estimator 
produced an excessive amount of duplicate packets when 
employed over the Internet and proposed that the second 
algorithm, smoothed RTT variance estimator (SVAR), be 
added to TCP’s retransmission scheme [1], [9], [19]: 
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where β (set by default to ¼) is an EWMA smoothing fac-
tor and VARi is the absolute deviation of the i-th RTT sam-
ple from the previous smoothed average: VARi = |SRTTi–1 –
 RTTi|. Current implementations of TCP compute the RTO 
by multiplying the smoothed variance by four and adding it 
to the smoothed round-trip delay [1], [19]: 

Figure 2. The setup of the modem experiment. 
 RTO(t) = n⋅SRTTi + k⋅SVARi, (3) Among other reliable protocols with non-Jacobson RTO 

estimation, Keshav et al. [11] employed sender-based re-
transmission timeouts equal to twice the SRTT (i.e., the 
RFC 793 estimator), and Gupta et al. [7] used a NACK-
based retransmission scheme, in which receiver timeouts 
and detection of lost packets were based on inter-packet 
arrival delay jitter.  

where t is the time at which the RTO is computed, n = 1, 
k = 4, and i = max i: ti ≤ t. 

The third algorithm involved in retransmission, exponential 
timer backoff, refers to Jacobson’s algorithm [9] that expo-
nentially increases the timeout value each time the same 
packet is retransmitted by the sender. Exponential timer 
backoff does not increase the accuracy of an RTO estima-
tor, but rather conceals the negative effects of 
underestimating the actual RTT.1 Since this paper focuses 
on tuning the accuracy of RTO estimators, we consider the 
timer backoff algorithm to be an orthogonal issue, to which 
we will not pay much attention. Furthermore, real-time 
applications have the ability to utilize a different technique 
that conceals RTT underestimation, which involves setting 
a deterministic limit on the number of retransmission at-
tempts for each lost packet based on real-time decoding 
deadlines. 

The situation with RTO estimation in real-time streaming 
applications is somewhat different – the majority of real-
time protocols either use TCP’s RTO or rely on novel RTO 
estimation methods whose performance in the real Internet 
is unknown. Papadopoulos et al. [16] proposed a real-time 
retransmission scheme in which the receiver used the value 
of the SRTT in (1) to decide which packets were eligible 
for the first retransmission and employed special packet 
headers to support subsequent retransmissions. The benefit 
of avoiding timeouts was offset by the inability of the pro-
posed scheme to overcome NACK loss. Rhee [23] em-
ployed a retransmission scheme in which the sender used 
three frame durations (instead of an estimate of the RTT) 
to decide on subsequent retransmissions of the same 
packet. A similar sender-based retransmission scheme was 
proposed by Gong et al. [6], with the exception that the 
sender used an undisclosed estimate of the RTT to decide 
when the same packet was eligible for a repeated 
retransmission. 

Rigorous tuning of TCP’s retransmission mechanism has 
not been attempted in the past (possibly with the exception 
of [1]), and the study of TCP’s RTO over diverse Internet 
paths is limited to [17], [18], in which Paxson found that 
40% of retransmissions in the studied TCP implementa-
tions were redundant.2 

Recently, Allman and Paxson [1] conducted a trace-driven 
simulation study based on TCP traffic to investigate the 
performance of hypothetical TCP-like RTO estimators (3) 
for several values of α, β, and k (n was kept at 1). The au-
thors compared the performance of eight estimators by 
varying (α,β) and keeping k fixed at 4 and examined eight 
additional estimators by running k through eight integer 
values and keeping (α,β) fixed at their default values. The 
paper further concluded that no TCP-like RTO estimator 
could perform significantly better in the future versions of 
TCP than Jacobson’s de-facto standard [9] and that even 
varying parameter n in (3) would not make the estimator 
substantially better.  

3. METHODOLOGY 

3.1. Experiment 
Our evaluation study of RTO estimators is based on ex-
perimental data collected in a large-scale real-time stream-
ing experiment over the Internet during November 1999 – 
May 2000. Aiming to create a setup the reflects the current 
use of real-time streaming in the Internet by the majority of 
home users [22], we implemented an MPEG-4 real-time 
streaming client-server architecture with NACK-based re-
transmission and used it to sample the RTT process along 
diverse paths in the dialup Internet.  

To achieve an extensive coverage of dialup points in the 
U.S., we selected three major national dialup ISPs (which 
we call ISPa, ISPb, and ISPc), each with at least five hun-
dred V.90 (i.e., 56 kb/s) dialup numbers in the U.S. and 
several million active subscribers. We further designed an 

                                                           
1 Another method of reducing the number of duplicate packets in TCP is 
to use a minimum of 1 second in (3), as suggested in a recent IETF docu-
ment [19]. 
2 Note that not all redundant retransmissions were due to an insufficient 
RTO. 
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The second method of measuring the RTT was used by the 
client to obtain additional samples of the round-trip delay 
in cases when network packet loss was too low. The 
method involved periodically sending simulated retrans-
mission requests to the server if packet loss was below a 
certain threshold. In response to these simulated NACKs, 
the server included the usual overhead3 of fetching the 
needed packets from the storage and sending them to the 
client. Note that even though we call these retransmissions 
“simulated,” the round-trip delays they generated were 
100% real and the use of these RTTs in updating the RTO 
estimator was fully justified. During the experiment, the 
client activated simulated NACKs, spaced 30 seconds 
apart, if packet loss was below 1%.  
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Figure 3. The number of cities per state that participated in 
the streaming experiment. 

experiment in which hypothetical Internet users of all 50 
states dialed a local access number to reach the Internet and 
streamed video sequences from our backbone server. Al-
though the clients were physically located in our lab in the 
state of New York, they dialed long-distance phone num-
bers (see Figure 2) and connected to the Internet through a 
subset of the ISPs’ 1813 different V.90 access points lo-
cated in 1188 U.S. cities. A detailed description of the ex-
periment can be found in [12].  

Note that all NACKs were sent using UDP, which made 
them susceptible to packet loss as well. Further discussion 
of the sampled RTTs, heavy-tailed distributions of the 
RTT, and various “sanity checks” can be found in [12]. 

4. PERFORMANCE 

4.1. Retransmission Model 
In real-time streaming, RTO estimation is necessary when 
the client supports multiple retransmission attempts per lost 
packet. After studying our traces, we found that 95.7% of 
all lost packets, which were recovered before their dead-
line, required a single retransmission attempt, 3.8% two 
attempts, 0.4% three attempts, and 0.1% four attempts. 
These results are important for two reasons.  

We used two 10-minute QCIF (176x144) MPEG-4 se-
quences coded at video bitrates of 14 and 25 kb/s. The cor-
responding IP bitrates (i.e., including IP, UDP, and our 
streaming headers) were 16.0 and 27.4 kb/s, respectively. 

During the experiment, the clients performed over 34 thou-
sand long-distance phone calls and received 85 million 
packets (27.1 GBytes of video data) from the server. The 
majority of end-to-end paths between the server and the 
clients contained between 10 and 13 hops (with 6 minimum 
and 22 maximum). Moreover, server packets in our ex-
periment traversed 5,266 distinct Internet routers, passing 
through 1003 dialup access points in 653 major U.S. cities 
(see Figure 3) [12]. 

First, 4.3% of all lost packets in our experiment could not 
be recovered with a single retransmission attempt. Even 
though it does not seem like a large number, our experi-
ments with MPEG-4 indicate that there is no “acceptable” 
number of underflow events that a user of a real-time video 
application can feel completely comfortable with, and 
therefore, we believe that each lost packet must be re-
covered with as much reasonable persistence as possible.  

3.2. RTT Measurement 
Furthermore, since the average packet loss during the ex-
periment was only 0.5% [12], the majority of retransmitted 
packets were able to successfully arrive to the client. How-
ever, in environments with a much lower end-to-end delay 
and/or higher packet loss4, the percentage of packets recov-
ered with a single retransmission attempt will be much 
lower than 95.7%. Besides the obvious higher probability 
of losing a retransmission or a NACK (due to higher packet 
loss), the RTT in such environments is likely to be much 
lower than the startup delay, which naturally allows more 
retransmission attempts per lost packet before the packet’s 
deadline. Therefore, the existence of paths with lower de-

In order to maintain an RTO estimator, the receiver in a 
real-time session must periodically measure the round-trip 
delay. In our experiment, the client obtained RTT meas-
urements by utilizing the following two methods. The first 
method used packet loss to measure the round-trip delay – 
each successfully recovered packet provided a sample of 
the RTT (i.e., the RTT was the duration between sending a 
NACK and receiving the corresponding retransmission). In 
order to avoid the ambiguity of which retransmission of the 
same packet actually returned to the client, the header of 
each NACK request and each retransmitted packet con-
tained an extra field specifying the retransmission attempt 
for that particular packet. Thus, the client was able to pair 
retransmitted packets with the exact times when the corre-
sponding NACKs were sent to the server (i.e., Karn’s [10] 
retransmission ambiguity problem was avoided).  

                                                           
3 Server logs showed that the overhead was below 10 ms for all retrans-
mitted packets. 
4 For example, in certain DSL experiments with higher average packet 
loss, only 70% of the lost packets were recovered using one retransmis-
sion attempt. 
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lays and higher packet loss provides a strong justification 
for using more than one per-packet retransmission attempt 
in future streaming applications.  

t ime

NACK for 
packet  k 
is sent  

NACK for 
packet  k+1 is 

sent  

Packet  k is 
recovered 

Packet  k+1 
is recovered

RTO RTO 

t req(k) t req(k+1) t k t k+1
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Second, our trace data show that if a lost packet in our ex-
periment was successfully recovered before its deadline, 
the recovery was performed in no more than four attempts. 
The latter observation is used in our retransmission model 
(described later in this section) to limit the number of per-
packet retransmission attempts (which we call Rmax) to four. 
Note that this limit applies only to the collected traces and 
is not an inherent restriction of our model. 

Ideally, an RTO estimator should be able to predict the 
exact value of the next round-trip delay. However, in real-
ity, it is quite unlikely that any RTO estimator would be 
able to do that. Hence, there will be times when the estima-
tor will predict smaller, as well as larger values than the 
next RTT. To quantify the deviation of the RTO estimate 
from the real value of the RTT, we utilize the following 
methodology.  

Figure 4. Operation of an RTO estimator given our trace 
data. 

Imagine that we sequentially number all successfully re-
covered packets in the trace (excluding simulated retrans-
missions) and let rttk be the value of the round-trip delay 
produced by the k-th successfully recovered packet at time 
tk (see Figure 4). Note that we distinguish rttk from RTTi, 
where the latter notation includes RTT samples generated 
by simulated retransmissions, and former one does not.  

In Figure 4, the effective RTO for recovered packet k is 
computed at the time of the retransmission request, i.e., at 
time treq(k) = tk – rttk. Therefore, assuming that RTO(t) is 
the value of the retransmission timeout at time t and assum-
ing that the client uses the latest value of the RTO for each 
subsequent retransmission of a particular lost packet, it 
makes sense to examine how well the value of the RTO at 
the time of the request, RTO(treq(k)), predicts the real value 
of the round-trip delay rttk. Hence, the accuracy of an RTO 
estimator in predicting the RTT of lost packets based on 
our trace data can be established by computing the timeout 
waiting factor wk for each successfully recovered packet k 
in the trace: 

 
k

kk
k rtt

rtttRTO
w

)( −
= . (4) 

Note that although our model does not use RTT samples 
measured by simulated retransmissions in computing wk’s 
(because they do not represent an actual loss), it uses them 
in updating the RTO estimator. 

Since the exact effect of overestimation and underestima-
tion of the RTT depends on whether the first retransmission 
of a particular packet was lost or not (and in some cases on 
whether subsequent retransmissions were lost or not), we 
simplify the problem and study the performance of RTO 
estimators assuming the worst case: values of wk less than 1 

always indicate that the estimator would have tried (if not 
limited by Rmax) to produce rttk / RTO(tk – rttk) = 1/wk 
duplicate packets given our trace data (i.e., assuming that 
all retransmissions arrived to the client), and values of wk 
greater than 1 always indicate that the estimator would 
have waited longer than necessary before detecting that a 
subsequent retransmission was needed (i.e., assuming that 
the first retransmission initiated at time treq(k) was lost). In 
Figure 4, given our assumptions, the RTO estimator gener-
ates four (i.e., 1/wk) duplicate packets while recovering 
packet k.  

The negative effects of duplicate packets (i.e., wasted band-
width and aggravation of congestion) are understood fairly 
well. On the other hand, the exact effect of unnecessary 
timeout waiting in real-time applications depends on a 
particular video stream (i.e., the decoding delay of each 
frame),  video coding scheme (i.e., the type of motion 
compensation, scalability, and transform used), individual 
lost packets (i.e., which frames they belong to), and the 
video startup delay.  

Nevertheless, we can make a generic observation that RTO 
estimators with higher timeout overwaiting factors wk suf-
fer a lower probability of recovering a lost packet and con-
sequently incur more underflow events. To keep our results 
universal and applicable to any video stream, we chose not 
to convert wk’s into the probability of an underflow event 
(or any other performance metric related to the video qual-
ity), and instead, study the tradeoff between a generic aver-
age timeout overwaiting factor w and the percentage of 
duplicate packets d: 

 ∑
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where N+ is the number of times the RTO overestimated the 
next RTT (i.e., the number of times wk was greater than or 
equal to 1) and N is the total number of lost packets. Pa-
rameter w is always above 1 and represents the average 
factor by which the RTO overestimates the RTT. Parameter 
d is the percentage of duplicate packets (relative to the 
number of lost packets) generated by the RTO estimator 
assuming that all requested retransmissions successfully 
arrived to the client. 

D1

D2

D4  

D3 

d

w

m 1d + w  =  C1 

m 2d + w =  C3D5

m 1d + w =  C2

D

In addition, we should note that the use of exponential 
backoff 5 instead of Rmax provides similar, but numerically 
different results. However, in order to properly study the 
tradeoff between exponential backoff and Rmax, our model 
must take into account retransmission attempts beyond the 
first one and study the probability of an underflow event in 
that context (i.e., the model must include a video coding 
scheme, video sequence, particular lost packets, and an 
actual startup delay). We consider such analysis to be be-
yond the scope of this paper. 

Figure 5. Comparison between RTO performance vector 
points (d,w). 

Finally, we should point out that all RTO estimators under 
consideration in this paper depend on a vector of tuning 
parameters a = (a1, …, an). For example, the class of TCP-
like RTO estimators in (3) can be viewed as a function of 
four tuning parameters α, β, k, and n. Therefore, the goal of 
the minimization problem that we define in the next section 
is to select such vector a that optimizes the performance of 
a particular RTO estimator RTO(a; t). By the word per-
formance throughout this paper, we mean tuple (d,w) de-
fined in (5) and (6). 

4.2. Optimality and Performance 
As we mentioned before, the problem of estimating the 
RTT is different from simply minimizing the deviation of 
the predicted value RTO(a; tk – rttk) from the observed 
value rttk. If that were the case, we would have to solve a 
well-defined least-squares minimization problem (i.e., the 
maximum likelihood estimator): 

 . (7) ( )∑ −−
k

kkkaa
rttrtttRTO
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2

)...,,(
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1

a

The main problem with the maximum likelihood estimator 
(MLE) lies in the fact that the MLE cannot distinguish be-
tween over and underestimation of the RTT, which allows 
the MLE to assign equal cost to estimators that produce a 
substantially different number of duplicate packets. 

Instead, we introduce two performance functions H(a) and 
G(a) and use them to judge the accuracy of RTO estimators 
in the following way. We consider tuning parameter aopt of 
an RTO estimator to be “optimal” within tuning domain S 

of the estimator (aopt∈S), if aopt minimizes the correspond-
ing performance function (i.e., either H or G) within do-
main S. Later in this section, we will show that given the 
classes of RTO estimators studied in this paper and given 
our experimental data, the two performance measures (i.e., 
functions) produce equivalent results. Note that “optimal-
ity” is meaningful only within a given class of estimators, 
its tuning domain S, and the trace data used in the simula-
tion.  

In the first formulation, our goal is to minimize an RTO 
performance vector-function H(a) = (d(a),w(a)): 

 ( )(),(min)(min aaaH
aa

wd
SS ∈∈

)= . (8) 

For the minimization problem in (8) to make sense, we 
must also define vector comparison operators greater than 
and less than. The following are a natural choice: 

( ) ( ))()()()(),(),( 212121212211 wwddwwddwdwd <∧≤∨≤∧<⇔< , (9) 
( ) ( ))()()()(),(),( 212121212211 wwddwwddwdwd >∧≥∨≥∧>⇔> , (10) 

and otherwise we consider tuples (d1,w1) and (d2,w2) to be 
equivalent. Figure 5 illustrates the above operators for a 
given RTO estimator and provides a graphical mapping 
between the performance of an RTO estimator and points 
on a 2-D plane. The shaded convex area in Figure 5 is the 
range of a hypothetical RTO estimator, where the range is 
produced by varying tuning parameter a within the estima-
tor’s tuning domain S (i.e., the convex area consists of 
points H(a), ∀a∈S). Given a particular point D = (d,w) in 
the range, points to the left and down from D (e.g., D1) 
clearly represent a better estimator; points to the right and 
up from D (i.e., D3) represent a worse estimator; and points 
in the other two quadrants may or may not be better (i.e., 
D2 and D4). 

In order to help us understand which performance points in 
Figure 5 are optimal, we define the optimal RTO curve to 
be such points in the (d,w) space, produced by the RTO 
estimator, that are less than or equal to any other point 
produced by the RTO estimator, i.e., all points (dopt,wopt) = 
H(aopt), aopt∈S, such that ∀a∈S: H(aopt) ≤ H(a). In Figure 

                                                           

5 In which case, (6) should read ∑
< 



















+=

1
2 11log1

kw kwN
d . 
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5, the optimal RTO curve is shown in bold along the left 
bottom side of the shaded area. Hence, finding the set of 
tuning parameters a that map to the optimal RTO curve is 
equivalent to solving the minimization problem in (8). 
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In the second formulation, we can state the problem of 
finding a better RTO estimator as that of minimizing a 
weighted sum of the percentage of duplicate packets d and 
the average overwaiting factor w (similar methods are fre-
quently used in rate-distortion theory). The problem in the 
new formulation is easier to solve since it involves the 
minimization of a scalar function instead of a vector func-
tion. In addition, our reformulation allows us to decide on 
the exact relationship between equivalent points (i.e., in 
cases when neither (9) nor (10) holds) by assigning proper 
weight to one of the parameters in the (d,w) tuple.  

Figure 6. Performance of TCP-like estimators. 

Hence, we define a weighted RTO performance function 
G(a, M) as following: 

 , (11) ∞<≤+⋅= MwdMMG 0),()(),( aaa

where M is a weight, which assigns desired importance to 
duplicate packets d (large M) or overwaiting factor w 
(small M). As we will see below, by running M through a 
range of values and optimizing G(a, M) for each weight M, 
we can build the optimal RTO curve; however, the actual 
values of M used to build the curve are not important.  

Note that using performance function G we can unambigu-
ously establish a relationship between equivalent points in 
the (d,w) space, given a certain weight M (i.e., points a 
with smaller G(a, M) are better). Specifically, for each 
weight M and for any constant C > 0, there exists a per-
formance equivalence line Md + w = C, along which all 
points (d,w) are equal given the performance function in 
(11); points below the line are better (i.e., they belong to 
lines with smaller C); and points above the line are worse. 
In Figure 5, two parallel lines are drawn for M = m1 using 
two different values of the constant (C2 < C1). Given 
weight m1, point D2 is now equal (not just equivalent) to D, 
point D1 is still better, point D3 is still worse, while point 
D4 is now also worse. 

In addition, not only is point D1 better than D given 
performance function G(a, M) and weight m1, but D1 is also 
the “optimal” point of the RTO estimator in Figure 5 for 
weight m1, i.e., point D1 minimizes function (11) for weight 
m1 within tuning domain S. In other words, to graphically 
minimize function G(a, M) for any weight M, one needs to 
slide the performance equivalence line Md + w as far left 
and down as possible, while maintaining the contact with 
the range of the RTO estimator.  

Notice how point D1 found by minimizing function 
G(a, M) lies on the optimal RTO curve earlier defined us-
ing the performance measure in (8). We can further gener-
alize this observation by saying that if the optimal RTO 

curve is given by a convex continuous function similar to 
the one in Figure 5, all points that optimize the weighted 
performance function G(a, M) will lie on the optimal RTO 
curve (and vice versa).  

Consequently, using intuition, we can attempt to build the 
entire optimal RTO curve out of points Dopt(M) = (dopt(M), 
wopt(M)), where dopt(M) and wopt(M) are the result of mini-
mizing G(a, M) for a particular weight M. For example, 
from Figure 5, we can conclude that optimal point Dopt(m1) 
is given by D1 and optimal point Dopt(m2) is given by D5. 
Hence, by varying M in Dopt(M) between zero (flat per-
formance equivalence line) and infinity (vertical perform-
ance equivalence line) we can produce (ideally) any point 
along the optimal RTO curve.  

Note that we view the above retransmission model and both 
performance measures as an important contribution of this 
work. These techniques can be used to study the perform-
ance of RTO estimators in other datasets and even in ACK-
based protocols (with properly taking into account expo-
nential timer backoff as shown in section 4.1). The rest of 
the paper describes how our model and performance func-
tions can be applied to the traces of our wide-scale Internet 
experiment [12] and discusses the important lessons 
learned.  

Now we are ready to plot the values of vector function 
H(a) for different values of the tuning parameter 
a = (a1, …, an) in different RTO estimators, as well as iden-
tify the optimal points and understand which values of pa-
rameter a give us the best performance. Throughout the rest 
of the paper, in order to conserve space, we show the re-
sults derived from streaming traces through ISPa (129,656 
RTT samples). Streaming data collected through the other 
two ISPs produce similar results. 

5. TCP-LIKE ESTIMATORS 
5.1. Performance 
We start our analysis of RTO estimators with a generalized 
TCP-like RTO estimator given in (3). We call this estima-
tor RTO4, because its tuning parameter a consists of four 
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Figure 8. Log-log plot of the optimal (Simplex) RTO4 curve. 

variables: a = (α, β, k, n). Recall that aTCP = (0.125, 0.25, 
4, 1) corresponds to Jacobson’s RTO [9] and a793 = 
(0.125, 0, 0, 2) corresponds to the RFC 793 RTO [20]. 

In order to properly understand which parameters in (3) 
contribute to the improvements in the performance of the 
TCP-like estimator, we define two reduced RTO estimators 
depending on which tuning parameters (α, β, k, n) are al-
lowed to vary. In the first reduced estimator, which we call 
RTO2, we use only (α,β) to tune its performance, i.e., a = 
(α, β, 4, 1). In the second reduced estimator, which we call 
RTO3, we additionally allow k to vary, i.e., a = (α, β, k, 1). 

Figure 6 shows the optimal RTO4 curve and the range of 
values H(a) produced by both reduced estimators. The 
ranges of RTO2 (900 points) and RTO3 (29,000 points) 
were obtained by conducting a uniform exhaustive search 
of the corresponding tuning domain S, and the optimal 
RTO4 curve was obtained by extracting the minimum val-
ues of H(a) after a similar exhaustive search through more 
than 1 million points. In addition, Figure 6 shows the per-
formance of Jacobson’s RTO estimator, H(aTCP) = 
(12.63%, 4.12), by a square and the performance of the 
RFC 793 RTO estimator, H(a793) = (15.34%, 2.84), by a 
diamond. Clearly, Jacobson’s and the RFC 793 RTO esti-
mators are equivalent, since neither one is located below 
and to the left of the other.  

The performance of RTO estimators in Figure 6 certainly 
gets better with the increase in the number of free tuning 
variables. For a given average overwaiting factor w = 4.12, 
RTO2 and RTO3 both achieve optimality in the same point 
and offer only a slight improvement in the number of dupli-
cate packets over TCP RTO – 11.15% compared to 
12.63%. RTO4, however, offers a more substantial im-
provement, generating only d = 7.84% duplicate packets. 

Furthermore, Figure 6 shows that the optimal RTO4 curve 
(built by the exhaustive search) is convex and fairly con-
tinuous until approximately 20% duplicate packets. Conse-
quently, we can build another optimal RTO4 curve using 
scalar weighted performance function G(a) and compare 

the results with those in Figure 6. A scalar function such as 
G(a) allows us to use various numerical multidimensional 
minimization methods, which usually do not work with 
vector functions. In addition, we find that numerical opti-
mization methods produce points along the optimal RTO 
curve with more accuracy than the exhaustive search (given 
a reasonable amount of time) and with fewer computations 
of functions d(a) and w(a) (i.e., faster).  

Figure 7. Points built by Downhill Simplex and the exhaustive 
search in the optimal RTO4 curve. 

To verify that weighted performance function G(a) does in 
fact produce the same optimal RTO4 curve, we focused on 
the following minimization problem for a range of values 
of weight M: 

 ( )()(min),(min aaa
aa

wdMMG
SS

+⋅ )=
∈∈

 (12) 

The fact that function G(a, M) has unknown (and non-
existent) partial derivatives ∂G(a, M)/∂ak suggests that we 
are limited to numerical optimization methods that do not 
use derivatives. After applying the Downhill Simplex 
Method in Multidimensions (due to Nelder and Mead [15]) 
and quadratically convergent Powell’s method [2], we 
found that the former method performed significantly better 
and arrived at (local) minima in fewer iterations. To im-
prove the found minima, we discovered that restarting the 
Simplex method in random locations in the N-dimensional 
space ten times per weight M produced very good results. 

Figure 7 shows the points built by the Downhill Simplex 
method for the RTO4 estimator (each point corresponds to a 
different weight M) and the corresponding optimal RTO4 
curve previously derived from the exhaustive search. As 
the figure shows, points built by Downhill Simplex are no 
worse (and often slightly better) than those found in the 
exhaustive search.  

Interestingly, the optimal curves in Figure 7 resemble 
power functions in the form of: 

 wopt = C(dopt)–p, p > 0.  (13) 

To investigate this observation further, Figure 8 replots the 
points of the Downhill Simplex curve from Figure 7 on a 
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log-log scale with a straight line fitted to the points. A 
straight line provides an excellent fit (with correlation 0.99) 
and suggests that the optimal RTO curve could be modeled 
as a power function (13) with C = 1.022 and p = 0.55. 

Assuming that the relationship between w and d in the op-
timal RTO4 curve is a power function (13), we can now 
analytically compute optimal points (dopt,wopt) that mini-
mize function G(a) for a given weight M. Rewriting (11) 
using the function from (13), taking the first derivative, and 
equating it to zero we get: 

   ( ) 0)( 1 =−=+
∂
∂

=
∂
∂ −−− p

opt
p

optopt
optopt

CpdMCdMd
dd

G a . (14) 

Solving (14) for dopt and using (13) one more time, we can 
express the optimal values of both the number of duplicate 
packets dopt and the average overwaiting factor wopt as a 
function of weight M: 

 
1

1
+







=

p
opt M

Cpd  and 
1

1
+







=

p
opt M

Cp
p

Mw . (15) 

5.2. Tuning Parameters 
In this section, we provide a reverse mapping from optimal 
performance points H(a) in Figure 7 to points a in tuning 
domain S (i.e., describe how to construct optimal RTO4 
estimators). While analyzing RTO2, we noticed that for 
each given β, larger values of α produced fewer duplicate 
packets, as well as that for each fixed value of α, smaller 
values of β similarly produced fewer duplicate packets. To 
further study this phenomenon, we examined the correla-
tion between the RTO2 estimates and the corresponding 
future round-trip delays rttk for different values of (α,β). 
Interestingly, the highest correlation was reached in point 
(1.0, 0.044), which suggests that an RTO estimator with 
(α,β) fixed at (1,0) should provide estimates with a rea-
sonably high correlation with the future RTT, as well as 

that it could be possible to achieve the values of the optimal 
RTO4 curve by just varying parameters n and k in RTO4.  

1

10

100

0.1 1 10
duplicate packets d (percent)

ov
er

w
ai

tin
g 

fa
ct

or
 w

RTO4(1,0) RTO4(1,0,0) RTO4 simplex

To investigate this hypothesis, we constructed another re-
duced estimator called RTO4(1,0), which is produced by 
RTO4 at input points (1, 0, k, n). The results of an exhaus-
tive search of the reduced tuning domain (k, n) for RTO4(1,0) 
are plotted in Figure 9 (lightly shaded area). As the figure 
shows, the optimal RTO4 curve (shown as squares in Figure 
9) touches the range of RTO4(1,0), which means that the re-
duced estimator can achieve the points along the optimal 
RTO4 curve while keeping α and β constant. This fact im-
plies that it is not necessary to maintain a smoothed RTT 
average to achieve optimality within our datasets, because 
α = 1.0 means that the SRTT always equals the latest RTT 
sample. 

Figure 9. RTO4-Simplex and two reduced RTO4 estimators on 
a log-log scale. 

The next logical step is to question the need for SVAR in 
RTO4 since SVAR turns out to be a constant when β equals 
zero. In the same Figure 9, we plotted an additional optimal 
curve for estimator RTO4(1,0,0), which represents RTO4 at 
input points (1, 0, 0, n). As the figure shows, all values of 
the RTO4(1,0,0) estimator lie next to the optimal curve as 
opposed to many sub-optimal points produced by RTO4(1,0). 
At the end of this section, we discuss the explanation of 
why smoothing of RTT samples does not increase the accu-
racy of RTO4, but first show how to construct an RTO4(1,0,0) 
estimator with a given performance. 

A straight line fitted to the RTO4(1,0,0) curve in Figure 9 pro-
duces a power function (13) with C = 1.07 and p = 0.546. 
Further investigation discovered that there is a strong linear 
dependency between the optimal value of nopt in RTO4(1,0,0) 
and the optimal value of the average overwaiting factor 
wopt: 

 nopt = mwopt + b, (16) 

where m = 0.86 and b = –0.13. Since we already know the 
dependency between wopt and dopt in (13), we can derive the 
relationship between nopt and dopt in RTO4(1,0,0): 

 nopt = mC(dopt)–p + b. (17) 

Consequently, (17) can be used to build optimal RTO4(1,0,0) 
estimators given any desired value of duplicate packets dopt. 
For example, if an application specifies that the maximum 
number of duplicate packets it is willing to tolerate is dopt = 
2%, using (13), the optimal overwaiting factor wopt is 9.12 
(the corresponding weight M is 248) and using (17), the 
optimal RTO estimator is given by RTO4(1,0,0) with nopt = 
7.31. 

5.3. Discussion 
This is the point when we must address a major conceptual 
difference between ACK and NACK-based retransmission 
schemes, as well as point out several properties of our ex-
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periment. The difference between ACK and NACK-based 
protocols lies in the fact that NACK-based applications 
obtain RTT samples only upon packet loss, while ACK-
based applications consistently obtain RTT samples on a 
per-packet basis. Consequently, the distance between RTT 
samples in a NACK-based application is often large and 
fluctuates widely (i.e., between tens of milliseconds and 
tens of seconds). Given a low average packet loss of 0.5% 
during our Internet experiment, the average distance be-
tween consecutive RTT samples in our datasets was 15.7 
seconds. 
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Hence, we observed that NACK-based protocols in the 
presence of low packet loss greatly undersample the RTT 
process, and further smoothing of already rare RTT sam-
ples with EWMA formulas produces a very sluggish and 
slow-responding moving average. Such moving average in 
the form of (1) and (2) can rarely keep up with the actual 
RTT and turns out to be a poor predictor of the future val-
ues of the round-trip delay. This observation represents the 
first major conclusion of our study – NACK-based proto-
cols in our experiment combined with low-frequency RTT 
sampling (i.e., low packet loss) required a different RTO 
estimation method than the classical Jacobson’s RTO; spe-
cifically, smoothed averaging of RTT samples proved to be 
hurtful, and the latest RTT sample turned out to be the best 
predictor of the future RTTs.  

Figure 10. Jitter-based RTO estimators compared with the 
RTO4 estimator. 

6. JITTER-BASED ESTIMATORS 
6.1. Structure and Performance 
The second class of RTO estimators, which we call RTOJ, 
is derived from RTO4(1,0,0) by adding to it a smoothed vari-
ance of the inter-packet arrival delay (quantified later in 
this section). As we will show below, RTOJ reduces the 
number of duplicate packets in our trace data compared to 
RTO4 by up to 60%. 

The receiver in a real-time protocol usually has access to a 
large number of delay jitter samples between the times 
when it measures the RTT. It would only be logical to util-
ize tens or hundreds of delay jitter samples between re-
transmissions to fine-tune RTO estimation. This fine-tuning 
is receiver-oriented and is not available to TCP senders 
(which they do not need since TCP obtains a substantial 
amount of RTT samples through its ACK-based operation). 
In fact, TCP’s ability to derive an RTT sample from (al-
most) each ACK gave it an advantage that may now be 
available to NACK-based protocols in the form of delay 
jitter. 

Before we describe our computation of delay jitter, we 
must introduce the notion of a packet burst. In practice, 
many real-time streaming servers are implemented to trans-
mit their data in bursts of packets [14], [21] instead of 
sending one packet every so many milliseconds. Although 
the latter is considered to be an ideal way of sending video 

traffic by many researchers (e.g., [4]), in practice, there are 
limitations that do not allow us to follow this ideal model 
[12].  

In our server, we implemented bursty streaming with the 
burst duration Db (i.e., the distance between the first pack-
ets in successive bursts) varying between 340 and 500 ms 
depending on the streaming bitrate (for comparison, Real-
Audio servers use Db = 1,800 ms [14]). Each packet in our 
real-time application carried a burst identifier, which al-
lowed the receiver to distinguish between packets from 
different bursts. After analyzing the traces, we found that 
inter-burst delay jitter had more correlation with the future 
RTT than inter-packet delay jitter (we speculate that one of 
the reasons for this was that more cross traffic was able to 
queue between the bursts than between individual packets).  

To be more specific, suppose for each burst j, the last 
packet of the burst arrived to the client at time tlast(j), and 
the first packet of the burst arrived at time tfirst(j). Conse-
quently, the inter-burst delay for burst j is defined as: 

 ∆j = tfirst(j) –  tlast(k), j ≥ 1 (18) 

where burst k is the last burst received before burst j (unless 
there is packet loss, k = j – 1). For each burst, using 
EWMA formulas similar to those in TCP, we compute 
smoothed inter-burst delay S∆j and smoothed inter-burst 
delay variance SVAR∆j: 

  (19) 



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, (20) 

where α1 and β1 are exponential weights, and VAR∆j is the 
absolute deviation of ∆j from its smoothed version S∆j–1. In 
our experience, S∆j is usually proportional to burst duration 
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Db and thus, cannot be used the same way in real-time ap-
plications with different burst durations. On the other hand, 
smoothed variance SVAR∆j is fairly independent of the 
burst duration and reflects the variation in the amount of 
cross traffic in router queues along the path from the server 
to the client.  

Given our definition of delay variation in (20), suppose that 
ti is the time when our trace recorded the i-th RTT sample 
(including simulated retransmissions), then the effective 
jitter-based RTO at time t is: 

 RTOJ (t) = n⋅RTTi + m⋅SVAR∆j, (21) 

where i = max i: ti ≤ t and j = max j: tfirst(j) ≤ t.  

Figure 10 compares the performance of the RTOJ estimator 
with that of RTO4 (both optimal curves were built using the 
Downhill Simplex method). Given a particular value of the 
average overwaiting factor w, RTOJ offers a 45-60% im-
provement over RTO4 in terms of duplicate packets. Recall 
that for an average overwaiting factor w = 4.12, Jacobson’s 
RTO estimator produced 12.63% duplicate packets and 
RTO4 achieved 7.84%. At the same time, RTOJ is now able 
to improve this value to 3.25%. 

 
6.2. Tuning Parameters 
RTOJ contains four tuning variables a = (α1, β1, m, n), just 
like the RTO4 estimator. This time, however, the perform-
ance of the estimator does not strongly depend on the first 
two variables. Several values in the proximity of α1 = 0.5 
give optimal performance. For β1, the optimal performance 
is achieved at β1 = 0.125, which is helpful if SVAR∆j is to 
be computed using only integer arithmetics. Just as in the 
RTO4(1,0,0) estimator, (α1,β1) can be fixed at their optimal 
values and the optimal RTOJ curve can be entirely built 
using n and m.  

To further reduce the number of free variables in jitter-
based estimators, we examined the relationship between 

nopt and mopt in the optimal RTOJ curve shown in Figure 10. 
Although the relationship is somewhat random, there is an 
obvious linear trend, which fitted with a straight line (with 
correlation ρ = 0.88) establishes that function 
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Figure 12. The setup of the high-speed experiment. 

Figure 11. Reduced jitter-based estimator compared with 
the optimal RTOJ estimator. 

 mopt = 4.2792⋅nopt – 2.6646 (22) 

describes the optimal parameters n and m reasonably well. 
Consequently, we created a reduced estimator, which we 
call RTOJ427, by always keeping m as a function of n shown 
in (22) and compared its performance (by running n 
through a range of values) to that of RTOJ in Figure 11. As 
the figure shows, the reduced estimator RTOJ427 reaches the 
corresponding optimal RTOJ curve with high accuracy.  

Similar power functions (13) and (17) apply to the optimal 
RTOJ and RTOJ427 curves. Table 1 summarizes the values 
of constants in both equations (13) and (17). 

Table 1. Summary of constants in various power laws 

Part I. Power function for optimal RTO curves: wopt = C(dopt)–p. 
RTO estimator C p correlation 
RTO4 1.02 0.5500 0.9994 
RTO4(1,0,0) 1.07 0.5456 0.9991 
RTOJ 0.50 0.6158 0.9997 
RTOJ427 0.53 0.6098 0.9991 
Part II. Power function for optimal parameter n: nopt = C1(dopt)–p + C2. 

Reduced estimator C1 C2 p 
RTO4(1,0,0) 0.88 –0.13 0.5456 
RTOJ427 0.20 0.31 0.6098 

 

Using the same example from section 5, for dopt = 2%, we 
find that wopt is 5.75 in RTOJ427 (compared to 9.12 in 
RTO4(1,0,0)). Given parameters in the second half of Table 1, 
the value of nopt in RTOJ427 is 2.47 (compared to 7.31 in 
RTO4(1,0,0)), and the value of mopt using (22) is 7.91. As we 
can see, the superior performance of the RTOJ427 estimator 
over RTO4 and RTO4(1,0,0) is achieved by placing lower 
weight on RTT samples and deriving more information 
about the network from the more frequent delay jitter sam-
ples. 

Hence, we can summarize our second major conclusion as 
following – during the experiment, a NACK-based RTO 
estimator running over paths with low-frequency RTT sam-
pling (over 10 seconds between samples) could be signifi-
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Figure 13. Performance of RTO4, RTOJ and RTO4(1,0,0) in the 
CUNY dataset. 

Figure 14. Performance of RTO4 and RTO4(0.125,0,0) in the 
CUNY dataset. 

cantly improved by adding smoothed delay jitter to the 
scaled value of the latest RTT.  

7. HIGH-FREQUENCY SAMPLING 
The final question left to resolve is whether the perform-
ance of RTO4 and RTOJ is different in environments with 
high-frequency RTT sampling. In NACK-based protocols, 
high-frequency RTT sampling comes either from high 
packet loss rates or from frequent congestion control mes-
sages exchanged between the client and the server (in the 
latter case, the frequency of sampling is approximately 
equal to one sample per RTT [4]).  

This section investigates the performance of RTO4 and 
RTOJ in several environments with high-frequency RTT 
sampling and verifies whether the conclusions reached in 
previous sections hold for such Internet paths. We only 
show the results based on trace data collected along a sin-
gle Internet path; however, the observations made in this 
section were also verified along multiple other paths with 
relatively high packet loss, as well as in a congestion-
controlled streaming application with once-per-RTT sam-
pling of the round-trip delay.  

In this section, we apply trace-driven simulation to the 
datasets collected between a symmetric DSL (SDSL) client 
and a video server placed at the City College of New York 
(CCNY) during December 2000. This setup is shown in 
Figure 12. The CCNY backbone connected to the Internet 
through the CUNY (City University of New York) back-
bone via a series of T3 links. The client’s dedicated SDSL 
circuit operated at 1.04 mb/s in both directions. The end-to-
end path between the client and the server contained 15 
routers from five Autonomous Systems (AS). During the 
experiment, we used a video stream coded at the video bi-
trate of 80 kb/s (86 kb/s IP bitrate). The collected dataset 
contains traces of 55 million packets, or 26 GBytes of data, 
obtained during the period of three weeks.  

One interesting property of this end-to-end path is that the 
CUNY border router dropped a large fraction of packets 
during this experiment, regardless of the time of day or the 

sending rate of our flows. Thus, the average packet loss 
rate recorded in this trace was substantially higher than in 
the modem experiment (i.e., 7.4% vs. 0.5%), and the aver-
age delay between obtaining new RTT samples was only 
740 ms, which is by a factor of 20 less than that in the 
wide-scale modem experiment. 

Figure 13 shows the performance of the three estimators 
studied earlier in this paper in the CUNY dataset. All three 
optimal curves were built using Downhill Simplex. As the 
figure shows, both RTO4 and RTOJ achieve the same opti-
mal performance, which means that the addition of delay 
jitter to already-frequent RTT samples is not as beneficial 
as previously discovered. In addition, note that RTO4(1,0,0) is 
no longer optimal within the dataset. Both results were ex-
pected, because the higher sampling frequency in the 
CUNY dataset allows RTO4 to be a much better predictor 
than it was possible in the modem datasets.  

The final question that stands is what values of tuning vari-
able a make RTO4 optimal along paths with high-frequency 
RTT sampling (i.e., the CUNY dataset)? Our analysis of 
the data shows that variance estimator SVAR is still redun-
dant and that RTO4 can be reduced to a simpler estimator, 
which this time assumes the following form: a = (α, 0, 0, 
n). Downhill Simplex optimization of RTO4 shows that 
values of α between 0.12 and 0.13 are equally optimal and 
produce an estimator with performance equal to that of 
RTO4. Note that Jacobson’s value of α = 0.125 falls within 
this range and agrees with the results derived from the 
CUNY dataset.  

To verify that the reduced estimator RTO4(0.125, 0, 0) performs 
as well as RTO4, we plotted both optimal RTO curves in 
Figure 14, which shows that the reduced estimator is al-
most identical to RTO4. 

Note that the above observations about the optimality of 
RTO4(0.125, 0, 0) were also found to hold when the CUNY 
server was replaced with a server located at Michigan State 
University, 21 hops from the client (the experiment was 
conducted in January 2001 and involved the transfer of 

12 



As our results show, the performance of TCP-like estima-
tors depends on the sampling frequency of the RTT. Con-
sequently, we conclude that there is enough evidence to 
suggest that the paradigm in which NACK-based applica-
tions sample the RTT only at times of packet loss may not 
be very useful. We find that higher-frequency sampling of 
the RTT may be necessary for accurate RTO estimation 
and could be additionally used for other purposes (such as 
equation-based congestion control [4]). Our experiments 
with NACK-based congestion control show that RTT sam-
pling rates of once-per-RTT can be achieved with very 
little overhead (i.e., the measurement of the RTT can be 
incorporated into the congestion control feedback loop). In 
such scenarios, our study found that a scaled SRTT estima-
tor was optimal and even TCP’s RTO was sufficiently ac-
curate. 

over 17 million packets). Furthermore, similar results were 
obtained in various streaming tests over ISDN (over 77 
million packets): in low packet-loss scenarios, RTOJ was 
significantly better than RTO4,  and RTO4(1,0,0) was optimal 
within the class of TCP-like estimators; however, in high 
packet loss scenarios, RTOJ did not offer much improve-
ment over RTO4.  

We finish this section by reaching our third major conclu-
sion – in our experiments, along paths with high-frequency 
RTT sampling, a simple smoothed round-trip delay estima-
tor SRTT with parameter α between 0.12 and 0.13 was the 
optimal estimator, and neither delay jitter nor delay vari-
ance estimator SVAR provided any added benefits.  

8. CONCLUSION 
Current real-time streaming applications [22] rely on 
NACK-based retransmission and often do not implement 
congestion control. The nature of NACK-based retransmis-
sion and the lack of congestion control in these applications 
suggest that the current RTO estimation methods imple-
mented in TCP may not be adequate for NACK-based 
streaming protocols. Furthermore, even the existing RTO 
estimation methods in TCP do not have a rigorous per-
formance evaluation model, and their performance over 
diverse Internet paths remains unknown. 
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