
Estimating DNS Source and Cache Dynamics under

Interval-Censored Age Sampling

DI XIAO, Texas A&M University, College Station, United States

XIAOYONG LI, Texas A&M University, College Station, United States

DAREN CLINE, Texas A&M University, College Station, United States

DMITRI LOGUINOV, Texas A&M University, College Station, United States

Since inception, DNS has used a TTL-based replication scheme that allows the source (i.e., an authoritative
domain server) to control the frequency of record eviction from client caches. Existing studies of DNS predom-
inantly focus on reducing query latency and source bandwidth, both of which are optimized by increasing
the cache hit rate. However, this causes less-frequent contacts with the source and results in higher staleness
of retrieved records. Given high data-churn rates at certain providers (e.g., dynamic DNS, CDNs) and impor-
tance of consistency to their clients, we propose that cache models include the probability of freshness as an
integral performance measure. We derive this metric under general update/download processes and present
a novel framework for measuring its value using remote observation (i.e., without access to the source or
the cache). Besides freshness, our methods can estimate the inter-update distribution of DNS records, cache
hit rate, distribution of TTL, and query arrival rate from other clients. Furthermore, these algorithms do not
require any changes to the existing infrastructure/protocols.

CCS Concepts: • Networks → Network performance modeling;

Additional Key Words and Phrases: Cache staleness, TTL sampling, lifetime estimation

ACM Reference Format:

Di Xiao, Xiaoyong Li, Daren Cline, and Dmitri Loguinov. 2025. Estimating DNS Source and Cache Dynamics
under Interval-Censored Age Sampling. ACM Trans. Model. Perform. Eval. Comput. Syst. 10, 3, Article 13
(May 2025), 29 pages. https://doi.org/10.1145/3712697

1 Introduction

To keep up with the explosive growth of Internet traffic, end-to-end caches continue to be an im-
portant part of many distributed systems, including search engines [3, 8, 11, 44, 47], wireless mo-
bile networks [23, 24], P2P structures [46, 50], Content Distribution Networks (CDNs) [7, 36],
Domain Name System (DNS) [10, 31, 41], data warehouses [49], and various web applications
[18, 20, 33, 48]. If Information-Centric Networking (ICN) [1] becomes successful, the Internet
may eventually see cache deployment even at the network layer (i.e., at each router). Therefore,

An earlier version of the article appeared in IEEE INFOCOM 2018.
Authors’ Contact Information: Di Xiao, Texas A&M University, College Station, Texas, United States; e-mail: di@cse.tamu.

edu; Xiaoyong Li, Texas A&M University, College Station, Texas, United States; e-mail: xiaoyong@cse.tamu.edu; Daren

Cline, Texas A&M University, College Station, Texas, United States; e-mail: dcline@stat.tamu.edu; Dmitri Loguinov, Texas

A&M University, College Station, Texas, United States; e-mail: dmitri@cs.tamu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2376-3639/2025/05-ART13

https://doi.org/10.1145/3712697

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

HTTPS://ORCID.ORG/0009-0003-8216-1448
HTTPS://ORCID.ORG/0009-0001-5909-1213
HTTPS://ORCID.ORG/0000-0003-3791-0465
HTTPS://ORCID.ORG/0000-0003-3876-1000
https://doi.org/10.1145/3712697
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712697
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712697&domain=pdf&date_stamp=2025-05-30

13:2 D. Xiao et al.

modeling cache performance is crucial to our current and future understanding of data churn at
origin servers, Internet core, and customer facilities, including such metrics as bandwidth con-
sumption, data consistency (i.e., freshness), and latency.

Depending on the eviction policy, cache operation can be classified into capacity-based and time

to live (TTL)-based. In the former case, arrival of new items into a full cache causes immediate
removal of elements deemed unpopular (e.g., using LRU, LFU, CLOCK, FIFO, Random, and their
variations [38]). In the latter case, which is our focus in this article, items are evicted only when
their TTL expires, meaning that cache size is considered infinite. This approach is more suitable
in scenarios where object staleness, rather than storage limitations, is of primary concern and the
duration an item remains cached must be controlled by the source based on the record’s churn
rate (i.e., frequency of modification).

One particular area, where TTL-based caching has long been part of the standard, is the DNS.
With the wide adoption of dynamic DNS services and proliferation of CDN, many authoritative
domains now frequently change IP addresses and other records to reflect the current server loca-
tion, content availability, traffic load, and routing/geographic preferences, with more such activity
expected in the future [16]. While the cache hit ratio h has been the sole metric of performance for
many years [5, 6, 19, 25, 26, 28, 29, 31], the modern Internet requires a different modeling objective
that would balance record freshness against cache efficiency. In this context, simply maximizing the
hit rate, which essentially means setting the TTL to infinity, is not a meaningful pursuit. Instead,
the system involves a tradeoff – higher hit rates h require items to stay longer in the cache, while
better freshness f entails the opposite. Unfortunately, the interplay between these metrics has not
received much attention in the past.

In order to keep staleness below target levels, as well as achieve accurate performance charac-
terization, one requires a methodology for estimating the various parameters of the system (such
as f) within the confines of the current DNS protocol. This process, which we call remote measure-

ment, must obtain the various hidden distributions without having direct access to ground truth.
Assuming U1,U2, . . . , are random inter-update delays of a given record, the main question con-
sidered in this work is how to estimate their distribution FU (x) without access to the source. We
consider two measurement scenarios— passive, which monitors ongoing traffic at the cache with-
out generating new queries, and active, which does not have access to the cache, but is allowed
to send non-intrusive (i.e., iterative) probes that ask for the already-cached content (i.e., recursive
queries that cause cache pollution are not allowed). In the passive case, we show that the sampling
process at time tk can bound the delay since the last update, i.e., age AU (tk), to some deterministic
interval [Lk ,Rk]. This type of data truncation is known as interval censoring [51], where previ-
ous work is mostly limited to observations of the target variable itself (i.e., inter-update delay Ui)
rather than its age AU (tk). As a consequence, these approaches are not concerned with the fact
that a valid age distribution GU (x) must be concave, which precludes results of these methods
from being meaningful in convolutions involvingGU (x) or attempts to reconstruct FU (x). Instead,
this problem requires new algorithms for building inherently concave distributions out of interval-
censored age samples. For the active case, the main difference is that both Lk ,Rk are skewed by
certain random parameters of the cache (e.g., TTLs) whose distribution needs to be estimated sep-
arately and the bias corrected using additional probabilistic techniques (i.e., inference of process
age from its observed residuals).

All of this makes sampling f a formidable challenge. While existing studies [2, 15, 37, 42, 52]
provide a framework for estimating h and the average user-request rate λ, these methods cannot
be easily extended to handle freshness and their models do not accommodate the possibility of
random TTLs. Both are important factors that we aim to address below.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:3

1.1 Main Results

Our first contribution is to create a model of system operation using general point processes and
define a new metric of performance – probability f that an incoming query to the local resolver
encounters a fresh (i.e., consistent with the source) copy of the record. We model updates at the
authoritative DNS server as some point process NU , client requests to the local resolver as a re-
newal process NQ , and TTL values {Tk } as random variables with some distribution FT (x). We not
only derive f under these conditions, but also correct an optimality result on h from [25]. Under
IRM (Independent Reference Model), which is a common assumption in the field [2, 15, 42], we
obtain that constant TTL for a given E[T] results in highest freshness for all NU . Given a link be-
tween TTL and capacity-based caches [25, 27, 38], this result establishes that FIFO eviction achieves
higher freshness than Random. In prior work, which modeled only h, these strategies were consid-
ered equivalent. We then extend our results to proactive caching, where the resolver pulls records
from the source as soon as they expire, and quantify the reduction in freshness this results in.

Armed with a general expression for f , our second contribution is to present a framework for
measuring this value at the cache, which allows it to passively monitor staleness and vary T in
order to achieve the desired objectives. Because f requires the residual distribution of inter-update
delays, this problem maps to method M6 in comparison-based blind sampling [35]. However, M6

has quadratic complexity in the number of samples and is generally slow to converge. To overcome
this problem, we propose a method called PASS that leverages upper/lower bounds on the update
age using a concave, non-parametric EM (Expectation Maximization) estimator for interval-
censored data. We then show that our approach has better accuracy and much faster computation
time than M6, making it ideal for blind sampling under random inter-download delays.

A more challenging scenario arises when f must be estimated using client queries to the cache,
which allows not only researchers, but also CDN companies (e.g., Akamai), to monitor freshness
of relevant records at arbitrary local resolvers without having access to cache logs. We call this
framework active and assume that the observer can issue iterative queries to the local DNS server
that do not trigger downloads from the source. The problem reduces to passive sampling if T is
constant; however, the situation is considerably more complicated under random TTL because the
client is unaware of the download instances from the source and thus cannot apply any of the pre-
vious methods. To overcome this, our third contribution is to propose a method we call ACT1 that
estimates the update distribution without the knowledge of the download process or the distribu-
tion of TTL. While ACT1 works reasonably well and is low-overhead, it does not come anywhere
near PASS in terms of accuracy during estimation of f . Consequently, our fourth contribution
is to design a method we call ACT2 that employs the recovered FT (x) to probabilistically bound
the download points of the cache. We find that the resulting technique is highly accurate and ex-
plain how the proposed system can additionally produce the remaining parameters of the system
– inter-update distribution FU (x), hit rate h, and client-request rate λ – with no extra overhead.
In previous work [2, 15, 42], none of these metrics were available under random T . We finish the
article with Internet experiments that highlight the performance of our models and techniques.

Compared to the conference version [55], this article presents novel theoretical results through-
put Section 3, a more detailed and accessible explanation of the models, a new sampling technique
and overhead analysis in Section 5, all missing proofs, and numerous additional experimental re-
sults in Section 6.

2 Related Work

The first direction in previous studies focuses on modeling TTL-based caching, where hit rate
h has been the most common metric of interest. The majority of literature [2, 15, 42] assumes

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:4 D. Xiao et al.

�������	 �
���	��	
���
����	

����
��������	
��	������	

�����	����	�������	

���	���������	���	

Fig. 1. Operation of DNS caching.

that clients send background queries using a Poisson process with some rate λ, which in certain
cases approximates user requests rather well [16]. General renewal processes are considered in
[25, 31]; however, they do not admit closed-form expressions for h and require numerical solutions
to the renewal equation. The TTL is usually modeled as a constant [2, 31, 42], although h has
been analyzed under a more general distribution in [5, 25, 31]. In all cases except [5], the time to
download the object is assumed negligible compared to the TTL.

The second direction aims to remotely sample DNS resolvers and obtain an estimate of λ, assum-
ing the cache applies constant TTLs known to the observer. This usually requires either Poisson
queries [2, 42] or hyper-exponential inter-request delays [37]. For arrivals with longer memory, it
currently appears difficult to recover λ with high accuracy.

The last direction studies object staleness under networked replication. The interplay between
general update/download processes is covered in [34] and a number of unbiased techniques for es-
timating the update distribution is proposed in [35]. We review some of their results below. In the
context of DNS, freshness is taken into account only by [15], which analyzes the expected number
of missed updates between a download and subsequent queries. If updates and user queries are
both Poisson, [15] proposes a staleness-measurement technique that requires sources and their
caches to exchange real-time information on the observed updates/requests. Because we neither
assume changes to the DNS protocol nor expect sources to cooperate with the measurement pro-
cess, this is an orthogonal problem to the one studied here.

3 Performance Metrics of DNS Caches

This section introduces the terminology used later in the article, puts our problem in the context
of prior literature, and provides intuition behind the staleness/efficiency tradeoff.

3.1 System Operation and Notation

Assume a system with a single source, a single replica, and a number of clients that query the
replica for a particular data record/object owned by the source. As shown in Figure 1, a common
networking scenario covered by this model is DNS, where the source is an authoritative server for
some domain, the replica is a local DNS resolver (i.e., cache), and clients are regular end-hosts/users.
The replica operates based on the TTL supplied by the source—each download k = 1, 2, . . . is
accompanied by a parameter Tk ≥ 0 that specifies how long the item can remain cached. When
the cache replies to clients, it provides the residual TTL, which is the remaining delay before the
record must be discarded. This information is valuable not only during hierarchical caching (e.g.,
within the OS or browser), but also in remote measurement, as we discuss shortly.

In normal DNS operation, the source decides {Tk } using some internal mechanism (e.g., based on
the current load on the available servers, routing preferences, record volatility), which generally
makes {Tk } a time-varying process. On top of this, caches may alter the source-provided TTL
to satisfy their own objectives. Existing studies [4, 10, 41, 45] show that a large fraction of DNS
resolvers violate the source-provided TTL, where the reasons for such behavior include attempts

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:5

to impede cross-site scripting attacks [30], defense against DDoS attacks [39], load balancing [12–
14, 22], and reduction of cache inconsistency through TTL adaptation [15]. Therefore, the effective

TTL (i.e., the one actually used by the replica) may be highly variable not only due to source
decisions, but also cache policies. To cover such cases, we depart from the common assumption
of constant TTL and model set {Tk } as iid random variables with some distribution FT (x). Note
that most of the convergence proofs in the article hold under more general (non-iid) conditions on
{Tk }, which we briefly discuss below.

At the source, suppose the record sustains the ith update at time ui and process NU (t) = max(i :
ui ≤ t) counts the number of such events in [0, t]. We assume that NU is age-measurable, which
is the weakest set of conditions, defined in [34], under which the various sample-path averages
related to staleness are convergent. Age-measurability is a generalization of renewal processes that
allows non-stationary dynamics as long as the empirical distribution of cycle lengths converges
to a deterministic function. More formally, consider a point process N with cycle lengths {Xi }

∞
i=1,

where each Xi ∼ Fi (x) is a random variable. Let 1A be an indicator variable of event A and F̄ (x) =
1 − F (x) be the complementary CDF (cumulative distribution function) of F (x).

Definition 1 ([34]). A process N is called age-measurable if:

(1) For all x ≥ 0, except possibly points of discontinuity of the limit, sample-path distribution
of variables {X1, . . . ,Xn} converges in probability as n → ∞ to some function F (x):

1

n

n∑
i=1

1Xi ≤x
P
→ F (x); (1)

(2) Function F (x) is deterministic with mean 0 < δ < ∞;
(3) The average cycle length converges to δ in probability as n → ∞:

1

n

n∑
i=1

Xi
P
→ δ =

∫ ∞

0
F̄ (x)dx . (2)

Defining Ui = ui+1 − ui to be inter-update delays, age-measurability of NU implies that the
collection of variables {Ui }

∞
i=1 has some distribution, which we call FU (x). Similarly, denote by qj

the time of client query j = 1, 2, . . . and let inter-query intervals Q j = qj+1 − qj be iid random
variables with some distribution FQ (x). Suppose NQ (t) = max(j : qj ≤ t) is the corresponding
renewal process, which we assume has no point at zero, i.e., q1 ∼ FQ (x). Now observe that a
combination of NQ and FT (x) uniquely defines the download process ND between the source and
the cache, whose kth point is dk = min(qi : qi > dk−1 +Tk−1), where d1 = q1, and ND (t) = max(k :
dk ≤ t). Following Figure 2, Dk = dk+1 −dk represents inter-download gaps of ND , dashed arrows
are synchronization instances with the source, and the bold-line ON/OFF process NT corresponds
to object presence in the cache, i.e.,NT (t) = 1 when t ∈ [dk ,dk+Tk] andNT (t) = 0 otherwise. For all
cycles lengths, we assume their means are positive and finite. The rest of the section demonstrates
how to use the introduced variables to model performance of DNS caches.

3.2 Hit Rate

DefineT ∼ FT (x) to be a generic variable with the same distribution as the TTL. Recalling that NQ

is renewal, hit rate [5, 25, 31]

h =
E[NQ (T)]

1 + E[NQ (T)]
(3)

is the fraction of queries that arrive during ON periods in Figure 2. The numerator of (3) is
the expected number of client queries in [0,T], i.e., after the record has been cached, and the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:6 D. Xiao et al.

���� ��

��� ���� �

��

����

��� ���� �

�
����	

�����	

�������	

	
� 	
���

�
�

���

�	 ���	 �	 ���	 �	

Fig. 2. Process notation.

denominator adds 1 to account for the first query that misses the cache and starts each ON cycle.
Analysis of (3) is far from straightforward since it involves the renewal function r (t) := E[NQ (t)].
In general, r (t) can be represented as either an infinite convolution or a solution to the renewal
equation [54]

r (t) = FQ (t) +

∫ t

0
r (t − x)dFQ (x). (4)

Despite these complexities, there are several observations that can be made about h. First, for
certain classes of FQ (x), we can determine the best distribution FT (x) that maximizes h for a given
mean E[T]. Although [25, Proposition 4] states that constant T is optimal for all concave FQ (x),
there is a flaw in that proof. The authors differentiate (4) twice; however, the second application of
Leibniz’s integral rule is missing a positive term F ′

Q (0)r
′(t), which renders the conclusion invalid.

Instead, we offer a different sufficient condition.
Recall that a non-negative variable X is called Decreasing Failure Rate (DFR) if P(X > x +

y |X > y) is increasing in y for each x > 0 [9]. Note that DFR distributions are commonly found in
practice (e.g., all heavy-tailed cases such as Pareto and Weibull).

Theorem 3.1. Assume E[T] is fixed. If FQ (x) is DFR, then constant T maximizes (3).

Proof. It is well-known that r (t) is concave [9] if renewal cycles are DFR (although the opposite
is false [56]). From Jensen’s inequality, we get E[r (T)] ≤ r (E[T]). Therefore,

h =
E[r (T)]

1 + E[r (T)]
≤

r (E[T])

1 + r (E[T])
. (5)

As a result, replacing a randomT with a constant equal to its mean allowsh to achieve the upper
bound in (5), i.e., yields the largest possible hit rate. �

Second, notice that E[NQ (T)] increases for stochastically larger T or stochastically smaller Q ,
which implies that h in (3) does too. Intuitively, this makes sense – longer ON periods in Figure 2
or faster query rates yield better hit rates. The opposite holds when the conditions are reversed.

Third, it should be noted that (3) holds even if the TTLs are non-iid. In particular, if the point
process defined by cycle lengths {Tk } is age-measurable with a limiting distribution FT (x), we get
from Vitali’s Convergence Theorem [17], bounded nature of renewal functions (i.e., 0 ≤ r (t) ≤

a + bt for some a,b), and uniform integrability that

1

n

n∑
i=1

r (Ti)
P
→

∫ ∞

0
r (x)dFT (x), (6)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:7

source ����

��

�����
�
� �
��

Fig. 3. Age and residual of a point process.

from which it follows that the sample-path averaged hit-rate h converges in probability to the
result in (3). Similar extensions to non-iid {Tk } apply later in this section, but for brevity we omit
discussing them explicitly.

3.3 Freshness

As the DNS record keeps changing, cache responses may become outdated compared to the current
state at the source. For the example in Figure 2, the record provided by the cache to clients at
time qj is fresh (i.e., the same as at the source), while that at qj+1 is stale due to an update in
(qj ,qj+1]. Thus, focusing solely on maximization of h, which can be achieved by settingTk = ∞, is
often meaningless in practice. Instead, TTL-based systems need to balance between hit rates and
freshness, which we explore in more detail below.

To avoid repetitive definitions, assume a generic point process N with events at {x1,x2, . . .} and
cycle lengths Xi = xi+1 − xi . Then, following the illustration in Figure 3, let the age of N at time t
be the delay to the previous point

A(t) := t − xN (t) (7)

and the residual be the distance to the next point

R(t) := xN (t)+1 − t . (8)

If N is age-measurable, the distributions of variables (7)–(8) sampled at uniform points t con-
verges in probability to the equilibrium CDF of F (x) [34, Theorem 1]

G(x) :=
1

δ

∫ x

0
F̄ (y)dy, (9)

where F (x) is the limit from (1) and δ > 0 is its mean. It is then convenient to use random vari-
able A ∼ G(x) to represent the age of distribution F (x) and R ∼ G(x) to indicate its residual.
When applying these definitions to NU ,NQ ,ND , the notation in (7)–(9) is augmented with a corre-
sponding subscript {U ,Q,D}. For example, the update process NU yields AU (t),RU (t),GU (x), and
AU ,RU ∼ GU (x). On the other hand, since NT is a binary ON/OFF process, (7)–(9) do not directly
apply to it. Instead, we define the age/residual of NT only for the ON periods, which translates
into

AT (t) :=

{
t − dND (t) NT (t) = 1

undefined otherwise
, (10)

RT (t) :=

{
dND (t) +TND (t) − t NT (t) = 1

undefined otherwise
, (11)

GT (x) :=
1

E[T]

∫ x

0
F̄T (y)dy, (12)

and AT ,RT ∼ GT (x).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:8 D. Xiao et al.

Now suppose freshness f is the long-term fraction of queries that return a record that is consis-
tent with that at the source. It is also common to use the term staleness [40, 53] to refer to 1 − f .
For either quantity to be computable using the properties of the underlying processes (i.e., without
access to both source and cache logs), it is necessary that processes (NU ,NQ) be age-independent

[34], which means that their cycle lengths not enter a permanent phase-lock as t → ∞. In more
detail, letWt be a uniform random variable in [0, t] and consider the following.

Definition 2 ([34]). Two age-measurable point processes NU and NQ are called age-independent

if for all x ,y ≥ 0:

lim
t→∞

P(AQ (Wt) < x |AU (Wt) = y) = GQ (x). (13)

This condition can be satisfied by requiring that one of FU (x), FQ (x) be non-lattice (i.e., not
defined on rational numbers). For the remainder of the article, we assume that age-independence
of (NU ,NQ) holds.

Theorem 3.2. Cache replies are fresh with probability

f =
1 + E[NQ (min(RU ,T))]

1 + E[NQ (T)]
. (14)

Proof. For a download cycle k in Figure 2, there are NQ (Tk)+ 1 total queries, the first of which
at time dk is always fresh. Since we know RU (dk) is the amount of time before the next update, it
follows that 1 + NQ (min(RU (dk),Tk)) initial requests in each cycle k encounter a fresh response.
Therefore, the fraction of non-stale replies is given by

f = lim
n→∞

∑n
k=1[1 + NQ (min(RU (dk),Tk))]∑n

k=1[1 + NQ (Tk)]
. (15)

If (NU ,NQ) are age-independent, so are (NU ,ND) because NQ is renewal and ND is a thinned
version of NQ . Using [34], this means that the distribution of residuals {RU (dk)} observed by the
download process converges to (9). Combining this with the iid nature of {Tk }, we get (14). �

3.4 Freshness-Efficiency Tradeoff

The effect ofT andQ on freshness is quite a bit more complex than on the hit rate. Simply makingT
stochastically larger (orQ smaller) is not enough to predict the change in f in every circumstance.
The problem is that (14), unlike (3), has different expressions in the numerator and denominator.
In one special case, however, we can establish the asymptotics of how the TTL and query rates
affect staleness.

Theorem 3.3. Let {Fn
T
(x)} be a sequence of TTL distributions for n = 1, 2, . . . and define T n ∼

Fn
T
(x). Assuming E[T n] → ∞ and FQ (x) remains fixed as n → ∞, freshness under T n converges to

0. Similarly, if Qn = Q/n, where Q ∼ FQ (x), and FT (x) is fixed as n → ∞, freshness under a query

process driven by cycle lengths Qn converges from above to E[min(RU ,T)]/E[T] as n → ∞.

Proof. Suppose E[T n] → ∞ and the distribution of Q is given. Then, from the Elementary Re-
newal Theorem [54] and E[Q] < ∞, it follows that E[NQ (T

n)] → ∞. Since E[RU] < ∞, we get that
E[NQ (min(RU ,T

n))] is upper-bounded by E[NQ (RU)] < ∞ and thus the ratio in (14) diminishes to
zero.

Now supposeQn = Q/n, whereQ ∼ FQ (x) is such that 0 < E[Q] < ∞, and FT (x) is given. Notice
that NQn (t) has the same distribution as NQ (nt). Defining random variable X = T /E[Q], observe
from the Elementary Renewal Theorem that

Xn :=
r (nT)

n
→ X , (16)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:9

Fig. 4. Simulations under ParetoU andQ , where E[U] = 20 sec and λ = 1/sec (observation window with 1M

samples).

where as before r (t) = E[NQ (t)]. Since r (t)/t → 1/E[Q] < ∞, we get that r (t) ≤ at + b for some
constants (a,b). This meansXn is upper-bounded by aT +b/n with probability 1. Therefore, setting
Y = aT +b yields that Xn ≤ Y for all n. Because E[Y] < ∞, the Dominated Convergence Theorem
[43] produces E[Xn] → E[X], or equivalently

E[r (nT)]

n
→

E[T]

E[Q]
, (17)

which implies that (14) converges to its lowest point E[min(RU ,T)]/E[T] as n → ∞. �

Intuitively, this result holds because larger TTLs yield less-frequent downloads from the source
and larger query rates λ produce more stale replies per synchronization event. With the exception
of esoteric counter-examples, this generally means that freshness and hit rate are tradeoffs of each

other.

3.5 Discussion

To show this better, we next examine several scenarios. Figure 4 shows a comparison between
simulations and model (14) under a general NQ with a mean 20-sec inter-update delay. Notice that
the two match very well and that freshness indeed decreases as E[T] gets larger. In Figure 5(a),
we vary E[T] and plot f as a function of h, where the two models come from (3) and (14). As
predicted, longer TTLs drive h → 1 and f → 0, reaffirming the tradeoff. A similar picture emerges
in Figure 5(b) as λ changes, except here f → E[min(RU ,T)]/E[T] = 1/3 as hit rate h → 1.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:10 D. Xiao et al.

Fig. 5. Cache tradeoffs (Pareto U ,T ,Q with E[U] = 20 sec).

3.6 Large User Base

When the local resolver sustains queries from a large population of users, it might be sensible
to model NQ as a Poisson process, which is a common assumption in the field [2, 15, 42]. Under
exponential Q , inter-download delay D becomes a convolution of ON/OFF cycle lengths, i.e., D =
T +Q . Furthermore, letting λ = 1/E[Q] be the request-arrival rate, (3) transforms into

h =
λE[T]

1 + λE[T]
(18)

and (14) simplifies to

f =
1 + λE[min(RU ,T)]

1 + λE[T]
. (19)

The next result establishes a more useful representation of freshness by making it an explicit
function of h.

Theorem 3.4. Under Poisson queries, freshness is given by

f = 1 − h + hp, (20)

where p := P(RT < RU).

Proof. Notice that

E[min(RU ,T)] =

∫ ∞

0
P(min(RU ,T) > z)dz =

∫ ∞

0
P(RU > z)P(T > z)dz. (21)

Since GT (x) is the CDF of residuals for FT (x), its density дT (x) := (1 − FT (x))/E[T] exists. We
then get that P(T > z) = E[T]дT (x) and

E[min(RU ,T)] = E[T]

∫ ∞

0
(1 −GU (z))дT (z)dz = E[T]P(RU > RT). (22)

Substituting (22) into (19) gives:

f =
1 + pλE[T]

1 + λE[T]
=

1

1 + λE[T]
+

pλE[T]

1 + λE[T]
, (23)

which transforms into (20) using (18). �

There is a simple explanation for (20). The first term 1 − h covers queries that miss the cache,
in which case they are fresh with probability 1. The second term hp applies to queries that hit an
ON interval in Figure 2, in which case age-independence between (NU ,NQ) and the results in [34]

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:11

ensure that content is fresh with probability p. Next, re-writing (20) as f = 1 − h(1 − p), it is clear
that increasing λ, which also increases h, causes freshness to go down. This is consistent with our
earlier conclusions about (14). On the other hand, the impact of T is less obvious because h and
1 − p may move in different directions.

Theorem 3.5. For Poisson queries with a fixed rate λ, increasing E[T] such that residualRT becomes

stochastically larger reduces freshness.

Proof. Stochastically larger residuals RT makes p = P(RT < RU) smaller. At the same time,
increasing E[T] scales h up. Therefore, f = 1 − h(1 − p) must decrease. �

One simple strategy to grow E[T] and stochastically increase RT is to use scaling, i.e., replace
T with ρT , where ρ > 1. It should be noted that ρT has the same distribution as T , but with a
different mean. For example,T ∼ exp(λ) becomes exp(λ/ρ), uniform[a,b] shifts to uniform[ρa, ρb],
and Pareto(α , β) transforms into Pareto(α , ρβ).

3.7 Relationship to Other Strategies

There is an interesting parallel between TTL-based caches studied here and two capacity-based
strategies—Random and FIFO. Existing work [25, 27, 38] shows that these methods can be approx-
imated by a TTL-based cache, where Random uses exponential T and FIFO relies on constant T .
These policies have the same hit rate in (18); however, they are clearly different when freshness is
taken into account. The next result proves that FIFO offers better freshness than Random under
all update processes NU .

Theorem 3.6. Assume Poisson queries. For a given E[T] and FU (x), constant TTL delays achieve

the largest freshness. For a given FT (x) and E[U], constant update delays produce the worst freshness.

Proof. For a fixed E[T], the hit rate remains constant, which means that freshness in (20) is
determined solely byp = P(RT < RU). Suppose FU (x) and E[T] are fixed. Then, [34] shows thatp is
maximized whenT is a constant. Similarly, assume FT (x) and E[U] are given. Then, p is minimized
when U is a constant [34]. �

In order to reduce response latency, other studies [15, 16, 21] propose that the cache pre-fetch
records from the server as soon as the TTL expires. In this technique, which is called proactive

caching, hit rate h is always 1 and thus f = p from (20). Compared to regular (non-proactive)
operation, where h < 1 and f ≥ p, this is another example of the efficiency-staleness tradeoff
– h becomes maximally optimal, but f is maximally suboptimal. Furthermore, the download rate
from the source increases from 1/E[D] = 1/E[T + Q] to 1/E[T]. This indicates that proactive
caching improves the hit rate (i.e., latency) at the cost of higher communication bandwidth and
lower consistency of records served to clients. The models developed in this section can be used
to quantify this tradeoff.

4 Passive Measurement

4.1 Preliminaries

Assume that the local resolver needs to estimate the long-term freshness f of a given record in
its cache. The reasons for this objective could be numerous (e.g., performance monitoring, source
characterization), but consider a more concrete example. Suppose the source providesTk = 40 sec
for all k , but this leads to 10% freshness for the specific user process NQ at this cache. Assuming
that the replica has enough spare bandwidth to sustain more frequent downloads, it may decide
to lower the TTL (i.e., preemptively evict records that are likely stale) in order to achieve a certain
freshness guarantee to its clients, while still maintaining a reasonable level of latency. Since process

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:12 D. Xiao et al.

10
−3

10
−2

10
−1

10
0

10
10

50

100

150

query rate

E
[T

]

(a) adaptive TTL

10
−3

10
−2

10
−1

10
0

10
10

0.2

0.4

0.6

0.8

1

query rate

hi
t r

at
e

E[T]=40
adaptive E[T]

(b) resulting hit rate

Fig. 6. Achieving 90% freshness (Pareto U ,T ,Q with E[U] = 20 sec).

�����	�	 ��� ��

�
�����	
�����������������	

���
����	
���������	

�� ���	

�������	

�����	

Fig. 7. Model roadmap for passive monitoring.

NQ is localized to each cache, the source has no ability to optimize {Tk } simultaneously for all of
its replicas. Thus, one feasible application that needs f , which we call an adaptive (i.e., staleness-
aware) cache, selects GT (x) such that freshness f in (14) is maintained at some desired threshold.
To see how this works, consider the scenario in Figure 5, deterministic T , and 90% freshness. For
this setup, Figure 6(a) shows the relationship between the query rate λ and TTL. Observe that
more-frequent client requests mandate a sharp decrease in E[T], while less-loaded conditions do
the opposite. The corresponding hit rate is provided in Figure 6(b) in comparison to the default
40-sec eviction delay. If the record is requested more often than once every 2 min, the adaptive
strategy exhibits lower hit rates and requires more bandwidth, but provides fresher records than
the non-adaptive version. The situation is reversed when the record is less popular.

Beyond DNS, passive sampling arises in the context of web crawlers, where the inter-update
distribution FU (x) is needed to schedule future downloads in order to balance between bandwidth
and freshness. Previous work [34, 35] deals with this particular case in more detail, but there are
numerous other applications on the Internet with similar requirements (i.e., anything that has an
updating source and a replica, such as CDNs).

As shown in Figure 7, parametersh, NQ , and FT (x) can be locally determined by the resolver. On
the other hand, estimation of f at the replica, which we call passive sampling, requires an inference
process that obtains the residual update distributionGU (x). The rest of the section focuses on this.

4.2 Sampling Update Age

Recall from Figure 2 that the cache contacts the source at points {dk }, which form some download
process ND . From our assumptions, (NU ,ND) are age-independent, which allows application of
the various techniques in blind sampling [34]. There are three variations of methods based on the
capabilities of the source. In the first case, the source explicitly provides the update age AU (dk)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:13

�
����	

�����	

������ � ����������� �

�	

�
������	������	

Fig. 8. Bounding the update age in passive measurement.

from Figure 3 during each download k , e.g., using protocol fields such as HTTP headers. For this
scenario, [35] develops a method called M2 that is asymptotically unbiased and quickly convergent.
Unfortunately, this scenario does not apply to DNS. As a result, the cache has to infer presence of
updates by comparing adjacent versions of downloaded records. Define a binary process Δk to be
1 if the object is detected as modified during download k . When inter-download delays Dk are all
constant, the second class of methods in [34] uses {Δk }

∞
k=1

to estimate GU (x) with asymptotically
consistency. However, again, this formulation does not work for our problem sinceDk is a complex
random variable that subsumes Tk and the preceding OFF period in Figure 2, both of which are
random.

This leaves us with the third class of methods in [35], which consists of a single technique
M6 that works with random Dk and reconstructs GU (x) from observations {Δk }

∞
k=1

. It has two
drawbacks—quadratic computation time in the number of downloads n and lower accuracy com-
pared to the remaining methods in [35]. Therefore, our first goal is to improve this technique in
both aspects.

4.3 Non-Parametric EM

Blind-sampling methods work by estimating the unknown update age AU (dk) in download points.
Instead of rounding this to some value, as done in [34], our novel approach is to provide the
estimator with interval-censored values, i.e., upper/lower bounds onAU (dk). Defineγ (k) = max(i ≤
k : Δi = 1) to be the last download in [0,dk] that detected a modification. Consider Figure 8 and
suppose the current time is dk . Then, the latest update at the source is always confined to the
interval (dγ (k)−1,dγ (k)]. This immediately yields

dk − dγ (k) ≤ AU (dk) ≤ dk − dγ (k)−1. (24)

Suppose the lower bound in (24) is Lk and the upper is Rk . Then, our technique, which we call
PASS, collects a sequence of pairs {(Lk ,Rk)}

n
k=1

and feeds them into a non-parametric EM estimator.
Our model draws inspiration from Turnbull’s method for censored intervals [51]. First, we quantize
the bounds to be a multiple of some bin size, where Lk is rounded down andRk up. We then combine
upper/lower bounds into a single vector, sort the result ascending, eliminate duplicates, and obtain
a new set (x1, . . . ,xm), wherem ≤ 2n. From this, we can form non-overlapping bins Bi = [xi−1,xi),
where x0 = 0.

Let pi (t) be the estimated probability that the target random variable AU ∼ GU (x) belongs
to bin Bi during step t of the iteration, where pi (0) = 1/m for all i . Now define aik to be an
indicator variable that Bi is entirely contained in the discretized interval from download k . Using
non-quantized bounds, this can be expressed as

aik =

{
1 Bi ∩ [Lk ,Rk] � ∅

0 otherwise
. (25)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:14 D. Xiao et al.

ALGORITHM 1: PASS’s implementation of (27).

1 Function FastEM(intervals, m)

2 p = (1/m, 1/m, . . . , 1/m); � initial guess

3 while not converged do

4 p = OneIteration (intervals, p, m)

5 Function OneIteration(intervals, p, m)

6 Z = zeros (1, m+1); � temp storage

7 cdf = prefix_sum ([0 p]); � CDF padded with 0 at front

8 for k = 1 to intervals.size() do

9 Vk = cdf [intervals [k].R] − cdf [intervals [k].L];

10 Z [intervals [k].L] += intervals [k].count / Vk;

11 Z [intervals [k].R] −= intervals [k].count / Vk;

12 psum = 0; � prefix sum of Z

13 for i = 1 to m do

14 psum += Z [i]; � total weight from all intervals

15 p [i] ∗= psum / n ; � normalize and save

16 return p;

Next, define Vk (t) to be the probability that AU ∼ GU (x) belongs to [Lk ,Rk] during iteration t

Vk (t) =
m∑

i=1

aikpi (t). (26)

Each probability is then refined using recurrence

pi (t + 1) =
pi (t)

n

n∑
k=1

aik

Vk (t)
(27)

until the stopping criterion is satisfied, i.e., | |p(t + 1) − p(t)| | < ϵ , where ϵ > 0 is a constant, and
p(t) = (p1(t), . . . ,pm(t)). Note that this process is asymptotically accurate [51], i.e., (27) converges
to GU (x) as n → ∞.

4.4 Implementation

A naive version of (25)–(27) calculates all mn values aik and keeps them in RAM, which is highly
inefficient. In the worst case (i.e., m = 2n), this computation is quadratic in both space/time.
Instead, we offer Algorithm 1 whose per-iteration CPU complexity O(n) and storage cost O(m)

are optimal. Prior to calling FastEM, assume the program has already determined bin boundaries
(x1, . . . ,xm) and mapped each pair (Lk ,Rk) to the appropriate bin using an array of structs, i.e.,
intervals[k].L and intervals[k].R. Note that duplicate tuples (Lk ,Rk) are compressed such
that intervals[k].count is the corresponding frequency.

After initialization, Algorithm 1 computes the CDF of AU using a prefix sum of the PMF

(probability mass function) array p (Line 7). Padding with a front zero is needed to properly
compute Vk in Line 9. We then use a temporary array Z to accumulate all weights 1/Vk that will
be distributed into the relevant bins after the loop is over. Specifically, Z [i] stores increments that
must be applied to the PMF in position [i,m]. This requires adding 1/Vk at the left boundary of the
interval (Line 10) and subtracting it at the right boundary (Line 11). The second loop in Lines 13-15
computes a prefix sum of Z and stores the result, normalized by pi (t)/n, into the same vector.

With compression of duplicate intervals, the number of unique boundaries supplied to
Algorithm 1 is upper-bounded by min(m(m − 1)/2,n). If m � n and the runtime is dominated by

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:15

iteration in Lines 3-4, rather than the initial n logn sort, PASS can exhibit sublinear scaling in a
limited range of n. We show such an example below.

4.5 Concave EM

Note that GU (x) in (9) has a monotonically decreasing density дU (x) = G ′
U (x) ∼ 1 − FU (x). As

a result, GU (x) is a concave function. This is an important property that must be preserved by
the estimator, especially if recovery of FU (x) = 1 − дU (x)/дU (0) is needed from GU (x). Since
the density is commonly estimated by scaling and smoothing the PMF, a proper solution must
guarantee pi (t) ≥ pi+1(t). Unfortunately, (25)–(27) fail to do so. Furthermore, none of the previous
literature has considered this issue before.

To overcome the setback, we offer a new EM algorithm that ensures proper recovery of residual
(i.e., concave) CDFs. Define δi = xi − xi−1 to be the length of the ith bin and let дi (t) = pi (t)/δi be
the corresponding estimate of density, where дm+1 = 0. Suppose

qi (t) = xi (дi (t) − дi+1(t)) (28)

models the negative derivative of дi (t), normalized such that
∑m

i=1 qi (t) = 1. Observe that if the
estimated density дi (t) is a decreasing function of i , then qi (t) ≥ 0 for all i . The opposite holds as
well since

дi (t) =
m∑
j=i

qj (t)

x j
. (29)

We next create an EM algorithm for qi (t) such that qi (t) ≥ 0 is preserved during each iteration.

Theorem 4.1. A concave EM estimator for interval-censored data is given by

qi (t + 1) =
qi (t)

nxi

i∑
j=1

δ j

n∑
k=1

ajk

Vk (t)
. (30)

Proof. Conditioning on all intervals [Lk ,Rk], we have

P(AU ∈ [Lk ,Rk]) =

m∑
i=1

aik (GU (xi) −GU (xi−1)). (31)

Letting pi be an estimate for GU (xi) − GU (xi−1) such that
∑m

i=1 pi = 1, the objective is to
maximize the likelihood function L(p) with respect to vector p = (p1, . . . ,pm), i.e., the probability
of observing a particular sequence of intervals, where

L(p) =

n∏
k=1

P(AU (dk) ∈ [Lk ,Rk]) =

n∏
k=1

m∑
i=1

aikpi , (32)

or equivalently

log(L(p)) =

n∑
k=1

log

(
m∑

i=1

aikpi

)
, (33)

subject to the constraint that the estimate for GU is concave. Even through AU (t) and AU (s) for
s > t technically are not independent, age-measurability of NU and age-independency of (NU ,ND)

ensures that asymptotically the collection of variables {AU (dk)}
n
k=1

acts as an iid sequence [34].
Assuming the bins remain the same as n → ∞,

1

n

n∑
k=1

log

(
m∑

i=1

aikpi

)
→ E

[
log

(
m∑

i=1

1xi−1<AU ≤xi
pi

)]
=

m∑
i=1

(GU (xi) −GU (xi−1)) logpi . (34)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:16 D. Xiao et al.

The limit is uniquely maximized by

pi =
GU (xi) −GU (xi−1)

GU (xm)
, (35)

which shows that optimizing the likelihood function with respect to variables (p1, . . . ,pm) indeed
produces the desired quantity. The main caveat is that we must ensure a concave estimate at
every step t and for finite n. Using vector q = (q1, . . . ,qm) from (28), the objective function (33)
can be re-written as

log(L(q)) =

n∑
k=1

logVk , (36)

where pi = δiдi and application of (29) yield

Vk =

m∑
i=1

aikpi =

m∑
i=1

aikδi

m∑
j=i

qj

x j
. (37)

Since the two indexes (i, j) cover all pairs of integers such that i ≤ j, the order of sums can be
switched to produce

Vk =

m∑
r=1

qr

xr

j∑
s=1

askδs . (38)

Using qm = 1 −
∑m−1

i=1 qi and differentiating (36) yields

li =
∂ log(L(q))

∂qi
=

1

xi

n∑
k=1

∑i
s=1 askδs

Vk
− n. (39)

Note that the goal of the estimator is to drive each derivative li to zero. To accomplish this,
let qi (t) be the estimate of optimal qi during step t . From [51], the EM iteration for solving such
systems is given by

qi (t + 1) = qi (t)
(
1 +

li (t)

n

)
, (40)

which converges to a solution (i.e., fixed point) where either qi (t) = 0 or derivative li (t) = 0. As
long as the initial distribution has qi (0) ≥ 0, we obtain that li (t) ≥ −n and thus qi (t) is guaranteed
to be non-negative for all t . Using (39) and changing the order of summations one more time,

1 +
li (t)

n
=

1

nxi

n∑
k=1

∑i
j=1 ajkδ j

Vk (t)
=

1

nxi

i∑
j=1

δ j

n∑
k=1

ajk

Vk (t)
,

whose usage in (40) produces (30). �

Note that (30) uses variables from (25)–(26), which requires further elaboration. Before the first
iteration, we set pi (0) = δi/xm , which ensures a monotonic initial density, and convert p(0) into
vector q(0) using (28). This requires one pass over all m bins. Then, we represent (30) as

qi (t + 1) =
qi (t)

nxi

i∑
j=1

δ jWj (t), (41)

where

Wj (t) =
n∑

k=1

ajk

Vk (t)
. (42)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:17

Note that the entire set {Wj (t)}
m
j=1 can be computed by calling a slightly modified function

OneIteration in Algorithm 1, where Line 15 does not have the pi (t)/n multiplier. Once all {Wj (t)}
are available, an extra prefix sum over m bins produces (41). Finally, q(t + 1) is converted back to
p(t + 1) using (29), which requires another scan over m bins. In the end, per-iteration cost of our
concave EM differs from that of Algorithm 1 by an additive term 2m, which is negligible in practice.

5 Active Measurement

5.1 Preliminaries

We now face the issue of estimating f from a vantage point outside the cache, which we call active

sampling. This problem may be of interest to sources (e.g., CDN companies), where the goal is to
measure what types of freshness their TTL algorithms produce at certain customer networks (e.g.,
Comcast, Verizon). Additionally, caches may be remotely monitored by researchers and campus
network administrators, who do not have access to the logs, to characterize replication efficiency
and diagnose potential problems with bandwidth consumption, staleness, and performance of
deployed algorithms.

Due to the lacking cooperation from the cache, computation of f is likely intractable unless
NQ is Poisson, which we assume in the rest of the article. To calculate (20), we need to estimate
p = P(RT < RU) and hit rate h, the former of which requires the residual TTL distribution GT (x)
and the residual update distribution GU (x). This is illustrated in Figure 9, where E[T], λ, and
FU (x) can be obtained with no extra overhead once the three main parameters are known.

Note that sampling must be performed without intrusion into the ON/OFF process of the cache,
which would skew the result. We therefore assume that the resolver accepts iterative requests,
to which it responds with an error, instead of contacting the source, if the record is not currently
cached. For cached objects, the resolver returns their remaining TTL, which equals RT (t) at time
t using our earlier notation.

5.2 Constant TTL

Previous measurement literature [2, 37, 42] is limited to estimating λ and h under constantT . How-
ever, even in our setting that requires estimating an extra distributionGU (x), the problem becomes
trivial under this condition. AssumeT is a fixed value that is known to the observer from a-priori
contacts with the source or other means. Checking the cache everyT time units ensures that every
ON period receives at least one sample point, which allows recovery of the corresponding down-
load instance dk = tk +RT (tk) −T for all query times tk . The problem of estimatingGU (x) then be-
comes identical to that in passive sampling, where PASS provides an excellent supporting platform.
Furthermore, knowledge of the starting and ending point of each ON interval allows access to all
OFF durations, i.e.,dk −(dk−1+T), whose average tends to 1/λ. Finally, the hit rate follows from (18).

5.3 Random TTL

The issue is significantly more complex when the TTL varies between cycles, which is our
assumption from this point forward. The challenge stems from the observer’s uncertainty about
the location of download point dk since only the cache knows this information. This precludes
direct measurement of the OFF duration or application of PASS. We now formulate our framework
for solving these issues.

Suppose the observer is a special client that sends only iterative queries with an objective to
determine f with asymptotic accuracy as the observation window tends to infinity. Assume that
these requests are issued at points {sk } such that inter-sample delays Sk = sk+1 −sk have some dis-
tribution FS (x) andNS (t) = max(k : sk ≤ t) is an age-measurable process. Given age-independence

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:18 D. Xiao et al.

�����	�	

��

���
����	���������	

�� ���	 ��� �	

��

�������	

�����	 �

Fig. 9. Model roadmap for active monitoring.

between (ND ,NS), the ASTA (Arrivals See Time Averages) property of the constructed system
[34] ensures that the fraction of sample points that return a cached object tends to E[T]/E[T +Q]
as n → ∞. Since this value directly equals h, i.e., the first unknown parameter in Figure 9, the
observer can measure the hit rate without any additional bandwidth or computational overhead.

Leveraging [34], the observed TTL residuals {RT (sk)}
n
k=1

converge in distribution to RT ∼ GT (x)
as n → ∞. With iid {Sk } and Poisson NQ , reconstructingGT (x) should be possible using arbitrary
distributions FS (x), including lattice cases (e.g., constant Sk). However, this analysis assumes that
residuals are given by the server with high precision. In reality, the packet format of DNS requires
that RT (sk) be truncated to an integer number of seconds. To compound the issue, some servers
round the residual time up (e.g., BIND), some down, and others to the nearest value (e.g., Windows
IIS). Unfortunately, truncation introduces bias into the measurement and leads to poor estimation.

To overcome this problem, we offer the following approach. Suppose the local DNS server is
first tested for the direction of round-offs. This can be done using three packets at time 0, 0.25,
and 0.75 sec. The first packet seeds the server with a fresh TTL, while the other two differentiate
between the three rounding options. Additionally, notice that if a download point sk hits an ON
interval, the true (i.e., untruncated) residual is contained in [RT (sk) + a,RT (sk) + a + 1], where
a = 0 for rounding down, a = −1 for rounding up, and a = −1/2 for rounding to the nearest
integer. Furthermore, if multiple points sk hit the same ON interval, we can take the maximum of
the left bounds and the minimum of the right bounds to better pinpoint the true residual.

With this in mind, we collect one max/min bound from each sampled ON interval and pass the
result through the concave-EM in (30) to yield a monotonic density дT (x). Since

дT (x) = G
′
T (x) =

1 − FT (x)

E[T]
, (43)

this procedure yields FT (x) and E[T] = 1/дT (0) using numerical differentiation ofGT (x). Recalling
(18), knowledge of h and E[T] produces λ. Finally, assuming GU (x) is known, all remaining pieces
fall into place, i.e.,

p = P(RT < RU) =

∫ ∞

0
(1 −GU (x))дT (x)dx (44)

and thus f = 1 − h(1 − p). The only still-unknown parameter in Figure 9 is GU (x). We focus on
its estimation next.

5.4 ACT1

Our first attempt at active estimation of GU (x), which we call ACT1, places bounds on AU (dk)

using the information available to the client and then runs iteration (30) until convergence. Note

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:19

�����	

�
�� ���	�
�
 �

�����	

� ����	�
� ����
�� � ��	�
�

� ����	�
� � ��	�
��
���

���

Fig. 10. Notation in active sampling.

source

cache …

� ���� ������ �� �������� �
�������� � ���

possible update

���

Fig. 11. Bounding the update age in ACT1.

that sample points sk that fall into OFF periods, as well as duplicate hits on the same ON cycle,
provide no useful information about the update ageAU during preceding (or following) downloads
from the source. Define s ′

k
to be the first sample point in the kth ON period observed by the probes

and let d ′
k

be the preceding download timestamp at the cache. Then, d ′
k

is lower-bounded by

Wk = max
(
s ′k−1 + RT

(
s ′k−1

)
,max

(
si : si < s ′k

))
, (45)

which is the end of the (k − 1)-st ON period or the preceding sample point, whichever happened
later. Both cases are shown in Figure 10, where circles correspond to downloads and squares to
their lower bounds.

Similar to passive sampling, suppose Δ′
k

is a binary process that is 1 if a modification is
detected during interval (s ′

k−1
, s ′

k
], i.e., the record is different at download s ′

k
. We further define

γ ∗(k) = max(i ≤ k : Δ′
i = 1) to be last sample (no later than k) that detected an update. Note that

variables Δk and γ (k) from passive measurement are unavailable in the active case, which is why
they are replaced with those that can be computed by the observer, i.e., Δ′

k
and γ ∗(k).

Now consider Figure 11. Note that the hidden download point d ′
k

always belongs to [Wk , s
′
k
].

This range is shown in the figure with a double arrow originating from d ′
k

. Moving dγ ∗(k)−1 as far
back as possible and dγ ∗(k) as far forward as possible (also shown with arrows) demonstrates that
the last update must be contained in [Wγ ∗(k)−1, s

′
γ ∗(k)

]. Therefore, the age AU (d ′
k
) is bounded as

max
(
Wk − s ′γ ∗(k), 0

)
≤ AU

(
d ′

k

)
≤ s ′k −Wγ ∗(k)−1. (46)

Note that the max function is needed when γ ′(k) = k to prevent the lower bound from going
negative.

5.5 ACT2

While (46) is a good low-overhead estimator, we can do even better with additional computation.
Specifically, the main idea is to allow the estimator to utilize residuals RT (s

′
k
) together with the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:20 D. Xiao et al.

already-recovered GT (x) to probabilistically determine the location of unknown download points
d ′

k
. Recalling that AT (s

′
k
) is the age of the ON period at s ′

k
, it follows that d ′

k
= s ′

k
− AT (s

′
k
).

The remaining elements of this approach, which we call ACT2, is to determine the conditional
distribution of AT (s

′
k
) and change the EM algorithm to work with random bounds [Lk ,Rk].

There are two pieces of information known to the observer that affect the distribution ofAT (s
′
k
).

The first is residualy = RT (s
′
k
) returned by the cache and the second is the upper bound z = s ′

k
−Wk

from preceding samples. Conditioning on AT < z and RT = y, the tail distribution of AT is

F̄A(x ;y, z) := P(AT > x |RT = y,AT < z) =
P(x + y < T < y + z)

P(y < T < y + z)

=
FT (y + z) − FT (x + y)

FT (y + z) − FT (y)
, (47)

where FT (x) comes from (43). UnlessT is memoryless (i.e., exponential), parametery provides use-
ful clues about the possible values of age. For light-tailed distributions (e.g., constant, uniform), the
age is generally a decreasing function of y. For heavy-tailed cases (e.g., Pareto), it is the opposite.

Leveraging (24), ACT2 constrains the update age using random upper/lower bounds

Lk = s
′
k −AT

(
s ′k

)
− s ′γ ′(k) +AT

(
s ′γ ′(k)

)
(48)

Rk = s
′
k −AT

(
s ′k

)
− s ′γ ′(k)−1 +AT

(
s ′γ ′(k)−1

)
, (49)

where AT (s
′
k
) ∼ FA(x ;RT (s

′
k
), s ′

k
−Wk). Note that γ ′(k) = k implies that Lk = 0, which leaves only

two random variables on the right side of (48)–(49). Otherwise, there are three of them, all with
known parameters needed to construct (47).

For the computation, we discretize interval [0, s ′
k
−Wk] and replace (47) with a PMF that assigns

weights to a number of bins in that range. We then iterate over all possible ways to draw the three
(or possibly two) age variables from their respective distributions and compute the probability
νk for each deterministic bound [lk , rk]. These are fed into concave EM, which we modify to take
weights into account, i.e., use

Wj (t) =
n∑

k=1

ajk

Vk (t)
νk . (50)

as a replacement for (42).

5.6 Overhead

The final issue is the cost of each algorithm. Define τn to be the amount of time needed to
collect n samples of age AU . In the passive case and n → ∞, it is straightforward to infer that
τn/n → E[D] = E[T +Q]. The active case requires more analysis.

Theorem 5.1. Under active estimation of freshness f ,

lim
n→∞

τn

n
=

E[T +Q]E[S]∫ ∞

0
F̄S (x)F̄T (x)dx

, (51)

where F̄S (x) and F̄T (x) are the complementary CDFs of inter-sample delays and TTLs, respectively.

Proof. Suppose active sampling generates M probe points {s1, . . . , sM } that produce n mea-
surements of update age, which happens only at times that fall into ON periods and are the
first ones therein. This happens if two conditions are present—(1) there is a cache hit at sk ; and
(2) AT (sk) < Sk−1. Therefore, M has a negative binomial distribution and

lim
n→∞

n

M
= hP(AT < S). (52)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:21

Since τn = M/E[S], we have

lim
n→∞

τn

n
=

E[S]

hP(AT < S)
, (53)

which leads to (51) after expansion of the two terms in the denominator. �

Considering the result in (51), active sampling takes a constant factor longer than passive,
where this ratio is

E[S]∫ ∞

0
F̄S (x)F̄T (x)dx

≥ 1. (54)

To visualize this better, notice that the inverse of (54) is

1

E[S]

∫ ∞

0
F̄S (x)F̄T (x)dx = P(RS < T), (55)

which specifies the probability that the residual inter-sample delay is smaller than the TTL. To
enable quicker collection of useful measurements and achieve observation windows closer to
those in passive sampling, ACT1/ACT2 require stochastically smaller RS or stochastically larger
T in order to bring (55) closer to 1. Interestingly, NQ has no impact on overhead.

5.7 Other Metrics of Staleness

Besides freshness f , our measurement framework can be used to provide additional performance
characterization of the system; in particular, that related to age of information (AoI) [32]. While
none of the previous literature in AoI addresses the interval-censored estimation problems of this
article, it might be useful to consider other definitions of age. One example is the average amount
of time since the last update, i.e., source age E[AU (t)] at time t . This information is available to
both passive and active observers once distribution GU (x) is estimated. Another way to leverage
AoI is to consider the delay between the last download by the cache and the delivery of the object
to the user, i.e., how long the object has been cached for. This is E[AT (t)], which is also easy to
recover once GT (x) is known. Finally, neither of these definitions takes into account whether the
object being served in stale or not. Thus, a more balanced metric might be staleness lag L1(t) from
[34]. If the object is fresh at t , its staleness lag is zero; otherwise, it equals the amount of time the
object has been stale for. Instead of evaluating the lag directly, it often makes sense to define a
weight function w(x) and consider source penalty [34]

η = E[w(L1(t))]1L1(t)>0. (56)

This is a generalization of the framework considered so far, where w(x) = 1 produces the
staleness probability η = 1 − f and w(x) = x yields staleness age η = E[L1(t)]. With additional
mild assumptions on NU , [34, Theorem 6] shows that η is a convolution of the inter-update delay
distribution FU (x) and inter-download delay distribution FD (x). In turn, since D = T +Q , we can
obtain FD (x) through another convolution of FT (x) and Poisson FQ (x), where rate λ of FQ (x) is
measured as part of the workflow in Figure 9.

6 Experiments

6.1 Setup

To investigate the accuracy of the developed sampling techniques, we registered an Internet
domain and developed a custom authoritative server A, written in C++, that could answer
iterative IPv4 queries from arbitrary Internet hosts. Each DNS record (i.e., a hostname in our
domain) that participated in the experiment was equipped with an update process NU , which

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:22 D. Xiao et al.

changed the returned IP at points {ui }. For passive monitoring, we created another C++ solution
that ran a local DNS server L, which accepted recursive/iterative queries from IPs in our subnet
and resolved them at the authoritative server. Note that A and L were placed on different hosts.

For active sampling, we needed a remote server R that allowed recursive queries, returned
non-fake answers, and complied with the source-provided TTL. To discover such options, we
performed a port-53 UDP scan of the Internet (over 2.8B probed IPs) and found 8M responding
hosts. Out of these, 3.7M (47%) reported no error and 3.2M (41%) supplied correct answers from
A. We then selected a subset of IPs from the last list, probed them for several days to ensure
longevity, tested for TTL compliance, and screened against load-balancers that did not have a
common cache. Out of the surviving options, we picked one at random to be R.

Finally, we added into the mix an observer process and a background-traffic generator whose
purpose was to query L or R depending on the scenario. The observer asked iterative queries
after random delays {Sk }, while the generator sent packets from the query process NQ . With the
exception of network RTTs and various OS scheduling delays, the system functioned close to that
in Figure 2 and allowed controlled experimentation with a known ground-truth.

Unless mentioned otherwise, we kept the average delay between updates E[U] = 20 sec. It
should be noted that E[U] has little impact on the ability of the estimator to recover FU (x); instead,
the predominant factor that matters is ability to collect observations of update age AU (t) from
m unique update intervals, where m is sufficiently large. Informally speaking, as E[U] becomes
longer, the main downside is that it may take longer to observe the same m updates. Considering
technical nuances of DNS, it can be further clarified that larger values of E[U] produce better
results since integer round-off errors in TTL are smaller in comparison to update cycle lengths.
Thus, our experiments should be viewed as focusing on some of the more challenging scenarios,
i.e., with a highly modified source (such as in Akamai CDNs, where 20-sec TTLs are common),
and demonstrating that even in those cases the estimator works quite well. Also note that a
similar observation applies to E[S], E[T], and E[Q], i.e., these parameters impact the measurement
window, but not the accuracy of the estimator.

The values ofT dispatched from the authoritative server were uniform in [1, 19] seconds, which
mimicked Akamai-style churn rates and TTLs. Background clients sent traffic to the cache using
a Poisson NQ with rate λ = 1 query/sec and the active observer utilized exponential S with mean
4 sec. When a variable X needed to be Pareto-distributed, we drew it from F (x) = 1 − (1 + x/β)−α ,
where x ≥ 0. We kept α = 3 and β = 2E[X] throughout all experiments, where E[X] was the
desired mean of the variable.

6.2 Passive Sampling

We start by examining recovery of GU (x) using our implementation of the local resolver L. As
shown in Figure 12(a) for Pareto U , method M6 from [35] correctly identifies the trend of the tail,
but the produced estimate is rather noisy. This approach is not well suited for such small samples
sizes n. Applying the non-concave PASS from (27) yields a much better result in Figure 12(b). Its
main drawback, however, is that conversion of the residual CDF into FU (x) is often impossible in
practice. This is illustrated by the mishmash of points in Figure 13(a). Upgrading to the concave
PASS from (30) leads to an amazingly better outcome in Figure 13(b).

Table 1 compares the runtime of M6, the naive implementation of EM that directly computes
(25)–(27), and our version of PASS in Algorithm 1. Observe that quadratic scaling of M6 quickly
makes it infeasible. In fact, in the last row of the table it requires an extrapolated 79 years to finish.
The naive EM scales much better, although it still does not offer an appealing framework above
100K samples. On the other hand, PASS in the last column delivers blazingly fast results for all

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:23

40 70 130 230 400
10

−2

10
−1

10
0

update interval residual x+β

C
C

D
F

sampled
actual

(a) M6

40 70 130 230 400
10

−2

10
−1

10
0

update interval residual x+β

C
C

D
F

sampled
actual

(b) non-concave EM (ϵ = 10−5)

Fig. 12. Passive estimation of GU (x) (n = 10K samples).

40 70 130 230 400
10

−2

10
−1

10
0

update interval x+β

C
C

D
F

sampled
actual

(a) non-concave EM (ϵ = 10−5)

40 70 130 230 400
10

−3

10
−2

10
−1

10
0

update interval x+β

C
C

D
F

sampled
actual

(b) concave EM (ϵ = 10−5)

Fig. 13. Passive estimation of FU (x) in PASS (n = 10K samples).

Table 1. Runtime in Passive Estimation of GU (x)

n M6 Naive EM Algorithm 1
ϵ = 10−4 ϵ = 10−4

104 0.3 sec 9.4 sec 0.06 sec
105 58 sec 2.9 min 0.13 sec
106 2.2 hours 43 min 0.19 sec
107 – 5.5 hours 0.70 sec
108 – – 5.79 sec
109 – – 27.9 sec

input size up to 1B. While collecting this many observations in passive sampling is not likely in
practice, recall that ACT2 generates a huge number of deterministic bounds [lk , rk] from (48)–(49).
If age AT (s

′
k
) is discretized into 50 bins, a workload with 10K random bounds [Lk ,Rk] produces

500M intervals for concave EM. Therefore, Algorithm 1 is by far the only feasible way to compute
the ACT2 estimator.

Another interesting question is the number of iterations tϵ (n) needed for PASS to converge as
a function of n and ϵ , which is shown in Table 2 together with the runtime. Predictably, smaller
ϵ causes more iterations, but the execution delay does not always increase in proportion to tϵ (n).
For example, the last column has tϵ (n) increasing by 200 times; however, the runtime goes up by
only 39%. This can be explained by the small number of iterations, where the CPU cost is still

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:24 D. Xiao et al.

Table 2. Effect of n and ϵ on PASS (Runtime in Sec)

ϵ n = 103 n = 105 n = 107

tϵ (n) runtime tϵ (n) runtime tϵ (n) runtime

10−2 38 0.0001 5 0.0001 4 0.531
10−3 216 0.015 119 0.016 56 0.546
10−4 562 0.032 538 0.047 289 0.608
10−5 1,488 0.063 1,360 0.124 800 0.749

Table 3. Relative Estimation Error of Simple Parameters

n ACT1 & ACT2 PASS
h E[T] λ h E[T] λ

102 2.94% 16.8% 51.6% 1.58% 4.18% 7.93%
103 0.88% 5.81% 11.5% 0.42% 1.58% 2.79%
104 0.29% 2.40% 3.73% 0.16% 0.41% 0.80%

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

residual T

C
D

F

sampled
actual

(a) GT (x)

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

residual T

de
ns

ity

sampled
actual

(b) дT (x)

Fig. 14. Distribution of TTL in active sampling (n = 10K samples).

dominated by the initial sort. Additionally, notice that larger n allows for faster convergence since
the data is less noisy and the solution is found quicker.

6.3 Active Sampling

We first analyze accuracy of recovery forGT (x),h, E[T], and λ from Figure 9 for which ACT1/ACT2

have a common estimation algorithm. The result for GT (x) and its density дT (x) is given by
Figure 14, which indicates a strong match. Note that usage of concave EM is a must for sampling
the TTL distribution since E[T] = 1/дT (0) is needed for computation of λ. Table 3 displays
the remaining shared parameters and also compares against PASS. Note that the latter method
measures these quantities locally, while the other two sample them remotely. As expected, PASS’s
averages converge quicker, although active measurement still produces solid results. Another
interesting fact is that λ in the fourth column is highly sensitive to errors in h, which comes from
its shape λ = h/(1 − h)/E[T].

We next evaluate estimation accuracy of GU (x). Figure 15 shows the output of ACT1. While
the method appears to handle Pareto and exponential U rather well, there is non-negligible
discrepancy for small x . As the tail ofGU (x) becomes lighter in subfigures (c)-(d), this deviation is
easier to see. On the other hand, ACT2 in Figure 16 recovers these distributions with significantly
better accuracy. A further confirmation of these findings is given by Tables 4–7, where ACT1 not

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:25

40 70 130 230 400 700
10

−3

10
−2

10
−1

10
0

update interval residual x+β

C
C

D
F

sampled
actual

(a) Pareto U

0 50 100 150
10

−3

10
−2

10
−1

10
0

update interval residual x

C
C

D
F

sampled
actual

(b) exponential U

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

update interval residual x

C
C

D
F

sampled
actual

(c) uniform U

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

update interval residual x

C
C

D
F

sampled
actual

(d) constant U

Fig. 15. Tail of GU (x) in ACT1 (n = 10K samples).

40 70 130 230 400 700
10

−3

10
−2

10
−1

10
0

update interval residual x+β

C
C

D
F

sampled
actual

(a) Pareto U

0 50 100 150
10

−3

10
−2

10
−1

10
0

update interval residual x

C
C

D
F

sampled
actual

(b) exponential U

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

update interval residual x

C
C

D
F

sampled
actual

(c) uniform U

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

update interval residual x

C
C

D
F

sampled
actual

(d) constant U

Fig. 16. Tail of GU (x) in ACT2 (n = 10K samples).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:26 D. Xiao et al.

Table 4. Relative Error under Pareto U

n ACT1 ACT2 PASS
p f p f p f

102 14.4% 12.8% 6.5% 5.8% 6.3% 5.6%
103 12.6% 11.2% 1.9% 1.8% 1.9% 1.7%
104 12.2% 10.8% 0.5% 0.4% 0.7% 0.6%

Table 5. Relative Error under Exponential U

n ACT1 ACT2 PASS
p f p f p f

102 16.2% 14.4% 5.6% 5.3% 5.0% 4.4%
103 14.3% 12.6% 1.8% 1.6% 1.7% 1.5%
104 13.9% 12.3% 0.6% 0.5% 0.6% 0.5%

Table 6. Relative Error under Uniform U

n ACT1 ACT2 PASS
p f p f p f

102 18.3% 16.0% 5.0% 4.8% 4.0% 3.4%
103 16.1% 14.2% 1.7% 1.5% 1.2% 1.1%
104 15.8% 13.9% 0.5% 0.4% 0.5% 0.5%

Table 7. Relative Error under Constant U

n ACT1 ACT2 PASS
p f p f p f

102 19.2% 17.0% 5.8% 5.2% 3.8% 3.4%
103 16.9% 14.8% 1.8% 1.6% 1.1% 1.0%
104 16.8% 14.7% 1.1% 0.8% 0.4% 0.4%

Table 8. Measurement-Delay

Error under Pareto U

n ACT1 & ACT2 PASS
102 3.68% 3.92%
103 1.12% 1.24%
104 0.35% 0.39%
105 0.11% 0.12%
106 0.04% 0.04%

only suffers from poor estimation accuracy, but also fails to improve with larger n. This is caused
by a non-diminishing bias in GU (x).

Analysis of error for the measurement delay τn/n is shown in Table 8, where the passive case
uses E[T + Q] as the convergence point of τn/n and active employs the result of Theorem 5.1.
Note that PASS requires on average 11 sec per usable sample, while the other two methods spends
21% more (i.e., 13.3 sec). An experiment with n = 10K samples consumes an expected 30.5 hours
in the former case and 36.9 hours in the latter. The active-probing bandwidth (i.e., 3.3 packets per

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:27

sample of AU) is negligible and does not contribute to the runtime. As further shown in the table,
the derived cost models are quite accurate, even for small n.

Overall, concave PASS emerges as hands-down the best tool for sampling update dynamics
and staleness in single-blind scenarios (i.e., only the update process is hidden) and ACT2 does the
same in double-blind (i.e., both update/download processes are invisible to the observer).

7 Conclusion

We presented a general framework for modeling freshness in TTL-based caching systems, pro-
posed three novel techniques for remotely measuring this metric in the current Internet, and im-
proved the performance of existing update-sampling algorithms. Even under random TTL, our
most advanced method can recover all unknown parameters of the system (i.e., hit and request rate,
update/TTL distributions, and freshness), without requiring any change to the DNS infrastructure.

References

[1] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje Ohlman. 2012. A survey of

information-centric networking. IEEE Communications Magazine 50, 7 (Jul. 2012), 26–36.

[2] Hüseyin Akcan, Torsten Suel, and Hervé Brönnimann. 2008. Geographic web usage estimation by monitoring DNS

caches. In LocWeb.

[3] Sadiye Alici, Ismail Sengor Altingovde, Rifat Ozcan, B. Barla Cambazoglu, and Özgür Ulusoy. 2012. Adaptive

time-to-live strategies for query result caching in web search engines. In ECIR.

[4] Hussein A. Alzoubi, Michael Rabinovich, and Oliver Spatscheck. 2013. The anatomy of LDNS clusters: Findings and

implications for web content delivery. In WWW. 83–94.

[5] Omri Bahat and Armand M. Makowski. 2005. Measuring consistency in TTL-based caches. Performance Evaluation

62, 1–4 (Oct. 2005), 439–455.

[6] Daniel S. Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014. Exact analysis of TTL cache networks.

Performance Evaluation 79 (Apr. 2014), 2–23.

[7] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize: Orchestrating the hot object

memory cache in a content delivery network.. In NSDI. 483–498.

[8] Roi Blanco, Edward Bortnikov, Flavio Junqueira, Ronny Lempel, Luca Telloli, and Hugo Zaragoza. 2010. Caching

search engine results over incremental indices. In ACM SIGIR. 82–89.

[9] Mark Brown. 1980. Bounds, inequalities, and monotonicity properties for some specialized renewal processes. The

Annals of Probability 8, 2 (1980), 227–240.

[10] Thomas Callahan, Mark Allman, and Michael Rabinovich. 2013. On modern DNS behavior and properties. ACM CCR

43, 3 (Jul. 2013), 7–15.

[11] Berkant Barla Cambazoglu, Flavio P. Junqueira, Vassilis Plachouras, Scott Banachowski, Baoqiu Cui, Swee Lim, and

Bill Bridge. 2010. A refreshing perspective of search engine caching. In WWW. 181–190.

[12] Valeria Cardellini, Michele Colajanni, and S. Yu Philip. 1999. DNS dispatching algorithms with state estimators for

scalable Web-server clusters. World Wide Web 2, 3 (1999), 101–113.

[13] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. 1999. Dynamic load balancing on web-server systems. IEEE

Internet Computing 3, 3 (1999), 28–39.

[14] Devarshi Chatterjee, Zahir Tari, and Albert Zomaya. 2005. A task-based adaptive TTL approach for web server load

balancing. In ISCC. 877–884.

[15] Chen Chen, Stephanos Matsumoto, and Adrian Perrig. 2015. ECO-DNS: Expected consistency optimization for DNS.

In IEEE ICDCS. 256–267.

[16] Xin Chen, Haining Wang, Shansi Ren, and Xiaodong Zhang. 2006. DNScup: Strong cache consistency protocol for

DNS. In IEEE ICDCS.

[17] K. L. Chung. 1974. A Course in Probability Theory (2nd ed.). Academic Press.

[18] Edith Cohen and Haim Kaplan. 2001. The age penalty and its effect on cache performance. In USENIX USITS. 73–84.

[19] Edith Cohen and Haim Kaplan. 2001. Aging through cascaded caches: Performance issues in the distribution of web

content. In ACM SIGCOMM. 41–53.

[20] Edith Cohen and Haim Kaplan. 2001. Refreshment policies for web content caches. In IEEE INFOCOM. 1398–1406.

[21] Edith Cohen and Haim Kaplan. 2003. Proactive caching of DNS records: Addressing a performance bottleneck.

Computer Networks 41, 6 (Oct. 2003), 707–726.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

13:28 D. Xiao et al.

[22] Michele Colajanni and Philip S. Yu. 2002. A performance study of robust load sharing strategies for distributed

heterogeneous web server systems. IEEE Transactions on Knowledge and Data Engineering 14, 2 (2002), 398–414.

[23] Yuguang Fang, Zygmunt J. Haas, Ben Liang, and Yi-Bing Lin. 2004. TTL prediction schemes and the effects of

inter-update time distribution on wireless data access. Wireless Networks 10, 5 (Sep. 2004), 607–619.

[24] Kassem Fawaz and Hassan Artail. 2013. DCIM: Distributed cache invalidation method for maintaining cache

consistency in wireless mobile networks. IEEE Transactions on Mobile Computing 12, 4 (Apr. 2013), 680–693.

[25] Nicaise Choungmo Fofack and Sara Alouf. 2013. Modeling modern DNS caches. In ValueTools.

[26] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2014. Performance evaluation of

hierarchical TTL-based cache networks. Computer Networks 65 (Jun. 2014), 212–231.

[27] Christine Fricker, Philippe Robert, and James Roberts. 2012. A versatile and accurate approximation for LRU cache

performance. In ITC. 8:1–8:8.

[28] Hazem Gomaa, Geoffrey G. Messier, and Robert Davies. 2015. Hierarchical cache performance analysis under

TTL-based consistency. IEEE/ACM Transactions on Networking 23, 4 (Aug. 2015), 1190–1201.

[29] Y. Thomas Hou, Jianping Pan, Bo Li, and Shivendra S. Panwar. 2004. On expiration-based hierarchical caching

systems. IEEE JSAC 22, 1 (Jan. 2004), 134–150.

[30] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and Dan Boneh. 2007. Protecting browsers from DNS

rebinding attacks. In ACM CCS.

[31] Jaeyeon Jung, Arthur W. Berger, and Hari Balakrishnan. 2003. Modeling TTL-based internet caches. In IEEE

INFOCOM. 417–426.

[32] S. Kaul, M. Gruteser, V. Rai, and J. Kenney. 2011. Minimizing age of information in vehicular networks. In IEEE

SECON. 350–358.

[33] Jeong-Joon Lee, Kyu-Young Whang, Byung Suk Lee, and Ji-Woong Chang. 2002. An update-risk based approach to

TTL estimation in web caching. In IEEE WISE. 21–29.

[34] X. Li, D. B. H. Cline, and D. Loguinov. 2016. On sample-path staleness in lazy data replication. IEEE/ACM Transactions

on Networking 24, 5 (Oct. 2016), 2858–2871.

[35] Xiaoyong Li, Daren B. H. Cline, and Dmitri Loguinov. 2017. Temporal update dynamics under blind sampling.

IEEE/ACM Transactions on Networking 25, 1 (Feb. 2017).

[36] Guoxin Liu, Haiying Shen, Harrison Chandler, and Jin Li. 2014. Measuring and evaluating live content consistency

in a large-scale CDN. In IEEE ICDCS. 268–277.

[37] Xiaobo Ma, Junjie Zhang, Zhenhua Li, Jianfeng Li, Jing Tao, Xiaohong Guan, John C. S. Lui, and Don Towsley. 2015.

Accurate DNS query characteristics estimation via active probing. Journal of Network and Computer Applications 47

(Jan. 2015), 72–84.

[38] Valentina Martina, Michele Garetto, and Emilio Leonardi. 2014. A unified approach to the performance analysis of

caching systems. In IEEE INFOCOM. 2040–2048.

[39] Jarmo Mölsä. 2004. Mitigating DoS attacks against the DNS with dynamic TTL values. In NordSec. 118–124.

[40] Chris Olston and Jennifer Widom. 2002. Best-effort cache synchronization with source cooperation. In ACM SIGMOD.

73–84.

[41] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy, and Srinivasan Seshan. 2004. On the

responsiveness of DNS-based network control. In ACM IMC. 21–26.

[42] Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, and Niels Provos. 2008. Peeking through the cloud: DNS-based

estimation and its applications. In ACNS.

[43] S. Resnick. 1999. A Probability Path. Birkhäuser.

[44] Fethi Burak Sazoglu, B. Barla Cambazoglu, Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. 2013. Strategies

for setting time-to-live values in result caches. In ACM CIKM. 1881–1884.

[45] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On measuring the client-side DNS

infrastructure. In ACM IMC. 77–90.

[46] Haiying Shen. 2010. IRM: Integrated file replication and consistency maintenance in P2P systems. IEEE Transactions

on Parallel and Distributed Systems 21, 1 (Jan. 2010), 100–113.

[47] Kristinn Sigurosson. 2005. Incremental crawling with Heritrix. In IWAW.

[48] Yiu Fai Sit, Francis C. M. Lau, and Cho-Li Wang. 2005. On the cooperation of web clients and proxy caches. In IEEE

ICPADS. 264–270.

[49] Raghav Srinivasan, Chao Liang, and Krithi Ramamritham. 1998. Maintaining temporal coherency of virtual data

warehouses. In IEEE RTSS.

[50] Xueyan Tang, Jianliang Xu, and Wang-Chien Lee. 2008. Analysis of TTL-based consistency in unstructured

peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems 19, 12 (Dec. 2008), 1683–1694.

[51] Bruce W. Turnbull. 1976. The empirical distribution function with arbitrarily grouped, censored and truncated data.

Journal of the Royal Statistical Society 38, 3 (1976), 290–295.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

Estimating DNS Source and Cache Dynamics under Interval-Censored Age Sampling 13:29

[52] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. 2003. Inferring relative popularity of internet applications by

actively querying DNS caches. In ACM IMC. 78–90.

[53] Joel L. Wolf, Mark S. Squillante, Philip S. Yu, Jay Sethuraman, and L. Ozsen. 2002. Optimal crawling strategies for

web search engines. In WWW. 136–147.

[54] R. W. Wolff. 1989. Stochastic Modeling and the Theory of Queues. Prentice Hall.

[55] D. Xiao, X. Li, D. B. H. Cline, and D. Loguinov. 2018. Estimation of DNS source and cache dynamics under

interval-censored age sampling. In IEEE INFOCOM. 1358–1366.

[56] Yaming Yu. 2011. Concave renewal functions do not imply DFR inter-renewal times. Journal of Applied Probability

48, 2 (Jun. 2011), 583–588.

Received 31 January 2024; revised 11 November 2024; accepted 8 January 2025

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 3, Article 13. Publication date: May 2025.

