
On Asymptotic Cost of Triangle Listing in Random Graphs

Di Xiao, Yi Cui, Daren B.H. Cline, and Dmitri Loguinov
Texas A&M University, College Station, TX 77843 USA

{di, yicui, dmitri}@cse.tamu.edu, dcline@stat.tamu.edu

ABSTRACT
Triangle listing has been a long-standing problem, with many
heuristics, bounds, and experimental results, but not much
asymptotically accurate complexity analysis. To address
this issue, we introduce a novel stochastic framework, based
on Glivenko-Cantelli results for functions of order statistics,
that allows modeling cost of in-memory triangle enumera-
tion in families of random graphs. Unlike prior work that
usually studies the O(.) notation, we derive the exact limits
of CPU complexity of all vertex/edge iterators under arbi-
trary acyclic orientations as graph size n → ∞. These re-
sults are obtained in simple closed form as functions of the
degree distribution. This allows us to establish optimal ori-
entations for all studied algorithms, compare them to each
other, and discover the best technique within each class.

1. INTRODUCTION
With an ever increasing flood of data, it is no longer suffi-

cient just to process input correctly; instead, the underlying
algorithms must exhibit scalability and high performance
when operating on enormous datasets. This becomes quite
evident in graph mining, which aims to discover interesting
patterns within the connectivity network of participating
agents. One specific problem that has recently gained at-
tention [3], [14], [18], [22], [25] is enumeration of small sub-
graphs whose occurrence in nature is much more frequent
than in classical random graphs [5], [19].

The most widely considered subgraphs are triangles, which
have applications in numerous areas – databases, computer
graphics, information retrieval, graph theory, algorithm com-
plexity, and bioinformatics [4], [6], [7], [10], [16], [20], [24],
[31], [37], [38], [40], [43]. Triangle listing has a four-decade
history [23]; however, even for in-memory operation, this
problem remains poorly understood, both mathematically
and computationally. Open issues include how to accurately
model the overhead, optimally arrange the nodes, select the
best neighbor-traversal pattern, and minimize the runtime.
Our goal in this paper is to shed light on these questions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4198-1/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3034786.3034790

1.1 Deterministic Graphs
Assume G = (V,E) is a simple undirected graph with n

nodes and m edges. Triangle listing involves a large number
of comparisons during verification of edge existence. Ex-
pressing this complexity as a function of n and/or m has
captivated the community for a long time [13], [28].

Exhaustively checking all 3-node subsets is the most ob-
vious solution, but its ≈ n3/6 overhead is far from optimal
unless G is complete. The first widely known algorithm with
O(m1.5) cost is [23]; however, it requires n2 RAM to store
the adjacency matrix, certainly an impossibility for large
graphs. An improvement to O(m) space is [13], which vis-
its nodes in descending order of degree and removes them
from the graph. The best result about its CPU complex-
ity is O(δm), where δ is the arboricity of G, i.e., minimum
number of edge-disjoint spanning forests into which G can
be decomposed. Unfortunately, δ is an elusive quantity, only
known to be O(1) for trees and O(

√
m) otherwise.

In subsequent literature, two competing algorithms emer-
ged – vertex iterator and edge iterator – which we review in
the next section. Without enforcing order among the nodes
in each triangle, these methods examine Θ(

∑n
i=1 d

2
i) candi-

date edges, where di is the degree of node i. Following [2],
the majority of subsequent implementations run node/edge
iterators after performing some type of acyclic orientation
on G, which is a technique that assigns direction to each
edge and ensures that no cycles are present in the result-
ing structure. Experimentally, it was observed that cer-
tain orientations reduced the runtime; however, their usage
did not lead to any improvement to the asymptotic bound
O(δm) = O(m1.5) [2], [28].

Each acyclic orientation on G can be viewed as some per-
mutation θn on V , where an undirected edge (i, j) becomes
i → j if and only if θn(i) > θn(j). After the shuffle, let
the out-degree of the node in position i be Xi(θn) and its
total degree be di(θn). Intuitively, orientations reduce over-
head because they replace second moments of di with those
of Xi(θn), di(θn) − Xi(θn), or some combination thereof.
Since the directed degree can be made significantly smaller,
the resulting cost is orders of magnitude better.

In general, per-node complexity of triangle enumeration
can be expressed using

cn(M, θn) =
1

n

n
∑

i=1

f(Xi(θn), di(θn)), (1)

where f is some non-linear function that depends on the
listing method M. The main challenge with directly mini-
mizing (1) is the likelihood that building such permutations

1

http://dx.doi.org/10.1145/3034786.3034790

is NP-hard. This intuition comes from the relationship be-
tween acyclic orientations and graph-coloring problems [26].
While optimization of (1) has not been considered before,
there exist so-called degenerate orientations that minimize
the largest out-degree, i.e., minθn maxi Xi(θn). This can be
done in O(m) time [2], [29]; however, compared to simpler
strategies, the negligible improvement in cost often fails to
justify the extra computation [32], [33].

As a result, attaining the lowest sum in (1) for a given
deterministic graph may be a moot objective. Instead, more
insight can be gleaned from the analysis of random graphs,
which is our next topic.

1.2 Stochastic Graphs
Assume F (x) is a CDF on integers in [1,∞), function tn →
∞ is monotonically increasing, and Fn(x) = F (x)/F (tn) is
the original distribution truncated to the range [1, tn]. Now
suppose Dn = (Dn1, . . . , Dnn) is an iid (independent and
identically distributed) sequence drawn from Fn(x), which
we assume is graphic with probability 1 − o(1), or can be
made such by removal of one edge. This allows construc-
tion of a random graph Gn = (Vn, En) that realizes Dn.
Since (1) is now a random variable, performance analysis
focuses on its expectation over all Gn, which we write as
E[cn(M, θn)|Dn].

Let Dn ∼ Fn(x) be a random variable with the same dis-
tribution as the degree in Gn. Early results [28] with Pareto
F (x) = 1 − (1 + ⌊x⌋/β)−α typically bound the expected
cost using a growing function of n. Recent work [9] ob-
tains tighter bounds by focusing on a particular version of
vertex iterator, which we call T1, and using the descending-
degree orientation θD. Assuming tn =

√
n, they derive that

E[cn(T1, θD)|Dn] converges as n→∞ to

E[(Z2
1 − Z1)Z2Z31min(Z2,Z3)>Z1

]

2E2[D]
, (2)

where D,Z1, Z2, Z3 ∼ F (x) are iid variables and 1A is an
indicator variable of event A. While useful in general, these
results are limited to a single method T1 and one specific
permutation θD. Due to the complexity of derivation in
[9], it is unclear if the same theoretical techniques can be
extended into more general scenarios.

As the field stands today, it remains unknown which ori-
entations are fundamentally better than others, under what
conditions these advantages hold, whether orientations chan-
ge the asymptotics of complexity or just the constants inside
O(.), and how the degree distribution impacts the overhead
of alternative methods. We address these questions next.

1.3 Technical Results
To understand the overhead of triangle listing, our first

contribution is to dissect the various ways that vertex and
edge iterators can be executed in an acyclic digraph. We
find that there are a total of 18 different neighbor-search
patterns, but only four of them – which we call T1, T2,
E1, and E4 – are non-isomorphic when considering CPU
complexity. The former two are vertex iterators, while the
latter are scanning edge iterators. We discuss how to effi-
ciently implement them and outline a three-step algorithmic
framework that does exactly that.

Conditioning on the degree sequence Dn, our second con-
tribution is to model E[Xi(θn)|Dn] and introduce a family of
asymptotically accurate approximations that admit simple

analysis of cost. We show that under certain constraints on
the maximum degree and for sufficiently large n all methods
have expected overhead in the form of

E[cn(M, θn)|Dn] ≈ 1

n

n
∑

i=1

g(di(θn))h(qi(θn)), (3)

where g(x) = x2 − x, qi(θn) =
∑i−1

j=1 dj(θn)/
∑n

k=1 dk and h
is a function that depends onM.

Our third contribution is to analyze convergence of (3) us-
ing Glivenko-Cantelli results for functions of order statistics
[39], [44] and obtain closed-form limits for all four methods
under both ascending/descending-degree permutations. For
example, vertex iterator T1 under θD converges to

lim
n→∞

E[cn(T1, θD)|Dn] =
E[g(D)(1− J(D))2]

2
, (4)

where D ∼ F (x) and J(x) = 1/E[D]
∫ x

0
ydF (y) is the spread

distribution from renewal theory. The result in (4) is finite
iff α > 4/3, which agrees with the conclusion of [9], [12].
While (2) captures the same limit, our derivation and result
are both much simpler.

To understand the effect of θn, our fourth contribution
is to develop a novel framework for modeling the limit of
permutations. To this end, suppose u, v ∈ [0, 1] are con-
stants. We define sequence {θn}∞n=1 to be admissible if
P (θn(⌈un⌉) < vn) converges to a continuous, measure-preser-
ving probability kernel K(v; u). Letting ξ(u) be a (possibly
degenerate) random variable with distribution K(v;u), we
show that (3) converges for any admissible sequence of per-
mutations to

lim
n→∞

E[cn(M, θn)|Dn] = E[g(D)h(ξ(J(D)))]. (5)

Armed with (5), our fifth contribution is to analyze op-
timality of θn for the algorithms under consideration. We
establish that the expected cost of both T1 and E1 is min-
imized using the descending-degree permutation. Their op-
timal complexity is respectively (4) and

lim
n→∞

E[cn(E1, θD)|Dn] =
E[g(D)(1− J2(D))]

2
. (6)

Method T2 requires a new ordering we call Round-Robin
(RR), which spreads large degree towards the outside of the
range [1, n]. Its best cost is half of E1’s in (6). On the other
hand, E4 is optimized by the Complementary Round-Robin
(CRR) permutation, which positions large degree towards
the middle. If θn is optimal for a givenM, we also explain
how to construct its opposite that achieves the worst cost.

Comparison across the four methods is our final contribu-
tion. We first prove that T1 is faster than T2 and E1 is
better than E4 for all F (x). However, the choice between
T1 and E1 must take into account additional factors beyond
cost – the speed of elementary comparison instructions on
target hardware and in a specific graph Gn. This tradeoff
arises because scanning edge iterators perform as many op-
erations as both vertex iterators combined, i.e., cn(E1, θn) =
cn(T1, θn)+cn(T2, θn), but at significantly higher speed [17].
The decision is simple only for α ∈ (4/3, 1.5] and n → ∞,
where T1 always beats E1 in the limit (i.e., the former has
finite cost, while the latter has infinite). Although it is com-
monly believed that vertex and edge iterators have the same
asymptotic complexity [28], [33], we prove that this is not
true for α ∈ (4/3, 1.5] and scanning edge iterators.

2

y z x

1 3 2

…

out-list

(a) T1

y z

2 1 3

… … x

out-list in-list

(b) T2

z x y

2 3 1

…

in-list

(c) T3

y z x

1 2 3

…

out-list

(d) T4

y z

3 1 2

… … x

out-list in-list

(e) T5

z x y

3 2 1

…

in-list

(f) T6

Figure 1: Search order in vertex iterator.

We conclude with developing an algorithm for efficient
computation of our models, examining their accuracy under
finite n, and highlighting the impact of Pareto α on the
scaling behavior of cost.

2. UNIFYING FRAMEWORK
In this section, we condition on G and treat it as deter-

ministic. We start by generalizing all previous work under a
novel umbrella of 18 baseline algorithms and discussing how
to extract the highest performance out of them.

Throughout the paper, we assume that adjacency lists in
graphs are sorted ascending by node ID, which corresponds
to left-to-right orientation in the figures. The omitted proofs
can be found in [42].

2.1 Preprocessing
Each triangle △xyz can be listed in 3! = 6 equivalent

ways by permuting its node sequence (x, y, z). To avoid this
redundancy and improve efficiency, it is common [3], [22],
[25], [34] to consider only triangles that satisfy some global
transitive order O, which results in exactly one listing per
actual triangle. Three most-commonly used orders are ran-
dom (e.g., hash-based) [14], [23], descending-degree [3], [22],
[28], [33], and ascending-degree [34]. We propose that such
techniques be implemented by a three-step process – 1) sort
the nodes by O and sequentially assign IDs from sequence
(1, 2, . . . , n); 2) create a directed graph in which the out-
neighbors of each y have smaller labels and in-neighbors have
larger, which is denoted by y → x and y ← z, respectively;
and 3) in the directed graph, list triangles in ascending order
of node ID, i.e., x < y < z.

The first step, called relabeling [28], [34], requires sorting
n items using O and rewriting the labels of all edges in G.
The second step, known as orientation [22], [33], splits each
list of undirected neighbors N(y) into in/out sets N−(y) and
N+(y), respectively. These two steps can be modeled by a
permutation θn : V → V that always starts with ascending-
degree order and maps each node in position i to a label
θn(i). After re-writing the IDs, i’s out-list consists of original
neighbors j whose permuted label precedes that of i, i.e.,
θn(j) < θn(i). In the directed graph G(θn) = (V,E(θn)),
suppose i has out-degree Xi(θn), in-degree Yi(θn), and total
degree di(θn) = Xi(θn) + Yi(θn).

While prior work is mostly concerned with the third step,
i.e., triangle listing, we begin by noting that deciding on
θn is an important factor for runtime, despite not having
been studied in much detail before. With n! possible per-
mutations, it is unclear which of them produces the smallest
overhead, how to approach modeling complexity of triangle
listing in a relabeled/oriented graph, and which of the meth-

T1 T3

T2

reverse θn

reverse θn

T4 T6

swap order

of last two

nodes

swap order

of last two

nodes

T5

reverse θn

or swap order of

last two nodes

Figure 2: Vertex-iterator equivalence classes.

ods are better under various circumstances. The rest of the
section lays a foundation for addressing these issues.

2.2 Vertex Iterator
Vertex iterator is a classical algorithm [18], [22], [33], [36]

that visits each node and verifies edge existence between all
pairs of non-redundant neighbors. For an oriented graph
G(θn), vertex iterator admits six distinct search patterns,
each specifying a different order in which the nodes (x, y, z)
are traversed.

In the first pattern, which we call T1, the algorithm con-
siders the first node to be the largest in the triangle. This
is illustrated in Figure 1(a), where the search starts from z,
continues to y < z, and finishes with x < y. This method
generates candidate edges y → x, which are checked against
E(θn) using a hash table. Each match indicates a unique
triangle △xyz. Assuming the overhead is measured in the
volume of tuples (y, x), the per-node cost of T1 is

cn(T1, θn) =
1

n

n
∑

i=1

Xi(θn)(Xi(θn)− 1)

2
. (7)

The second search order, which we call T2, treats the ini-
tial node as being neither the smallest, nor the largest in
the triangle. The corresponding technique, shown in Figure
1(b), verifies existence of edges z → x, where pairs (z, x)
sweep all possible combinations of y’s in and out neighbors.
The number of such tuples is given by

cn(T2, θn) =
1

n

n
∑

i=1

Xi(θn)Yi(θn). (8)

As sketched in Figure 1(c), method T3 starts from the
smallest node x and examines presence of edges z → y be-
tween all pairs of in-neighbors such that y < z. Its overhead
is similar to that of T1, but with Xi(θn) and Yi(θn) trading
places, i.e.,

cn(T3, θn) =
1

n

n
∑

i=1

Yi(θn)(Yi(θn)− 1)

2
. (9)

The remaining three methods in the figure (i.e., T4-T6)
change the order in which the last two neighbors are visited;
however, their cost formulas are identical to those of the
counter-parts above them. Symmetry of T1 and T3 suggests
even wider equivalence classes, which are groups of methods
that have the same complexity and speed of elementary op-
erations. Let the reverse permutation θ′n : V → V be such
that θ′n(i) = n+ 1− θn(i) and consider the following.

Proposition 1. Reversing the permutation results in the
overhead function swapping Xi(θn) with Yi(θn).

Since cn(T1, θn) = cn(T3, θ
′
n), we conclude that T1 and

T3 are indeed equivalent. In addition, T2 and T5 reverse

3

x?

y

3 remote out-list

y z

1

local

out-list

x?
2

…

(a) E1

x?

y z

2 1

…

local

out-list

in-list

y z

3

remote

out-list

x?

(b) E2

z?

y

3

remote

in-list

y x

1

local

in-list

z?
2

…

(c) E3

x z

1

local

out-list

y?

z

remote in-list

y?

2

x

3

…

(d) E4

z?

y

1

local

in-list

x

2

…

out-list

y x

3 remote in-list

z?

(e) E5

x z

3

remote

out-list

y?

z

local in-list

y?
2

x

1

…

(f) E6

Figure 3: Search order in SEI.

E1 E2 E3 E4 E5 E6

Local cost T1 T2 T3 T1 T2 T3

Remote cost T2 T1 T2 T3 T3 T1

Table 1: Intersection complexity of SEI.

into each other and thus form a standalone equivalence class.
This is schematically shown in Figure 2. From this point on,
we dismiss T3-T6 and keep only T1-T2 under consideration.

2.3 Edge Iterator
Instead of generating candidate pairs and checking them

later, it is possible to traverse each directed edge and in-
tersect the sets of neighbors at both incident vertices [14],
[28], [33]. A scanning edge iterator (SEI) sequentially rolls
through both neighbor lists, performing comparison using
two pointers. An alternative, which we call lookup-based
edge iterator (LEI), intersects using hash tables.

We start analysis with SEI, which also admits six search
orders in the oriented graph. Using Figure 3(a), algorithm
E1 visits node z, examines each out-neighbor y, and inter-
sects N+(y) with N+(z) to discover nodes x that complete
triangle △xyz. Note that intersection at z does not involve
all of its out-neighbors; only those smaller than y (shown
with a grid pattern). This is a consequence of the x < y < z
relationship and transitivity of O.

The cost of SEI is based on the number of comparisons
in list intersection. We split this overhead into local, which
takes into account scans over z’s out-neighbor list N+(z),
and remote, which does the same for y.

Proposition 2. The CPU cost of E1 is given by cn(E1,
θn) = cn(T1, θn)+ cn(T2, θn), where the former term is local
overhead and the latter is remote.

The remaining SEI methods E2-E6 in Figure 3 are self-
explanatory. Their complexity is shown in Table 1, which
covers all ordered ways to choose local and remote overhead
from the first three vertex-iterator options. It should be
noted that LEI has the same six algorithms, which we call
L1-L6, except that it hashes the local neighbor list of the
first visited node and performs lookups against it for all re-

L1 L2 L3 L4 L5 L6

Cost T2 T1 T2 T3 T3 T1

Table 2: Lookup complexity of LEI.

E2 E5

E4

reverse θn

reverse θn

E1 E3

swap local

& remote

swap local

& remote

E6

reverse θn

or swap local &

remote

Figure 4: SEI equivalence classes.

E1 E4 T1 T2

vertex iterator edge iterator

Figure 5: Competing algorithms.

mote nodes [17]. Complexity of populating the hash tables
is

∑n
i=1 Xi(θn) =

∑n
i=1 Yi(θn) = m, while the lookup over-

head is given by Table 2 (which is also the second row of
Table 1). Since LEI can be reduced to vertex iterator (in
terms of both operation speed and cost), there is no need to
consider it separately in the remainder of the paper.

Complexity of scanning edge iterator combines two terms,
where the equivalence classes are built either by reversing
the permutation or swapping local/remote overhead. The
result is shown in Figure 4, where we again find just two
distinct families of algorithms. However, SEI requires more
careful pruning than vertex iterator since additional factors
must be taken into account, which we discuss next.

For E5, notice that the starting location of the intersec-
tion (i.e., y) is buried in the middle of x’s in-neighbor list.
Therefore, compared to E1-E3, this method requires either
an extra binary search through N−(x) or intersection back-
wards (on the Intel i7-2600K, a backwards search is 26%
slower than forward, which may be explained by poor CPU
prefetch and/or less efficient auto-vectorization in the com-
piler). For similar reasons, E6 is not competitive against E4.
Next, reversal of θn has no impact on runtime, which means
that E1 and E3 are identical in all aspects. However, decid-
ing between E1 and E2 requires modeling I/O complexity
under a specific graph-partitioning scheme, which is a topic
for another paper [17]. For now, we drop E2-E3 and obtain
the four fundamental techniques in Figure 5.

2.4 Discussion
We now translate prior techniques into our notation. The

oldest method for which this mapping is possible is [13],
which proposes a variation of L3 where acyclic orientation
holds only for two of the three edges in each triangle. As
a result, its complexity is cn(E1, θn) rather than cn(T2, θn).
Incomplete orientation is remedied in [33] using a dynami-
cally growing set of vectors to implement E2 under the name
Forward. This is extended to Compact Forward in [28] by
removing the vector constraint. In more recent studies, T1

appears in [22], [25], [36], E1 in [3], [21], [35], E3 in [14], and
E5 in [34]. At least six methods, i.e., T1-T3, E1, E3, E4 are
identified in [32].

4

Family of algorithms Operations Speed
Vertex iterator Hash table 19
Lookup edge iterator (LEI) Hash table 19
Scanning edge iterator (SEI) SIMD intersection 1, 801

Table 3: Single-core speed (million nodes/sec) using
an Intel i7-3930K @ 4.4 GHz.

The majority of literature [3], [21], [22], [25], [33], [35],
[36] omits relabeling and performs only orientation. Con-
sequently, nodes in each of the directed neighbor lists are
not ordered in any particular way against each other, which
doubles the cost of all terms that depends on T1 or T3. For
example, T1 must check all pairs x, y ∈ N+(z) instead of
only those with x < y. Similarly, scanning of the local list
in E1 cannot stop at y and must traverse the entire N+(z).
On the other hand, T2 takes advantage of preprocessing that
separates in/out-neighbors into different sets, which allows
it to keep complexity unchanged.

A limited number of studies [28], [33], [34] utilize relabel-
ing; however, they omit orientation. In this setting, some
of the methods require a binary search in remote neighbor
lists to locate the boundary between the candidates larger
and smaller than the current node. Vertex iterators T1 and
T3 are not impacted, but T2 must perform an additional
ζ =

∑n
i=1 log2 di random memory accesses. Scanning edge

iterators E1/E2 use the same ζ extra jumps, while E3/E5

and E4/E6 take a larger performance hit – one binary search
per edge. This adds up to

∑n
i=1 Xi log2 di or

∑n
i=1 Yi log2 di

unnecessary memory lookups depending on the method. Us-
ing backwards-sorted lists, this overhead can be reduced to
ζ for E3/E5, but not for E4/E6. Besides slowing down the
computation, binary search may be impossible altogether in
certain graphs (e.g., with compressed neighbor lists).

Our three-step framework ensures the smallest cost within
each class of techniques, while imposing no restrictions on
adjacency lists. The 18 introduced algorithms are converted
to pseudocode and benchmarked in [17]. Table 3 summa-
rizes these results using neighbor lists of sufficiently large
size (i.e., best-case scenario for intersection). Even though
SEI executes up to 95 times faster per node, Table 1 show
that it requires more operations. To understand this trade-
off, define wn to be the ratio of the lowest cost in SEI to that
in the other two families of algorithms. It then follows that
SEI, assuming it can match the speed in Table 3 over the
adjacency lists of Gn(θn), has a better runtime on modern
Intel CPUs iff wn < 95. Since both instruction speed and
wn are functions of Gn(θn), this decision cannot be made
unless the specific graph (or at least its degree distribution)
is known. The only exception is n → ∞ and graphs with
wn →∞, where SEI is always slower in the limit. We iden-
tify and discuss these cases later in the paper.

3. MODELING OUT-DEGREE
We now examine how to model the out-degree Xi(θn) in

a family of random graphs Gn(θn).

3.1 Degree Growth
Recall that F (x) is some fixed CDF, tn → ∞ is a mono-

tonic function, and Fn(x) = F (x)/F (tn) is a truncated dis-
tribution. Suppose D ∼ F (x) represents the limiting degree
and let Dn = (Dn1, . . . , Dnn) be an iid degree sequence

drawn from Fn(x). Note that tn ≤ n − 1 is required for
Dn to be graphic (i.e., realizable by a graph). For the re-
sults that follow, it is convenient to sort Dn in ascending
order, produce a new sequence An = (An1, . . . , Ann), where
Ani ≤ An,i+1, and apply permutation to the result. Then,
our earlier notation di(θn) refers to Anj such that θn(j) = i.

As we show below, the cost of triangle listing depends on
one crucial parameter – the probability of edge existence
between each pair of nodes (i, j) in Gn. We assume a tra-
ditional random-graph model that realizes a given degree
sequence [8], [30], in which this metric is proportional to the
product of corresponding degrees [1], [15]

pij(θn) ≈ di(θn)dj(θn)

2m
. (10)

For this to be a probability, the numerator must not ex-
ceed the denominator, which we formalize next.

Definition 1. Suppose Ln = maxi{Dni} is the largest
degree in Gn. A sequence of distributions {Fn(x)} is called
asymptotically max-root-constrained (AMRC) if P (Ln >√
n)→ 0 as n→∞.

AMRC sequences ensure that (10) is accurate for suffi-
ciently large n. One option for satisfying this condition is to
use distributions F (x) with finite variance (i.e., E[D2] <∞),
which is a consequence of the following result.

Proposition 3. For n → ∞ and some constant c > 0,
P (Ln > nc)→ 0 if E[D1/c] <∞.

The second option is to scale tn slowly enough, but with-
out placing any restrictions on F (x). To this end, define
truncation to be linear if tn = n − 1 and root if tn =

√
n.

Now observe that the latter case deterministically yields
Ln ≤

√
n, which keeps pij(θn) ≤ 1 for all n.

If Definition 1 fails to hold, we call sequence {Fn(x)} un-
constrained. Unfortunately, the probability of edge existence
in Gn built by such degree distributions is extremely diffi-
cult (if not impossible) to obtain in closed-form due to the
high levels of dependency in the edge-construction process.
At this point, it is even unclear if useful approximations to
pij(θn) can be made for such cases. However, depending on
the objectives, this may not be required.

AssumeM is a particular triangle-listing method. Thro-
ughout the paper, we develop two sets of results – those that
rely on Fn(x) to establish E[cn(M, θn)|Dn] and those that
use F (x) to arrive at the corresponding limit as n → ∞.
The former models are accurate for finite (but sufficiently
large) n if the degree sequence is AMRC. In contrast, the
asymptotic limits hold unconditionally because the rate at
which Fn(x) approaches F (x) has no impact on the conver-
gence point, i.e., linear and root truncation yield the same
result. Therefore, all models in the form of (4)-(6) are exact
even in unconstrained graphs.

3.2 Expected Degree and Cost
Notice that the expected out-degree at node i is the sum-

mation of pij(θn) for all nodes j smaller than i. Excluding
self-loops in the denominator, this leads to

E[Xi(θn)|Dn] ≈ di(θn)

∑i−1
j=1 dj(θn)

2m− di(θn)
. (11)

While (11) is asymptotically precise, it may exhibit large
errors for finite n in unconstrained graphs. This occurs

5

T1 T2 E1 E4

x2

2
x(1− x) x(2−x)

2
x2+(1−x)2

2

Table 4: Function h(x).

because it over-estimates the number of edges delivered to
high-degree nodes, in essence treating Gn as allowing dupli-
cate links. To curb this tendency, we propose to extend (11)
by applying some positive and monotonically non-decreasing
function w(x) to the degree of potential neighbors, i.e.,

E[Xi(θn)|Dn] ≈ di(θn)

∑i−1
j=1 w(dj(θn))

∑n
k=1 w(dk)− w(di(θn))

. (12)

For example, w(x) = min(x, a), where a is a constant, is
one such option we consider below. By tuning w(x) to suit
F (x), it may be possible to make (12) accurate in uncon-
strained graphs under finite n; however, discovery of this
relationship is not necessary for proving optimality of dif-
ferent permutations/methods since our results below cover
a wide range of w(x).

Define the fraction of i’s neighbors with smaller ID as

qi(θn) =
E[Xi(θn)|Dn]

di(θn)
(13)

and consider the next result.

Proposition 4. In asymptotically large AMRC graphs,
all four triangle-listing techniques in Figure 5 are covered by
one formula

E[cn(M, θn)|Dn] ≈ 1

n

n
∑

i=1

g(di(θn))h(qi(θn)), (14)

where g(x) = x2 − x and h(x) is given by Table 4.

4. CONVERGENCE OF COST
We next examine the limit of (14) as n → ∞. Note that

we use Lebesgue-Stieltjes integrals and treat CDFs as mea-
sures, i.e., dF (x) applies to both discrete and continuous
distributions.

4.1 Functions of Order Statistics
For now, assume θn(i) = i is the ascending-degree permu-

tation, which means that di(θn) = Ani. Let {φn(t)}∞n=1 be
a sequence of functions that for all t ∈ [0, 1] satisfies

lim
n→∞

∫ t

0

φn(u)du =

∫ t

0

φ(u)du, (15)

where φ(u) is some integrable function. Then, given a suffi-
ciently smooth g(x), results in the field of L-estimators [39],
[44] show that

lim
n→∞

1

n

n
∑

i=1

g(Ani)φn(i/n) =

∫ 1

0

g(F−1(u))φ(u)du. (16)

Limits in the form of (16) are known as Glivenko-Cantelli
results for functions of order statistics. Letting U be uni-
form in [0, 1], the integral in (16) can be written shorter
as E[g(F−1(U))φ(U)]. When F (x) is continuous, it is often
convenient to represent the expectation as E[g(D)φ(F (D))],
where D ∼ F (x).

Our first result extends (16) to cover partial sums.

Lemma 1. For a fixed u ∈ [0, 1],

lim
n→∞

1

n

⌈nu⌉
∑

i=1

g(Ani) =

∫ u

0

g(F−1(x))dx. (17)

To allow (16) to handle summations in the form of (14),
it is important to understand the asymptotic properties of
qi(θn). The following result sheds light on this issue.

Lemma 2. For the ascending permutation θA and fixed
u ∈ [0, 1], random variable q⌈nu⌉(θA) converges to J(F−1(u))
as n→∞, where

J(x) :=
1

E[w(D)]

∫ x

0

w(y)dF (y). (18)

For E[w(D)] <∞, (18) defines a CDF. We study its prop-
erties next.

Proposition 5. Assume a process that picks node i in
Gn in proportion to w(Dni) and let Sn be the random degree
of the chosen nodes. Then, P (Sn ≤ x)→ J(x) as n→∞.

Variable S ∼ J(x) is known as spread in renewal process
theory. Given n intervals of size w(d1), . . . , w(dn), suppose
a random point is thrown into [0,

∑n
k=1 w(dk)]. Then, the

length of the interval that the point hits follows the spread
distribution as n → ∞. The selected intervals are biased
towards larger w(di), which is known as the inspection para-
dox [41]. In graphs Gn(θn), the bias reflects the probability
to select neighbors in proportion to their weight w(di). For
w(x) = x, variable S represents the degree of nodes adja-
cent to a random link, or that seen by a random walk on the
graph. In such cases, spread J(x) is well-studied, e.g., expo-
nential D produces S ∼ Erlang(2) and Pareto(α, β) yields

J(x) = 1− β + αx

β

(

1 +
x

β

)−α

, (19)

which has Pareto-like tails with a heavier shape α− 1.

4.2 Monotonic Permutations
We are now ready to derive the expected cost of triangle

listing for the ascending/descending permutations.

Theorem 1. The ascending permutation produces

lim
n→∞

E[cn(M, θA)|Dn] = E[g(D)h(J(D))]. (20)

This means that random variable (14) becomes indepen-
dent of Dn as n→∞, which allows us to treat it as a con-
stant for sufficiently large n. The descending case is handled
similarly since qi(θD) = 1 − qi(θA). This implies q⌈nu⌉(θD)

converges to 1− J(F−1(u)) and consequently

lim
n→∞

E[cn(M, θD)|Dn] = E[g(D)h(1− J(D))]. (21)

Applying these observations and recalling Table 4,

lim
n→∞

E[cn(T1, θA)|Dn] =
E[g(D)J2(D)]

2
, (22)

lim
n→∞

E[cn(T1, θD)|Dn] =
E[g(D)(1− J(D))2]

2
. (23)

For T2, symmetry h(1 − x) = h(x) shows that both per-
mutations have the same limiting cost. It is thus sufficient
to consider only the descending case

lim
n→∞

E[cn(T2, θD)|Dn] = E[g(D)J(D)(1− J(D))]. (24)

6

Interestingly, T1 under θA is finite iff α > 2, which is
shown by expanding the integral in (22) using 1 − J(x) ∼
x1−α. Thus, θA offers no finiteness benefits over omitting
orientation, where the cost is E[D2 − D]/2. Next, T2 in
(24) is finite iff α > 1.5, which is a noticeable improvement
over (22). But this is eclipsed by T1 under θD, where the
finiteness condition is α > 4/3. Therefore, as n→∞, vertex
iterator exhibits at least four regimes of operation, i.e., α ≤
4/3, α ∈ (4/3, 1.5], α ∈ (1.5, 2], and α > 2.

Note that (20) and (21) require no constraints on {Fn(x)}.
For finite n, however, accurate results are guaranteed only
for AMRC sequences. In these cases, Theorem 1 yields the
following approximation to the expected cost across all de-
gree sequences drawn from Fn(x)

E[cn(M, θA)] ≈ E[g(Dn)h(Jn(Dn))], (25)

where spread Jn(x) is computed from the truncated distri-
bution Fn(x) = F (x)/F (tn) and Dn ∼ Fn(x).

5. CONVERGENCE OF PERMUTATIONS
Our initial investigation into cost of triangle listing han-

dles only the simplest permutations. The next goal is to
understand what makes sequences {θn}∞n=1 convergent and
propose a framework for modeling their limits.

5.1 Admissibility
We start with a background on measures.

Definition 2. For a set S and its σ-algebra Σ, function
µ : Σ→ R is called a measure if a) µ(C) ≥ 0 for all elements
C ∈ Σ; b) µ(∅) = 0; c) µ(∪∞

i=1Ci) =
∑∞

i=1 µ(Ci) for pairwise
disjoint Ci ∈ Σ.

It is sufficient for us to consider just two cases of S. For
finite sets, the σ-algebra consists of all subsets of S, in which
case µ(C) = |C|. For continuum S, we use the Lebesgue
measure µ([a, b]) = b− a.

Definition 3. For a set S, function K(v;u) : R×S → R

is called a probability kernel if for each u ∈ S it is a CDF
in variable v, i.e., non-decreasing, defined for all v ∈ R, and
compliant with K(−∞;u) = 0, and K(∞;u) = 1.

Kernels are useful mechanisms for capturing the distribu-
tion of non-iid collections of random variables; however, only
some of them will be suitable for our purposes.

Definition 4. Let S be a set with measure µ and U be
a uniformly random variable in S. Kernel K(v; u) is called
measure-preserving if it satisfies for all v ∈ R

E[K(v;U)] =
µ({s ∈ S : s ≤ v})

µ(S)
, (26)

in which case the corresponding variable ξ(u) ∼ K(v;u) is a
random map, i.e., P (ξ(u) ≤ v) = K(v;u).

Note that ξ(u) can be viewed as a random bijection on S.
As before, sequence of functions θn : [1, n]→ [1, n] specifies
a relationship between the position in the ascending-order
vector An and that in the permuted sequence. If these func-
tions are deterministic, i = θn(j) means that di(θn) = Anj .
Since each θn is a bijection, its inverse exists and satisfies
θ−1
n (θn(j)) = j. For more general cases, where specifying
a deterministic relationship is inconvenient, θn may be ran-
dom. Either way, there must exist a measure-preserving

kernel Mn(j; i) such that P (θn(i) ≤ j) = Mn(j; i). How-
ever, to have a reasonable mapping as n → ∞, we need to
impose certain asymptotic constraints.

Definition 5. Suppose sequence k(n) → ∞ is such that
k(n)/n→ 0 as n→∞. If for all u, v ∈ [0, 1] the fraction of
values in the k(n)-neighborhood of u that are mapped to the
interval [0, v], i.e.,

Kn(v;u) :=
1

2k(n) + 1

k(n)
∑

i=−k(n)

Mn(nv; ⌈nu⌉ + i), (27)

converges weakly to some limit K(v; u), sequence {θn} is
called admissible.

Outside of specially crafted counter-examples (e.g., θn =
θA for odd n and θD for even), most reasonable permuta-
tion sequences are admissible. For such cases, the limiting
behavior of θn is a random process {ξ(u)} with distribution
K(v;u) = P (ξ(u) ≤ v). Note that if (27) converges, the
limit must be measure-preserving. The opposite is true as
well – any such kernel has some sequence of permutations
{θn} that converges to it.

5.2 Cost Under General Permutations
We start by generalizing (16) beyond monotonic θn.

Lemma 3. For an admissible sequence {θn},

lim
n→∞

1

n

n
∑

i=1

g(di(θn))h(i/n) = E[g(F−1(U))h(ξ(U))]. (28)

Re-writing (28) as E[g(D)h(ξ(F (D)))] and using the same
logic as in Theorem 1, we get the following.

Theorem 2. For an admissible sequence {θn},
c(M, ξ) := lim

n→∞
E[cn(M, θn)|Dn]

= E[g(D)h(ξ(J(D)))]. (29)

For AMRC graphs, we can use the limiting map ξ(u) to
achieve accurate cost analysis even under finite n

E[cn(M, θn)] ≈ E[g(Dn)h(ξ(Jn(Dn)))]. (30)

Not surprisingly, the ascending map ξ(u) = u and de-
scending ξ(u) = 1−u produce in (29) the already-established
(22)-(24). Additional cases are covered next.

5.3 Non-Monotonic Permutations
Besides θA and θD, another previously used option is uni-

form [14], where the direction of edges in the acyclic orien-
tation is based on original (e.g., hashed) node IDs. In this
case, ξU (u) is a uniform variable in [0, 1], independent of the
starting position u. This yields

c(M, ξU) = E[g(D)]E[h(U)] = E[D2 −D]E[h(U)], (31)

where U is uniform in [0, 1]. Simple calculations show that
E[h(U)] = 1/6 for both vertex iterators and 1/3 for both
edge iterators. Compared to not performing orientation at
all, where the corresponding cost is E[D2−D]/2 and E[D2−
D], both families of algorithms reduce complexity by a factor
of 3. This agrees with common sense since orientation avoids
counting each triangle three times.

7

Analysis of T2’s function h(x) = x(1 − x) suggests that
larger values of degree should be scattered towards the out-
side of the range [1, n] in an effort to pair them with smaller
products qi(θn)(1 − qi(θn)) in (14). This leads to a new
permutation we call Round-Robin (RR)

θn(i) =

{

⌈n+i
2
⌉ i is odd

⌊n−i
2
⌋ + 1 i is even

, (32)

whose map is derived next.

Proposition 6. Permutation (32) converges to a ran-
dom map ξRR(u) that equals (1 − u)/2 or (1 + u)/2, each
with probability 1/2.

Re-writing (29), we have a general result

c(M, ξRR) =
E
[

g(D)
(

h
(1−J(D)

2

)

+ h
(1+J(D)

2

)

)]

2
. (33)

Applying this to T2 yields

c(T2, ξRR) =
E[g(D)(1− J2(D))]

4
, (34)

which is finite iff α > 1.5. Since the complexity of E1 com-
bines that of T1 and T2, it is interesting whether it performs
better under the descending or RR permutation. Full com-
parison is delayed until the next section, but Proposition 6
can be used to reveal the likely outcome. Combining (23)
and (24) leads to

c(E1, ξD) =
E[g(D)(1− J2(D))]

2
(35)

and expanding (33) using h(x) = x(2− x)/2 produces

c(E1, ξRR) =
E[g(D)(3− J2(D))]

8
. (36)

While (35) is finite iff α > 1.5, this cannot be said about
(36), where the condition shifts to α > 2. This can be ex-
plained by the fact that T1 suffers a significant cost increase
under RR, which more than offsets the benefits that T2 may
be gaining.

For E4, function h(x) behaves the opposite of that for
T2, i.e., smaller values are found towards the center. To
handle such cases, suppose the complementary permutation
θ′′n(i) = θn(n − i + 1) applies the same mapping as θn, but
starting from the descending order of degree rather than
ascending. With this in mind, it might be interesting to
examine E4 under the Complementary Round-Robin (CRR)
permutation. To determine the corresponding map, consider
the following.

Proposition 7. Suppose sequence {θn} converges to some
map ξ(u) as n → ∞. Then, its reverse {θ′n} converges to
ξ′(u) = 1−ξ(u) and its complement {θ′′n} to ξ′′(u) = ξ(1−u).

This leads to ξCRR(u) = ξ′′RR(u) = ξRR(1 − u), which
equals u/2 or 1−u/2 with probability 1/2 each. Expanding
(29), it can be shown that CRR coupled with any of the
considered methods has finite cost iff α > 2.

In summary, we have five different permutations (i.e., as-
cending, descending, RR, CRR, and uniform) that cover
cases where θn(i) and ξ(u) are both deterministic, both ran-
dom, and one is deterministic but the other is random. Our
next task is create a framework for minimizing (29) over all
measure-preserving maps {ξ(u)}.

Algorithm 1: Construction of optimal permutations

1 Function OPT (h)
2 for (i = 1; i ≤ n; i++) do

3 z[i].key = h(i/n)
4 z[i].index = i
5 if r(x) is an increasing function then

6 sort array z descending by key
7 else

8 sort array z ascending by key
9 for (i = 1; i ≤ n; i++) do

10 theta[i] = z[i].index
11 return theta

6. COMPARISON AND OPTIMALITY
This section obtains the optimal permutation and cost

under various monotonic relationships among g(x), h(x),
and w(x). It also compares the best methods within each
triangle-listing class.

6.1 Minimizing Cost
Assume that J(x) is a continuous spread distribution from

(18). This implies that J(S), where S ∼ J(x), is a uniform
variable in [0, 1]. For heavy-tailed F (x), such as Pareto, this
assumption holds iff E[w(D)] < ∞. For the results below,
it is convenient to define r(x) = g(J−1(x))/w(J−1(x)). We
will be mostly concerned with its monotonicity, which is the
same as that of g(x)/w(x) since J(x) is a CDF.

Lemma 4. Model (29) can be written as

c(M, ξ) = E[w(D)]E[r(U)h(ξ(U))], (37)

where U is uniform in [0,1].

Note that (37) is better-suited for our purposes in this
section because it replaces a combination of D and J(D)
with a simpler variable U . The next result shows that there
exists a percolation point in the behavior of r(x) at which
all permutations are equal.

Proposition 8. For a constant function r(x) = b and a
fixed methodM, all permutations yield the same complexity

c(M, ξ) = E[g(D)]E[h(U)]. (38)

Interestingly, this is exactly the same overhead as under
the random permutation in (31). When r(x) deviates from
being a constant in either direction (i.e., becomes increas-
ing or decreasing in x), there exists a simple technique for
deciding the optimal order. Assume r(x) is monotonic and
consider Algorithm 1, which creates a sequence

z := (h(1/n), h(2/n), . . . , h(1)) (39)

and sorts it in the opposite order of monotonicity of r(x). If z
transforms into h(i1/n), h(i2/n), . . . , h(in/n), the algorithm
assigns θn(j) = ij , where ties are broken arbitrarily.

Theorem 3. When r(x) is monotonic, Algorithm 1 bu-
ilds permutations that minimize (37).

This result leads to several useful conclusions.

Corollary 1. If h(x) has the same monotonicity in [0, 1]
as g(x)/w(x) in [0,∞), descending order is optimal. If mono-
tonicity of these functions is opposite of each other, ascend-
ing order is optimal.

8

For triangle listing with w(x) = min(x, a), where a >
0 is a constant, ratio g(x)/w(x) = (x2 − x)/min(x, a) is
monotonically increasing. Recalling Table 4, as well as the
various relationships in Figures 2 and 4, we get that θD is
optimal for T1/E1/E2 and [13], while θA is for T3/E3/E5.

Corollary 2. Suppose h(1/2 + x) = h(1/2 − x) for all
x ∈ [0, 1/2]. Then, if h(x) has the same monotonicity in
[0, 1/2) as g(x)/w(x) in [0,∞), RR is optimal. If these func-
tions have opposing monotonicity, CRR is optimal.

This implies that the cost of T2 is indeed minimized by
RR and that of E4/E6 by CRR. Theorem 3 also provides a
means for creating permutations with the highest cost.

Corollary 3. Map ξ(u) is the best for a given method
iff its complement ξ′′(u) is the worst.

6.2 Comparison
We now decide which vertex iterator is better under their

respective optimal permutations. Re-write (23) and (34) as

c(T1, ξD) =
E[r(U)(1− U)2]

2
, (40)

c(T2, ξRR) =
E[r(U)(1− U2)]

4
(41)

and consider the next result.

Theorem 4. If r(x) is increasing, (40) is smaller than
(41). If r(x) is decreasing, the inequality is reversed. If r(x)
is a constant, they produce the same cost.

For w(x) = min(x, a), we already know that r(x) is in-
creasing, which implies that T1 is faster than T2. For edge
iterator, we have

c(E1, ξD) =
E[r(U)(1− U2)]

2
, (42)

c(E4, ξCRR) =
E[r(U)(U2 − 2U + 2)]

4
, (43)

with the corresponding comparison next.

Theorem 5. If r(x) is increasing, (42) is smaller than
(43). If r(x) is decreasing, the opposite holds. If r(x) is a
constant, they are identical.

6.3 Asymptotics
Our study revealed that the best vertex iterator is T1 and

the fastest scanning edge iterator is E1, with the correspond-
ing optimal cost

c(T1, ξD) =
E[(D2 −D)(1− J(D))2]

2
, (44)

c(E1, ξD) =
E[(D2 −D)(1− J2(D))]

2
. (45)

Using Pareto F (x), we established earlier that the finite-
ness condition was α > 4/3 for (44) and α > 1.5 for (45).
This means that as n → ∞, T1 is provably faster than E1

in all graphs with α ∈ (4/3, 1.5], no matter how these al-
gorithms are implemented. For α ∈ (1.5,∞), both methods
produce finite cost and the winner must be decided by tak-
ing into account the speed of their elementary operations,
i.e., hash-table lookups vs scanning intersection similar to
Table 3, but customized to a particular graph Gn(θn).

When α drops below the finiteness thresholds of each
method, the scaling rate of cost is determined by the tail
of the spread distribution

1− Jn(x) ∼











x1−α α > 1

1− log(x)/ log(tn) α = 1

1− x1−α/t1−α
n 0 < α < 1

, (46)

where the last two cases arise due to E[Dn]→∞. For root
truncation, we get that E[cn(T1, θD)|Dn]/an → 1, where

an =



















log n α = 4/3

n2−1.5α 1 < α < 4/3√
n/ log2 n α = 1

n1−α/2 0 < α < 1

, (47)

and E[cn(E1, θD)|Dn]/bn → 1, where

bn =



















log n α = 1.5

n1.5−α 1 < α < 1.5√
n/ log n α = 1

n1−α/2 0 < α < 1

. (48)

These results show that T1 grows slower than E1 for all
α ∈ [1, 1.5); however, interestingly enough, they have the
same scaling behavior when α ∈ (0, 1). Determining the
corresponding rates under linear truncation requires model-
ing families of unconstrained graphs under finite n, which is
beyond the scope of our investigation here.

7. EVALUATION
We now use finite n, where the models are only approx-

imate, to examine the impact of α, truncation, and graph
size on the distance between the model and actual cost.

7.1 Model Computation
Recall that we start with a continuous Pareto distribu-

tion F ∗(x) = 1 − (1 + x/β)−α defined on [0,∞) and dis-
cretize it by rounding up each generated value. This pro-
duces F (x) = 1−(1+⌊x⌋/β)−α defined on natural numbers,
which we employ in the construction of random graphs and
comparison against the model. In general, (30) expands into
a double Lebesgue-Stieltjes integral

∫ tn

0

g(x)h
(

ξ
(

∫ x

0
w(y)dFn(y)

∫ tn
0

w(z)dFn(z)

))

dFn(x), (49)

which can be easily computed in Matlab if Fn(x) is con-
tinuous, e.g., using Fn(x) = F ∗(x)/F ∗(tn). However, this
is only a crude approximation to the outcome observed in
simulations. Therefore, a more prudent approach is to write
these integrals as summations

tn
∑

i=1

g(i)h
(

ξ
(

∑i
j=1 w(j)pj

∑tn
k=1 w(k)pk

))

pi, (50)

where pi := Fn(i)−Fn(i− 1) is the PMF (probability mass
function) of truncated degree.

Even though (50) contains two nested sums and appears
to exhibit quadratic complexity, it can be computed in lin-
ear time and O(1) space. This works well for many sce-
narios, except when a good estimate of the limiting cost is
needed under linear truncation and a slowly-decaying tail
1 − F (x). For such cases, the runtime can be improved to

9

Algorithm 2: Quick computation of (50)

1 Function DiscreteModel (Fn, g, w, h, xi; tn, eps)
2 EDn = J = cost = 0
3 for (i=1; i ≤ tn; i += jump) do ⊲ E[Dn]
4 jump = ceil(eps ∗ i)
5 EDn += w(i)∗(Fn(i + jump − 1) − Fn(i − 1))
6 for (i=1; i ≤ tn; i += jump) do ⊲ E[cn(M, θn)]
7 jump = ceil(eps ∗ i)
8 p = Fn(i + jump − 1) − Fn(i − 1)
9 J += w(i) ∗ p / EDn

10 cost += w(i) ∗ h(xi(J)) ∗ p
11 return cost

n F ∗(x) in (49) F (x) in (50) Algorithm 2
value time value time value time

103 144.86 7.4 142.85 <0.01 142.85 <0.01
104 245.29 7.6 241.15 <0.01 241.15 <0.01
107 353.92 7.8 346.92 1.2 346.92 0.04
108 359.85 7.9 352.73 12 352.73 0.05
109 362.18 7.9 354.94 117 354.94 0.07
1010 363.06 8.0 355.79 1170 355.79 0.08
1012 363.51 8.2 356.22 0.10
1013 363.56 8.2 too slow 356.26 0.11
1014 363.57 8.2 356.28 0.12
1017 363.57 8.3 356.28 0.13

Table 5: Model results and computation time (in
seconds) for T1 under descending order (α = 1.5,
ǫ = 10−5, linear truncation).

O((1+log(ǫtn))/ǫ) by compressing all summands from large
intervals [i, (1 + ǫ)i] into a single term, where 1/tn ≤ ǫ < 1
is a chosen parameter. This is demonstrated in Algorithm
2, in which ǫ = 1/tn yields the exact result and larger values
offer varying degrees of approximation.

Table 3 compares the continuous result, the exact discrete
model, and Algorithm 2. Using two decimal digits of pre-
cision, notice that the continuous model does not converge
until n = 1014. Based on the result in columns 4-5 of the
table, this value of n would require an extrapolated four
months in the exact model (50). On the other hand, Algo-
rithm 2 computes this case in a fraction of a second due to
its log n complexity. Additionally, the table shows that the
continuous model indeed deviates from the discrete version
by non-negligible amounts (i.e., 1.5− 2%).

7.2 Random Graph Generation
Traditional methods [8], [30] that aim to realize a ran-

dom graph with a given degree sequence (d1, . . . , dn) place
di copies (i.e., stubs) of each node i into an array and uni-
formly draw pairs of available nodes at each step. The two
selected stubs are removed and the process is repeated. This,
however, leads to self-loops and duplicate edges. Since we
are interested in simple graphs, these extraneous edges must
be removed, which has a noticeable impact on the realized
degree, especially when Pareto α drops below 2 and trunca-
tion function tn = n − 1. Specifically, if the desired degree
of node i is di but the constructed graphs Gn are allowed
to implement smaller values in the range [1, di], simulations
may not match theoretical predictions of E[Xi(θn)|Dn].

To overcome this problem, we employ a variation of the
method from [11] that picks neighbors in proportion to their
residual degree and excludes the already-attached neighbors

n T1 + θA T1 + θD
sim (50) error sim (50) error

104 159.1 155.6 −2.2% 40.2 39.3 −2.2%
105 518.0 516.6 −0.3% 87.8 87.0 −0.9%
106 1,355.6 1,354.5 −0.1% 143.7 142.9 −0.6%
107 3,089.1 3,089.2 0.003% 196.9 196.2 −0.4%
∞ ∞ 356.3

Table 6: Cost with α = 1.5 and root truncation.

n T2 + θD T2 + θRR

sim (50) error sim (50) error

104 102.3 103.7 1.4% 79.5 75.8 −4.6%
105 260.0 261.4 0.5% 186.4 181.8 −2.5%
106 467.0 467.4 0.1% 315.4 310.4 −1.6%
107 674.6 675.4 0.1% 436.1 432.4 −0.8%
∞ 1,307.6 770.4

Table 7: Cost with α = 1.7 and root truncation.

n T1 + θD T2 + θRR

sim (50) error sim (50) error

104 178.6 179.3 0.4% 318.9 371.9 16.6%
105 182.2 181.3 −0.5% 363.7 383.0 5.3%
106 182.6 181.5 −0.6% 382.0 384.2 0.6%
107 182.6 181.5 −0.6% 383.5 384.3 0.2%
∞ 181.5 384.3

Table 8: Cost with α = 2.1 and linear truncation.

when performing selection. If implemented naively, this re-
quires quadratic complexity; however, this can also be done
in n log n time using interval trees that record the residual
probability mass of degree on both sides of each node. As
a result, graphs with 10M nodes to be generated in several
seconds, which is sufficient for our analysis below. With the
exception of possibly one last edge (i.e., if

∑n
i=1 di is odd),

Gn in our simulations implements Dn exactly.

7.3 Constrained Degree
We start with AMRC graphs, where the obtained results

should be accurate even for finite n. All simulations in the
rest of the paper are averaged over 100 random degree se-
quences Dn, each with 100 random graphs Gn (i.e., 10K
graph instances total). We keep Pareto β = 30(α−1), which
yields E[D] ≈ 30.5 after discretization. We use (50) for small
n, while the corresponding limits as n→∞ are provided by
Algorithm 2. Unless mentioned otherwise, w(x) = x. Note
that simulation results averaged over 10K iterations are still
pretty noisy, which explains non-monotonicity of error in
certain cases as n increases.

Tables 6-7 examine α < 2 under root truncation. Since
these graphs deterministically limit the maximum degree to√
n, (50) is accurate even for n as small as 10K. Table 8

shows another AMRC scenario, where α = 2.1 and trunca-
tion is linear. Because these graphs are only asymptotically
constrained, larger discrepancy for small n was expected.
However, even the slowest-converging method studied here
(i.e., T2+θRR) exhibits less than 1% error for n ≥ 1M nodes.

7.4 Unconstrained Degree
We now transition to more challenging cases. Table 9 re-

visits the data in Table 6 under linear truncation. Both per-
mutations now produce larger cost and quicker convergence

10

n T1 + θA T1 + θD
sim (50) error sim (50) error

104 7,158 6,452 −9.9% 209.5 241.1 15.1%
105 25,770 24,303 −5.7% 261.0 302.1 15.8%
106 84,441 82,815 −1.9% 294.1 333.0 13.3%
107 274,876 270,125 −1.7% 317.0 346.9 9.4%
∞ ∞ 356.3

Table 9: Cost with α = 1.5 and linear truncation.

n T2 + θD T2 + θRR

sim (50) error sim (50) error

104 499.4 854.4 71.1% 354.5 532.6 50.3%
105 725.4 1,096.6 51.2% 476.5 662.3 39.0%
106 907.7 1,216.7 34.0% 570.2 724.4 27.0%
107 1,041.5 1,270.0 21.9% 631.2 751.5 19.1%
∞ 1,307.6 770.4

Table 10: Cost with α = 1.7 and linear truncation.

n T1 + θD T2 + θD T2 + θRR

w1(x) w2(x) w1(x) w2(x) w1(x) w2(x)

104 38% −54.1% 304% 21.6% 216% −3.1%
105 107% −52.3% 619% 17.9% 458% −2.2%
106 214% −50.4% 1,207% 12.9% 856% −2.3%
107 386% −48.7% 2,353% 9.1% 4,105% −0.5%

Table 11: Relative error of (50) under α = 1.2 and
linear truncation (asymptotically infinite cost).

towards their respective limits, which is especially noticeable
under θA. A similar scenario for T2 is shown in Table 10.
Compared to Table 7, the error is much larger; however, it
still monotonically decays towards zero as n increases. This
is a consequence of the limiting cost being finite.

A drastically different result can be observed when the
asymptotic complexity is infinite, i.e., c(M, ξ) = ∞. This
arises from the difference in the rates at which simulations
and (50) scale as n → ∞, which yields an error that grows
with n. We use this opportunity to investigate how w(x) can
be used to create a more accurate result for such scenarios.
Specifically, define w1(x) = x and w2(x) = min(x,

√
m).

Table 11 examines α = 1.2 under linear truncation. While
w1(x) builds a hefty error against T1 by the time n reaches
10M, its alternative w2(x) settles into a growth rate that is
essentially the same as that of simulations. Furthermore, it
eliminates most of the error in the other two cases.

Both functions w1, w2 have the same limit as n → ∞,
which can be shown using root-truncated Fn(x), but the
convergence speed is clearly different. As discussed earlier,
finding w(x) that keeps (50) provably accurate in uncon-
strained graphs of finite size is a topic for future work. How-
ever, if such functions exist and (x2−x)/w(x) is monotonic,
optimality and comparison results of the previous section
apply to them just the same.

7.5 Real Graphs
We now examine our conclusions and model applicability

to Twitter [27], which is a standard graph in this field with
n = 41M nodes and m = 1.2B edges (9.3 GB). In addi-
tion to the five main permutations, i.e., ascending θA, de-
scending θD, round-robin θRR, complementary round-robin
θCRR, and uniform θU , we also consider the degenerate op-

Permutation
θD θA θRR θCRR θU θdegen

T1 150B 123T 63T 31T 45T 136B
T2 360B 360B 255B 62T 41T 815B
E1 511B 123T 63T 93T 86T 951B
E4 123T 123T 123T 62T 82T 123T

Table 12: CPU operations on Twitter.

tion, built using the algorithm from [29]. Because this ori-
entation requires 5 hours to compute, which is two orders of
magnitude longer than it takes E1 to list all triangles [17],
we do not consider it competitive. Instead, we provide the
corresponding cost to shed light on how much theoretical
improvement it may offer to cn(M, θn).

Table 12 displays the total number of CPU instructions
ncn(M, θn) on Twitter, highlighting in gray the optimal per-
mutation for each row. These results agree with our analysis,
in both the choice of best/worst orientation and comparison
between the methods. For example, θRR is best for T2, θA
is worst for E1, and the cost of E1 under θD is double that of
T2 under θRR. The degenerate orientation reduces the best
cost of T1 by 10%, but increases that of the other methods
by 2−3×. Note that our results minimize the expected cost
over all graphs with a given degree distribution. This does
not prevent existence of algorithms that can take a partic-
ular instance of Gn and customize θn to its edge structure,
which explains how the degenerate permutation manages to
beat θD for T1.

The overhead ratio between the worst and best permuta-
tions is 817 for T1, 241 for T2 and E1, and only 2 for E4.
The last case can be explained by the fact that E4 is almost
equally expensive under all permutations, exhibiting at least
62T/511B = 121 times more overhead than the best orien-
tation for E1. Also notice that T1 and T2 are only within
a factor of 255B/150B = 1.7 of each other, which shows
that keeping the graph non-relabeled would have doubled
the cost of T1 and made it worse than T2. This also would
have caused a 29% increase for E1 and 100% for E4. Our
final observation is that lack of relabeling in prior work [36]
explains reports of 300B tuples for T1 on Twitter.

8. CONCLUSION
Our efforts produced the first accurate result on the asymp-

totics of triangle listing under arbitrary permutations. We
proved that expected cost could be optimized using four dif-
ferent orientations and derived the corresponding complex-
ity models. Our results showed that only two methods were
generally worth considering – one from the vertex-iterator
family and the other from the scanning edge-iterator. In
many cases the winner will be determined by the edge-
existence verification speed of these algorithms; however,
we discovered degree sequences for which the former would
always outperform the latter as n→∞.

Our results answered many open questions in the area
of triangle listing; however, additional challenges remain.
Among them is analysis of unconstrained graphs, design of
better external-memory partitioning schemes, and modeling
of I/O complexity in scenarios such as [17].

9. REFERENCES
[1] W. Aiello, F. R. K. Chung, and L. Lu, “A Random Graph

11

Model for Massive Graphs,” in Proc. ACM STOC, May
2000, pp. 171–180.

[2] N. Alon, R. Yuster, and U. Zwick, “Finding and Counting
Given Length Cycles,” Algorithmica, vol. 17, no. 3, pp.
209–223, Mar. 1997.

[3] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A
Parallel Algorithm for Counting Triangles in Massive
Networks,” in Proc. ACM CIKM, Oct. 2013, pp. 529–538.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions
in Streaming Algorithms, With an Application to Counting
Triangles in Graphs,” in Proc. ACM-SIAM SODA, Jan.
2002, pp. 623–632.

[5] A.-L. Barabasi and R. Albert, “Emergence of Scaling in
Random Networks,” Science, vol. 286, no. 5439, pp.
509–512, Oct. 1999.

[6] V. Batagelj and M. Zaversnik, “Short Cycle Connectivity,”
Discrete Math., vol. 307, no. 3–5, pp. 310–318, Feb. 2007.

[7] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient
Semi-streaming Algorithms for Local Triangle Counting in
Massive Graphs,” in Proc. ACM SIGKDD, Aug. 2008, pp.
16–24.

[8] E. A. Bender and E. R. Canfield, “The Asymptotic Number
of Labeled Graphs with Given Degree Sequences,” J.
Combin. Theory Ser. A, vol. 24, pp. 296–307, May 1978.

[9] J. W. Berry, L. A. Fostvedt, D. J. Nordman, C. A. Phillips,
C. Seshadhri, and A. G. Wilsone, “Why Do Simple
Algorithms for Triangle Enumeration Work in the Real
World?” Internet Mathematics, vol. 11, no. 6, pp. 555–571,
May 2015.

[10] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A.
Phillips, “Tolerating the Community Detection Resolution
Limit With Edge Weighting,” Physical Review E, vol. 83,
no. 5, p. 056119, 2011.

[11] J. Blitzstein and P. Diaconis, “A Sequential Importance
Sampling Algorithm for Generating Random Graphs With
Prescribed Degrees,” Internet Mathematics, vol. 6, no. 4,
pp. 489–522, 2011.

[12] P. Brach, M. Cygan, J. La֒cki, and P. Sankowski,
“Algorithmic Complexity of Power Law Networks,” in Proc.
ACM-SIAM SODA, Jan. 2016, pp. 1306–1325.

[13] N. Chiba and T. Nishizeki, “Arboricity and Subgraph
Listing Algorithms,” SIAM J. Comput., vol. 14, no. 1, pp.
210–223, Feb. 1985.

[14] S. Chu and J. Cheng, “Triangle Listing in Massive
Networks and Its Applications,” in Proc. ACM SIGKDD,
Aug. 2011, pp. 672–680.

[15] F. R. K. Chung and L. Lu, “Connected Components in
Random Graphs with Given Expected Degree Sequences,”
Annals of Combinatorics, vol. 6, no. 2, pp. 125–145, Nov.
2002.

[16] J. Cohen, “Graph Twiddling in a MapReduce World,”
Computing in Science & Engineering, vol. 11, no. 4, pp.
29–41, Jul. 2009.

[17] Y. Cui, D. Xiao, and D. Loguinov, “On Efficient
External-Memory Triangle Listing,” in Proc. IEEE ICDM,
Dec. 2016, pp. 101–110.

[18] R. Dementiev, “Algorithm Engineering for Large Data
Sets,” Ph.D. dissertation, Universität des Saarlandes, 2006.

[19] P. Erdös and A. Rényi, “On Random Graphs I,”
Publication Math. Debrecen, vol. 6, pp. 290–297, 1959.

[20] I. Fudos and C. M. Hoffmann, “A Graph-Constructive
Approach to Solving Systems of Geometric Constraints,”
ACM Transactions on Graphics, vol. 16, no. 2, pp.
179–216, Apr. 1997.

[21] I. Giechaskiel, G. Panagopoulos, and E. Yoneki, “PDTL:
Parallel and Distributed Triangle Listing for Massive
Graphs,” in Proc. IEEE ICPP, Sep. 2015, pp. 370–379.

[22] X. Hu, Y. Tao, and C. Chung, “Massive Graph
Triangulation,” in Proc. ACM SIGMOD, Jun. 2013, pp.
325–336.

[23] A. Itai and M. Rodeh, “Finding a Minimum Circuit in a

Graph,” SIAM Journal on Computing, vol. 7, no. 4, pp.
413–423, Nov. 1978.

[24] Z. R. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini,
E. S. Ansari, S. Asadi, S. Mohammadi, F. Schreiber, and
A. Masoudi-Nejad, “Kavosh: A New Algorithm for Finding
Network Motifs,” Bioinformatics, vol. 10, no. 1, p. 318,
Oct. 2009.

[25] J. Kim, W. Han, S. Lee, K. Park, and H. Yu, “OPT: A New
Framework for Overlapped and Parallel Triangulation in
Large-scale Graphs,” in Proc. ACM SIGMOD, 2014, pp.
637–648.

[26] A. Kostochka, E. Sopena, and X. Zhu, “Acyclic and
Oriented Chromatic Numbers of Graphs,” Journal of Graph
Theory, vol. 24, no. 4, pp. 331–340, Apr. 1997.

[27] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter,
A Social Network or a News Media?” in Proc. WWW, Apr.
2010, pp. 591–600.

[28] M. Latapy, “Main-memory Triangle Computations for Very
Large (Sparse (Power-law)) Graphs,” Theor. Comput. Sci.,
vol. 407, no. 1-3, pp. 458–473, Nov. 2008.

[29] D. W. Matula and L. L. Beck, “Smallest-Last Ordering and
Clustering and Graph Coloring Algorithms,” Journal of the
ACM, vol. 30, no. 3, pp. 417–427, Jul. 1983.

[30] M. Molloy and B. Reed, “A Critical Point for Random
Graphs with a Given Degree Sequence,” Random Structures
and Algorithms, vol. 6, no. 2/3, pp. 161–180, Mar./May
1995.

[31] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random
Graph Models of Social Networks,” Proceedings of the
National Academy of Sciences, vol. 99, no. 1, pp.
2566–2572, Feb. 2002.

[32] M. Ortmann and U. Brandes, “Triangle Listing Algorithms:
Back from the Diversion,” in Proc. ALENEX, Jan. 2014,
pp. 1–8.

[33] T. Schank and D. Wagner, “Finding, Counting and Listing
All Triangles in Large Graphs, an Experimental Study,” in
Proc. WEA, May 2005, pp. 606–609.

[34] M. Sevenich, S. Hong, A. Welc, and H. Chafi, “Fast
In-Memory Triangle Listing for Large Real-World Graphs,”
in Proc. ACM SNA-KDD, Aug. 2014, pp. 1–9.

[35] J. Shun and K. Tangwongsan, “Multicore Triangle
Computations Without Tuning,” in Proc. IEEE ICDE,
Apr. 2015, pp. 149–160.

[36] S. Suri and S. Vassilvitskii, “Counting Triangles and the
Curse of the Last Reducer,” in Proc. WWW, Mar. 2011,
pp. 607–614.

[37] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung, “On
Triangulation-Based Dense Neighborhood Graph
Discovery,” PVLDB, vol. 4, no. 2, pp. 58–68, 2010.

[38] D. J. Watts and S. Strogatz, “Collective Dynamics of ‘Small
World’ Networks,” Nature, vol. 393, pp. 440–442, Jun. 1998.

[39] J. A. Wellner, “A Glivenko-Cantelli Theorem and Strong
Laws of Large Numbers for Functions of Order Statistics,”
The Annals of Statistics, vol. 5, no. 3, pp. 473–480, May
1977.

[40] V. Willians and R. Williams, “Subcubic Equivalences
Between Path, Matrix, and Triangle Problems,” in Proc.
IEEE FOCS, Oct. 2010, pp. 645–654.

[41] R. W. Wolff, Stochastic Modeling and the Theory of
Queues. Prentice Hall, 1989.

[42] D. Xiao, Y. Cui, D. B. Cline, and D. Loguinov, “On
Asymptotic Cost of Triangle Listing in Random Graphs,”
Texas A&M University, Tech. Rep. 2016-9-2, Sep. 2016.
[Online]. Available: http://irl.cs.tamu.edu/publications/.

[43] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Zhao, and
Y. Dai, “Uncovering Social Network Sybils in the Wild,” in
Proc. ACM IMC, Nov. 2011, pp. 259–268.

[44] W. van Zwet, “A Strong Law for Linear Functions of Order
Statistics,” Annals of Probability, vol. 8, no. 5, pp. 986–990,
1980.

12

http://irl.cs.tamu.edu/publications/

	Introduction
	Deterministic Graphs
	Stochastic Graphs
	Technical Results

	Unifying Framework
	Preprocessing
	Vertex Iterator
	Edge Iterator
	Discussion

	Modeling Out-Degree
	Degree Growth
	Expected Degree and Cost

	Convergence of Cost
	Functions of Order Statistics
	Monotonic Permutations

	Convergence of Permutations
	Admissibility
	Cost Under General Permutations
	Non-Monotonic Permutations

	Comparison and Optimality
	Minimizing Cost
	Comparison
	Asymptotics

	Evaluation
	Model Computation
	Random Graph Generation
	Constrained Degree
	Unconstrained Degree
	Real Graphs

	Conclusion
	References

