On Asymptotic Cost of Triangle Listing in Random Graphs

Di Xiao, Yi Cui, Daren B.H. Cline, Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

May 16, 2017
Agenda

- Introduction
- Background
- Unifying framework
- Main results
- Evaluation
Introduction

- **Triangle listing**: given a simple undirected graph $G = (V, E)$, identify all 3-node cycles Δ_{xyz}

- Numerous applications
 - Network analysis: clustering coefficient, transitivity
 - Web/social networks: spam/community detection
 - Bioinformatics, graphics, databases, theory of computing

- Many open problems
 - Impact of degree distribution on CPU cost, deciding which neighbor traversal order is best, finding the optimal acyclic orientation for a given method, comparing different strategies under their optimal node permutations
 - We study these issues in random graphs
Agenda

- Introduction
- Background
- Unifying framework
- Main results
- Evaluation
Background

- Triangle listing visits each node and verifies edge existence between each pair of neighbors
 - A star graph with 40M nodes requires at least 800T checks
 - This is the CPU cost we are interested in studying

- **Acyclic orientation**: choose a direction along each edge such that the resulting graph has no cycles
 - Triangle listing now involves checks among only out-neighbors, only in-neighbors, or some combination thereof
 - Orienting edges towards the center and using only out-neighbors reduces verification cost to zero!
Background

• Given a graph with n nodes, each acyclic orientation can be viewed as some permutation θ_n
 - Shuffle the nodes and assign sequential labels 1, ..., n
 - Direct edges from larger labels to smaller
 - List only triangles Δ_{xyz} such that $x < y < z$

• Suppose the node with a new ID i has out-degree $X_i(\theta_n)$, in-degree $Y_i(\theta_n)$, and total degree $d_i(\theta_n)$

• Then, the CPU cost of all known methods \mathcal{M} is can be expressed by one formula

$$c_n(\mathcal{M}, \theta_n) = \frac{1}{n} \sum_{i=1}^{n} f(X_i(\theta_n), d_i(\theta_n))$$

 - where f is some non-linear function that depends on \mathcal{M}
Background

- Assuming m edges, prior work has shown there exist neighbor search orders where $c_n(\mathcal{M}, \theta_n)$ is $O(m^{1.5}/n)$
 - This bound is loose in sparse graphs and has seen no improvement in ~40 years
 - Still unclear how to select the best permutation and neighbor traversal pattern so as to minimize the runtime
 - Main obstacle: for a given graph G, finding θ_n that optimizes cost is likely an NP-hard problem

- Instead, we seek insight from random graphs
 - Suppose $F_n(x)$ is a CDF on integers that represents the degree distribution of the graph
 - Assume $F_n(x) \rightarrow F(x)$ as $n \rightarrow \infty$
 - Concerned with expected cost over all graph realizations
Background

• Berry 2015 obtained the limiting cost for a method we call T_1 under descending-degree permutation θ_D

$$\lim_{n \to \infty} E[c_n(T_1, \theta_D) | D_n] = \frac{E[(Z_1^2 - Z_1)Z_2Z_31_{\min(z_2, z_3) > z_1}]}{2E^2[D]}$$

 where D_n is the random degree sequence and Z_1, Z_2, Z_3, D are iid with distribution $F(x)$

 Given Pareto degree with $F(x) = 1-(1+x/\beta)^\alpha$, the limit is finite iff $\alpha > 4/3$

• Open issues: which permutations/methods are fundamentally better for a given $F(x)$, under what conditions, and does θ_n and neighbor search order change the asymptotics or just constants inside $O(.)$?
Agenda

• Introduction
• Background
• Unifying framework
• Main results
• Evaluation
Unifying Framework

- We consider three families of algorithms and propose a generalized framework subsumes all previous efforts
 - **Vertex Iterator (VI):** methods T_1-T_6 that check neighbor pairs against a hash table
 - **Scanning Edge Iterator (SEI):** methods E_1-E_6 that run intersection of neighbor lists using sequential scans
 - **Lookup Edge Iterator (LEI):** methods L_1-L_6 that offers no CPU-cost benefits over VI, but have higher I/O

- It may seem that the order in which neighbors are visited (along in/out edges) is unimportant
 - However, this makes a noticeable difference!
 - Furthermore, improvement in cost is not limited to just constants, but asymptotics as well
Unifying Framework

- A total of 18 distinct methods, but many have identical cost; need to prune the result
Unifying Framework

• Four competing algorithms

• To minimize the runtime, need to consider the ratio of cost to speed

Table 3: Single-core speed (million nodes/sec) using an Intel i7-3930K @ 4.4 GHz.

<table>
<thead>
<tr>
<th>Family of algorithms</th>
<th>Operations</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex iterator</td>
<td>Hash table</td>
<td>19</td>
</tr>
<tr>
<td>Lookup edge iterator (LEI)</td>
<td>Hash table</td>
<td>19</td>
</tr>
<tr>
<td>Scanning edge iterator (SEI)</td>
<td>SIMD intersection</td>
<td>1,801</td>
</tr>
</tbody>
</table>

• The speed can be easily benchmarked, what remains is to decide the optimal cost for each method
 - Note that \(E_1/E_2 \) have strictly more operations than \(T_1/T_2 \)
Agenda

- Introduction
- Background
- Unifying framework
- Main results
- Evaluation
Main Results

• Many assumptions and details omitted (see the paper)

• **Theorem:** the cost of all 18 methods can be summarized by a sum of functions of order statistics

\[E[c_n(M, \theta_n)|D_n] \approx \frac{1}{n} \sum_{i=1}^{n} g(d_i(\theta_n))h(q_i(\theta_n)) \]

 where \(g(x) = x^2 - x \), \(h(x) \) is given by the table above, and \(q_i(\theta_n) \) depends only on the permuted degree sequence

• Since the degree \(d_i(\theta_n) \) is sorted (e.g., \(d_1(\theta_D) \) is the largest), this sum has some peculiar properties
 - Asymptotic behavior of averages in the above form is studied in a field of \(L \)-estimators
Main Results

• We leverage Glivenko-Cantelli results for functions of order statistics [Wellner 1978, van Zwet 1980]

• Theorem:
\[
\lim_{n \to \infty} E[c_n(\mathcal{M}, \theta_A)|D_n] = E[g(D)h(J(D))]
\]
\[
\lim_{n \to \infty} E[c_n(\mathcal{M}, \theta_D)|D_n] = E[g(D)h(1 - J(D))]
\]

 - where $J(x)$ is the spread distribution of $F(x)$

• In particular,
\[
\lim_{n \to \infty} E[c_n(T_1, \theta_D)|D_n] = \frac{E[g(D)(1-J(D))^2]}{2}
\]
\[
\lim_{n \to \infty} E[c_n(E_1, \theta_D)|D_n] = \frac{E[g(D)(1-J^2(D))]}{2}
\]
Main Results

• However, non-monotonic permutations require a different approach and new theory

• Suppose θ_n converges to a random map $\xi(u)$
 - Random variable $\xi(u)$ specifies the new (permuted) location of nodes i that originate in the vicinity of $u = i/n$

• Theorem: the limiting cost under any convergent sequence of permutations is given by

\[
\lim_{n \to \infty} E[c_n(M, \theta_n)|D_n] = E[g(D)h(\xi(J(D)))]
\]

• Both the model and derivations are much simpler than in prior work, even though we can handle a much wider class of methods/permutations
Main Results

- This allows us to establish optimal permutations for certain families of functions $h(x)$

- **Theorem**: T_1 and E_1 are both optimized by θ_D, T_2 by round-robin θ_{RR}, and E_4 by complementary RR θ_{CRR}
 - RR is a new permutation that places large degree towards the outside of the range $[1, n]$.
 - CRR is another new permutation that does the opposite (large degree in the center).

- We can finally compare these methods under their respectively optimal θ_n
 - **Theorem**: $c_n(T_1, \theta_D) < c_n(T_2, \theta_{RR})$ for all $F(x)$
 - **Theorem**: $c_n(E_1, \theta_D) < c_n(E_4, \theta_{CRR})$ for all $F(x)$
Main Results

• When is VI better than SEI?
 - Cost of T_1 is finite iff $\alpha > 4/3$; that of E_1 iff $\alpha > 1.5$
 - Consequently, there are graphs where T_1 is always faster in the limit no matter what hardware is used
 - In real-world graphs, E_1 has 2-3x more cost, but 100x faster execution using SIMD intersection (see our ICDM 2016 paper)

• Derived limits are exact for all cases
 - Numerically accurate for small n in graphs with constrained degree; for large n, whenever the asymptotic cost is finite
 - Open issue: accurate models for small n, infinite limiting cost, and unconstrained degree

• In summary, both permutation and neighbor visit order change the asymptotics of cost!
Agenda

- Introduction
- Background
- Unifying framework
- Main results
- Evaluation
Evaluation: Constrained Graphs

Table 6: Cost with $\alpha = 1.5$ and root truncation.

<table>
<thead>
<tr>
<th>n</th>
<th>$T_1 + \theta_A$</th>
<th>$T_1 + \theta_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sim (50)</td>
<td>error</td>
</tr>
<tr>
<td>10^4</td>
<td>159.1</td>
<td>155.6</td>
</tr>
<tr>
<td>10^5</td>
<td>518.0</td>
<td>516.6</td>
</tr>
<tr>
<td>10^6</td>
<td>1,355.6</td>
<td>1,354.5</td>
</tr>
<tr>
<td>10^7</td>
<td>3,089.1</td>
<td>3,089.2</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Table 7: Cost with $\alpha = 1.7$ and root truncation.

<table>
<thead>
<tr>
<th>n</th>
<th>$T_2 + \theta_D$</th>
<th>$T_2 + \theta_{RB}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sim (50)</td>
<td>error</td>
</tr>
<tr>
<td>10^4</td>
<td>102.3</td>
<td>103.7</td>
</tr>
<tr>
<td>10^5</td>
<td>260.0</td>
<td>261.4</td>
</tr>
<tr>
<td>10^6</td>
<td>467.0</td>
<td>467.4</td>
</tr>
<tr>
<td>10^7</td>
<td>674.6</td>
<td>675.4</td>
</tr>
<tr>
<td>∞</td>
<td>1,307.6</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation: Unconstrained Graphs

<table>
<thead>
<tr>
<th>n</th>
<th>$T_1 + \theta_A$ sim (50)</th>
<th>$T_1 + \theta_D$ sim (50)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>7,158</td>
<td>6,452</td>
<td>$-9.9%$</td>
</tr>
<tr>
<td>10^5</td>
<td>25,770</td>
<td>24,303</td>
<td>$-5.7%$</td>
</tr>
<tr>
<td>10^6</td>
<td>84,441</td>
<td>82,815</td>
<td>$-1.9%$</td>
</tr>
<tr>
<td>10^7</td>
<td>274,876</td>
<td>270,125</td>
<td>$-1.7%$</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>356.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Cost with $\alpha = 1.5$ and linear truncation.

<table>
<thead>
<tr>
<th>n</th>
<th>$T_2 + \theta_D$ sim (50)</th>
<th>$T_2 + \theta_{RR}$ sim (50)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>499.4</td>
<td>854.4</td>
<td>71.1%</td>
</tr>
<tr>
<td>10^5</td>
<td>725.4</td>
<td>1,096.6</td>
<td>51.2%</td>
</tr>
<tr>
<td>10^6</td>
<td>907.7</td>
<td>1,216.7</td>
<td>34.0%</td>
</tr>
<tr>
<td>10^7</td>
<td>1,041.5</td>
<td>1,270.0</td>
<td>21.9%</td>
</tr>
<tr>
<td>∞</td>
<td>1,307.6</td>
<td></td>
<td>770.4</td>
</tr>
</tbody>
</table>

Table 10: Cost with $\alpha = 1.7$ and linear truncation.
Evaluation: Real Graphs

- Model predictions
 - Descending degree is optimal for T_1, E_1
 - RR is optimal for T_2, CRR for E_4
 - The best cost of E_1 is double that of T_2

- Degenerate permutation minimizes the largest out-degree
 - This improves T_1 by ~10%, but increases cost of the other methods 2-3x

Table 12: CPU operations on Twitter.
Thank you!

Questions?