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Abstract—Since inception, DNS has used a TTL-based re-
plication scheme that allows the source (i.e., an authoritative
domain server) to control the frequency of record eviction from
client caches. Existing studies of DNS predominantly focuson
reducing query latency and source bandwidth, both of which
are optimized by increasing the cache hit rate. However, this
causes less-frequent contacts with the source and results in higher
staleness of retrieved records. Given high data-churn rates at
certain providers (e.g., dynamic DNS, CDNs) and importance
of consistency to their clients, we propose that cache models
include the probability of freshness as an integral performance
measure. We derive this metric under general update/download
processes and present a novel framework for measuring its value
using remote observation (i.e., without access to the source or the
cache). Besides freshness, our methods can estimate the inter-
update distribution of DNS records, cache hit rate, distribution
of TTL, and query arrival rate from other clients. Furthermo re,
these algorithms do not require any changes to the existing
infrastructure/protocols.

I. I NTRODUCTION

To keep up with the explosive growth of Internet traffic,
end-to-end caches continue to be an important part of many
distributed systems, including search engines [7], [9], [32],
wireless mobile networks [15], [16], P2P structures [34], [37],
CDNs [6], [26], DNS [8], [22], [30], data warehouses [36],
and various web applications [12], [14], [23], [35]. If ICN
(Information-Centric Networking) [1] becomes successful, the
Internet may eventually see cache deployment even at the
network layer (i.e., at each router). Therefore, modeling cache
performance is crucial to our current and future understanding
of data churn at origin servers, Internet core, and customer
facilities, including such metrics as bandwidth consumption,
data consistency (i.e., freshness), and latency.

Depending on the eviction policy, cache operation can be
classified intocapacity-basedand TTL-based. In the former
case, arrival of new items into a full cache causes immediate
removal of elements deemed unpopular (e.g., using LRU, LFU,
CLOCK, FIFO, Random, and their variations [28]). In the
latter case, which is our focus in this paper, items are evicted
only when their TTL expires, meaning that cache size is
considered infinite. This approach is more suitable in scenarios
where objectstaleness, rather than storage limitations, are of
primary concern and the duration an item remains cached must
be controlled by the source based on the record’s churn rate
(i.e., frequency of modification).
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One particular area, where TTL-based caching has long
been part of the standard, is DNS. With the wide adoption
of dynamic DNS services and proliferation of CDN, many
authoritative domains now frequently change IP addresses and
other records to reflect content availability, load on the servers,
and routing/geographic preferences, with more such activity
expected in the future [11]. While the cache hit ratioh has
been the sole metric of performance for many years [4], [5],
[13], [17], [18], [19], [20], [22], the modern Internet requires
a different modeling objective that would balance record
freshness against cache efficiency. In this context, simply
maximizing the hit rate, which essentially means setting the
TTL to infinity, is not a meaningful pursuit. Instead, the
system involves a tradeoff – higher hit ratesh require items to
stay longer in the cache, while better freshnessf entails the
opposite. Unfortunately, the interplay between these metrics
has not received much attention in the past.

In order to keep staleness below target levels, one requires
a methodology for estimatingf within the confines of the
current DNS protocol. This process, which we callremote
measurement, must garner hidden information that is held at
both the source and the cache, but without access to either.
This makes samplingf a formidable challenge. While existing
studies [2], [10], [27], [31], [39] provide a framework for
estimatingh and user-request rateλ, these methods cannot
be easily extended to handle freshness. In fact, just presence
of random TTLs renders these techniques impossible to use.
We aim to fill this void below.

II. RELATED WORK

The first direction in previous studies focuses on modeling
TTL-based caching, where hit rateh has been the most
common metric of interest. The majority of literature [2],
[10], [31] assumes that clients send background queries using
a Poisson process with some rateλ, which in certain cases
approximates user requests rather well [11]. General renewal
processes are considered in [17], [22]; however, they do not
admit closed-form expressions forh and require numerical
solutions to the renewal equation. The TTL is usually modeled
as a constant [2], [22], [31], althoughh has been analyzed
under a more general distribution in [4], [17], [22]. In all
cases except [4], the time to download the object is assumed
negligible compared to the TTL.

The second direction aims to remotely sample DNS re-
solvers and obtain an estimate ofλ, assuming the cache
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Fig. 1. Operation of DNS caching.

applies constant TTLs known to the observer. This usually
requires either Poisson queries [2], [31] or hyper-exponential
inter-request delays [27]. For arrivals with longer memory, it
currently appears difficult to recoverλ with high accuracy.

The last direction studies object staleness under networked
replication. The interplay between general update/download
processes is covered in [24] and a number of unbiased techni-
ques for estimating the update distribution is proposed in [25].
We review some of their results below. In the context of DNS,
freshness is taken into account only by [10], which analyzes
the expected number of missed updates between a download
and subsequent queries. If updates and user queries are both
Poisson, [10] proposes a staleness-measurement technique
that requires sources and their caches to exchange real-time
information on the observed updates/requests. Because we do
not assume cooperation, this is an orthogonal problem to the
one studied here.

III. PERFORMANCEMETRICS OFDNS CACHES

A. System Operation and Notation

Assume a system with a single source, a single replica, and
a number of clients that query the replica for a particular data
item owned by the source. As shown in Fig. 1, a common
networking scenario covered by this model is DNS, where the
source is an authoritative server for some domain, the replica
is a local DNS resolver, and clients are regular end-hosts. The
replica operates based on the TTL provided by the source –
each downloadk is accompanied by a parameterTk ≥ 0 that
specifies how long the item must remain cached. In all replies,
the cache provides to clients the residual delay before they
must discard the object. This information is valuable not only
during hierarchical caching (e.g., within the OS or browser),
but also in remote measurement, as we discuss shortly.

In traditional DNS, the source decidesTk using some
internal algorithm (e.g., based on the current load on the
available servers, routing preferences, object volatility). This
makes the TTL time-varying. Additionally, existing studies [3],
[8], [30], [33] show that a large fraction of DNS resolvers
violate the source-provided TTL. Reasons for such behavior
include attempts to impede cross-site scripting attacks [21]and
reduction of cache inconsistency through TTL adaptation [10].
Therefore, the effective TTL may be highly variable not only
due to source decisions, but also cache policies. To cover
such cases, we model{Tk} as iid random variables with some
distributionFT (x).

At the source, suppose the object sustains thei-th update
at time ui and processNU (t) = max(i : ui ≤ t) counts
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Fig. 2. Process notation.

the number of such events in[0, t]. We assume thatNU

is age-measurable, which is the weakest set of conditions
under which various sample-path averages related to staleness
are convergent [24]. Age-measurability is a generalization of
renewal processes that allows non-stationary dynamics as long
as the empirical distribution of cycle lengths converges toa
deterministic function. Similarly, denote byqj the time of
client queryj ≥ 1 and assumeNQ(t) = max(j : qj ≤ t) is a
renewal process that has no point at zero, i.e.,q1 ∼ FQ(x).

Following Fig. 2, suppose inter-update durations areUi =
ui+1 − ui and inter-query intervals areQj = qj+1 − qj . It
then follows [24] that the collection of variables{Ui}∞i=1 has
some distributionFU (x) and{Qj}∞j=1 has another distribution
FQ(x). A combination ofNQ and FT (x) uniquely defines
the download processND between the source and the cache.
Assuming itsk-th point isdk, we get thatND(t) = max(k :
dk ≤ t). In Fig. 2,Dk = dk+1−dk represents inter-download
gaps ofND, dashed arrows are synchronization instances with
the source, and the bold-line ON/OFF process corresponds to
object presence in the cache. For all cycles lengths, we assume
their mean is positive and finite.

B. Hit Rate

DefineT ∼ FT (x) to be a generic variable with the same
distribution as the TTL. Then, hit rate [4], [17], [22]

h =
E[NQ(T )]

1 + E[NQ(T )]
(1)

is the fraction of queries that arrive during ON periods in
Fig. 2. The numerator of (1) is the expected number of client
queries in[0, T ], i.e., after the object has been cached, and the
denominator adds1 to account for the first packet that started
the ON cycle.

Notice thatE[NQ(T )] increases for stochastically largerT
or stochastically smallerQ, which implies thath in (1) does
too. Intuitively, this makes sense – longer ON periods in Fig.
2 or faster query rates yield better hit rates. The opposite holds
when the conditions are reversed.

C. Freshness

As the DNS record keeps changing, cache responses may
become outdated compared to the current state at the source.
For the example in Fig. 2, the item provided to clients at time
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Fig. 3. Age and residual of the update process.

qj is fresh, while that atqj+1 is stale. Let theupdate residual
at time t be the distance to the next update point

RU (t) := uNU (t)+1 − t, (2)

and theupdate agebe the delay to the previous point

AU (t) := t− uNU (t), (3)

which are illustrated in Fig. 3. IfNU is age-measurable, the
distributions of variables (2)-(3) sampled at uniform points t
converges to the equilibrium CDF [24]

GU (x) :=
1

E[U ]

∫ x

0

(1 − FU (y))dy. (4)

Besides variablesAU , RU ∼ GU (x) needed for various
purposes throughout the paper, we often utilize distributions in
the form of (4) for other processes. In these cases, a subscript
indicates the underlying random variable that governs the
cycles of the process, e.g.,GT (x) refers to the equilibrium
distribution of FT (x), while AT , RT ∼ GT (x) are the
corresponding age and residual random variables.

Supposefreshnessf is the long-term fraction of queries that
return an object that is consistent with that at the source. It is
common to use the termstaleness[29], [40] to refer to1− f .
For either quantity to be computable using the properties of
the underlying processes (i.e., without access to both source
and cache logs), it is necessary that processes(NU , NQ) be
age-independent[24], which means that their cycle lengths not
enter a permanent phase-lock ast → ∞. This condition can be
satisfied by requiring that one ofFU (x), FQ(x) be non-lattice
(i.e., not defined on rational numbers). For the remainder of
the paper, we assume that all defined processes are pairwise
age-independent.

Theorem 1:Cache replies are fresh with probability

f =
1 + E[NQ(min(RU , T ))]

1 + E[NQ(T )]
. (5)

D. Freshness-Efficiency Tradeoff

The effect ofT and Q on freshness is quite a bit more
complex than on the hit rate. Simply makingT stochastically
larger (orQ smaller) is not enough to predict the change in
f in every circumstance. The problem is that (5), unlike (1),
has different expressions in the numerator and denominator. In
one special case, however, we can establish the asymptotics
of how the TTL and query rates affect staleness.

Theorem 2:If E[Tn] → ∞ andFQ(x) is fixed, freshness
underTn converges to 0. IfQn = Q/n, whereQ ∼ FQ(x),
andFT (x) is fixed, freshness underQn converges from above
to E[min(RU , T )]/E[T ] asn → ∞.
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Fig. 4. Cache tradeoffs (ParetoU, T,Q with E[U ] = 20 sec).

Intuitively, this result holds because larger TTL yields less-
frequent downloads from the source and largerλ produces
more stale queries per synchronization event. With the excep-
tion of esoteric counter-examples, this generally means that
freshness and hit rate are tradeoffs of each other. To illustrate
this point, Fig. 4(a) variesE[T ] and plotsf as a function of
h, where the two models come from (1) and (5). As predicted,
longer TTLs driveh → 1 andf → 0, reaffirming the tradeoff.
A similar picture emerges in Fig. 4(b) asλ changes, except
heref → E[min(RU , T )]/E[T ] = 1/3 as hit rateh → 1.

E. Large User Base

When the local resolver sustains queries from a large
population of users, it might be sensible to modelNQ as
a Poisson process, which is a common assumption in the
field [2], [10], [31]. Under exponentialQ, inter-download
delay D becomes a convolution of ON/OFF cycle lengths,
i.e., D = T + Q. Furthermore, lettingλ = 1/E[Q] be the
request-arrival rate, (1) transforms into

h =
λE[T ]

1 + λE[T ]
(6)

and (5) simplifies to

f =
1 + λE[min(RU , T )]

1 + λE[T ]
. (7)

The next result establishes a more useful representation of
freshness by making it an explicit function ofh.

Theorem 3:Under Poisson queries, freshness is given by

f = 1− h+ hp, (8)

wherep := P (RT < RU ).
Re-writing (8) asf = 1−h(1−p), it is clear that increasing

λ, which also increasesh, causes freshness to go down. This
is consistent with our earlier conclusions about (5).

IV. PASSIVE MEASUREMENT

A. Preliminaries

Assume that the local resolver needs to estimate the long-
term freshnessf of a given object in its cache. The reasons
for this objective could be numerous (e.g., performance mo-
nitoring), but consider a more concrete example. Suppose the
source providesTk = 40 seconds for allk, but this leads
to 10% freshness for the specific user processNQ at this
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Fig. 6. Model roadmap for passive monitoring.

cache. Assuming that the replica has enough spare bandwidth
to sustain more frequent downloads, it may decide to lowerTk

(i.e., preemptively evict records that are likely stale) inorder
to achieve a certain freshness guarantee to its clients, while
still maintaining a reasonable level of latency. Since process
NQ is localized to each cache, the source has no ability to
optimizeTk simultaneously for all of its replicas.

We call a cacheadaptive(i.e., staleness-aware) if it selects
GT (x) such that freshnessf in (5) is maintained at some
desired threshold. For the scenario in Fig. 4, deterministic T ,
and90% freshness, Fig. 5(a) shows the relationship between
the query rateλ and TTL. Observe that more-frequent client
requests mandate a sharp decrease inE[T ], while less-loaded
conditions do the opposite. The corresponding hit rate is
provided in Fig. 5(b) in comparison to the default40-second
eviction delay. If the object is requested more often than once
every2 minutes, the adaptive strategy exhibits lower hit rates
and requires more bandwidth, but provides fresher records.
The situation is reversed when the record is less popular.

As shown in Fig. 6, parametersh, NQ, and FT (x) can
be locally determined by the resolver. On the other hand,
estimation off at the replica, which we callpassive sampling,
requires an inference process that obtains the residual update
distributionGU (x). The rest of the section focuses on this.

B. Sampling Update Age

Recall from Fig. 2 that the cache contacts the source
at points {dk}, which form some download processND.
From our assumptions,(NU , ND) are age-independent, which
allows application of the various techniques in blind sam-
pling [25]. There are three variations of methods based on
the capabilities of the source. In the first case, the source
explicitly provides the update ageAU (dk) from Fig. 3 during
each downloadk, e.g., using protocol fields such as HTTP
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Fig. 7. Bounding the update age in passive measurement.

headers. For this scenario, [25] develops a method called
M2 that is asymptotically unbiased and quickly convergent.
Unfortunately, this scenario does not apply to DNS.

As a result, the cache has to infer presence of updates by
comparing adjacent versions of downloaded records. Define a
binary process∆k to be1 if the object is detected as modified
during downloadk. When inter-download delaysDk are all
constant, the second class of methods in [25] uses{∆k}∞k=1

to estimateGU (x) with asymptotically consistency. However,
again, this formulation does not work for our problem since
Dk is a complex random variable that subsumesTk and the
preceding OFF period in Fig. 2, both of which are random.

This leaves us with the third class of methods in [25], which
consists of a single technique M6 that works with{∆k}

∞

k=1

and randomDk. It has two drawbacks – quadratic computation
time in the number of downloadsn and lower accuracy
compared to the remaining methods in [25]. Therefore, our
first goal is to improve this technique in both aspects.

C. Non-Parametric EM

Blind-sampling methods work by estimating the unknown
update ageAU (dk) in download points. Instead of rounding
this to some value, as done in [24], our novel approach is
to provide the estimator withinterval-censoredvalues, i.e.,
upper/lower bounds onAU (dk). Defineγ(k) = max(i ≤ k :
∆i = 1) to be the last download in[0, dk] that detected a
modification. Consider Fig. 7 and suppose the current time is
dk. Then, the latest update at the source is always confined to
the interval(dγ(k)−1, dγ(k)]. This immediately yields

dk − dγ(k) ≤ AU (dk) ≤ dk − dγ(k)−1. (9)

Suppose the lower bound in (9) isLk and the upper isRk.
Then, our technique, which we call Chameleon1, collects a
sequence of pairs{(Lk, Rk)}nk=1 and feeds them into a non-
parametric Expectation Maximization (EM) estimator. Our
model draws inspiration from Turnbull’s method for interval
censoring [38]. First, we quantize the bounds to be a multiple
of some bin size, whereLk is roundeddownandRk up. We
then combine upper/lower bounds into a single vector, sort
the result ascending, eliminate duplicates, and obtain a new
set (x1, . . . , xm), wherem ≤ 2n. From this, we can form
non-overlapping binsBi = [xi−1, xi), wherex0 = 0.

Let pi(t) be the estimated probability that the target random
variableAU ∼ GU (x) belongs to binBi during stept of

1Chameleons belong to the family of ambush predators, which blend into
the environment and passively monitor their surroundings.
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the iteration, wherepi(0) = 1/m for all i. Now defineaik
to be an indicator variable thatBi is entirely contained in
the discretized interval from downloadk. Using non-quantized
bounds, this can be expressed as

aik =

{

1 Bi ∩ [Lk, Rk] 6= ∅

0 otherwise
. (10)

Next, defineVk(t) to be the probability thatAU ∼ GU (x)
belongs to[Lk, Rk] during iterationt

Vk(t) =

m
∑

i=1

aikpi(t). (11)

Each probability is then refined using recurrence

pi(t+ 1) =
pi(t)

n

n
∑

k=1

aik
Vk(t)

(12)

until the stopping criterion is satisfied, i.e.,||p(t+1)−p(t)|| <
ǫ, whereǫ > 0 is a constant, andp(t) = (p1(t), . . . , pm(t)).
Note that this process is asymptotically accurate [38], i.e., (12)
converges toGU (x) asn → ∞.

D. Implementation

A naive version of (10)-(12) calculates allmn valuesaik
and keeps them in RAM, which is highly inefficient. In the
worst case (i.e.,m = 2n), this computation is quadratic in
both space/time. Instead, we offer Algorithm 1 whose per-
iteration CPU complexityO(n) and storage costO(m) are
optimal. Prior to calling FastEM, assume the program has
already determined bin boundaries(x1, . . . , xm) and mapped
each pair (Lk, Rk) to the appropriate bin using an array
of structs, i.e.,intervals[k].L andintervals[k].R.
Note that duplicate tuples(Lk, Rk) are compressed such that
intervals[k].count is the corresponding frequency.

After initialization, Algorithm 1 computes the CDF ofAU

using a prefix sum of the PMF arrayp (Line 7). Padding with
a front zero is needed to properly computeVk in Line 9. We
then use a temporary arrayZ to accumulate all weights1/Vk

that will be distributed into the relevant bins after the loop is
over. Specifically,Z[i] stores increments that must be applied
to the PMF in position[i,m]. This requires adding1/Vk at
the left boundary of the interval (Line 10) and subtracting it at
the right boundary (Line 11). The second loop in Lines 13-15
computes a prefix sum ofZ and stores the result, normalized
by pi(t)/n, into the same vector.

With compression of duplicate intervals, the number of
unique boundaries supplied to Algorithm 1 is upper-bounded
by min(m(m − 1)/2, n). If m ≪ n and the runtime is
dominated by iteration in Lines 3-4, rather than the initial
n logn sort, Chameleon can exhibit sublinear scaling in a
limited range ofn. We show such an example below.

E. Concave EM

Note thatGU (x) in (4) has a monotonically decreasing
density gU (x) = G′

U (x) ∼ 1 − FU (x). As a result,GU (x)
is a concave function. This is an important property that

Algorithm 1: Chameleon’s implementation of (12).

1 Function FastEM(intervals, m)
2 p = (1/m, 1/m, . . . , 1/m); ⊳ initial guess
3 while not converged do
4 p = OneIteration (intervals, p, m)
5 Function OneIteration(intervals, p, m)
6 Z = zeros (1, m+1); ⊳ temp storage
7 cdf = prefix sum ([0 p]); ⊳ CDF padded with 0 at front
8 for k = 1 to intervals.size() do
9 Vk = cdf [intervals [k].R] − cdf [intervals [k].L];

10 Z [intervals [k].L] += intervals [k].count / Vk;
11 Z [intervals [k].R] −= intervals [k].count / Vk;
12 psum = 0; ⊳ prefix sum of Z
13 for i = 1 to m do
14 psum += Z [i]; ⊳ total weight from all intervals
15 p [i] ∗= psum / n ; ⊳ normalize and save
16 return p;

must be preserved by the estimator, especially if recovery
of FU (x) = 1 − gU (x)/gU (0) is needed fromGU (x). Since
the density is commonly estimated by scaling and smoothing
the PMF, a proper solution would guaranteepi(t) ≥ pi+1(t).
Unfortunately, (10)-(12) fail to do so. Furthermore, none of
the previous literature has considered this issue before.

To overcome the setback, we offer a new EM algorithm
that ensures proper recovery of residual (i.e., concave) CDFs.
Define δi = xi − xi−1 to be the length of thei-th bin and
let gi(t) = pi(t)/δi be the corresponding estimate of density,
wheregm+1 = 0. Suppose

qi(t) = xi(gi(t)− gi+1(t)) (13)

models the negative derivative ofgi(t), normalized such that
∑m

i=1 qi(t) = 1. Observe that if the estimated densitygi(t)
is a decreasing function ofi, then qi(t) ≥ 0 for all i. The
opposite holds as well since

gi(t) =

m
∑

j=i

qj(t)

xj

. (14)

We next create an EM algorithm forqi(t) such thatqi(t) ≥
0 is preserved during each iteration.

Theorem 4:A concave EM estimator for interval-censored
data is given by

qi(t+ 1) =
qi(t)

nxi

i
∑

j=1

δj

n
∑

k=1

ajk
Vk(t)

. (15)

Note that (15) uses variables from (10)-(11), which requires
further elaboration. Before the first iteration, we setpi(0) =
δi/xm, which ensures a monotonic initial density, and convert
p(0) into vectorq(0) using (13). This requires one pass over
all m bins. Then, we represent (15) as

qi(t+ 1) =
qi(t)

nxi

i
∑

j=1

δjWj(t), (16)

where

Wj(t) =

n
∑

k=1

ajk
Vk(t)

. (17)
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Note that the entire set{Wj(t)}mj=1 can be computed by
calling a slightly modified function OneIteration in Algorithm
1, where Line 15 does not have thepi(t)/n multiplier. Once
all {Wj(t)} are available, an extra prefix sum overm bins
produces (16). Finally,q(t+ 1) is converted back top(t+ 1)
using (14), which requires another scan overm bins. In the
end, per-iteration cost of our concave EM differs from that of
Algorithm 1 by 2m, which is negligible in practice.

V. ACTIVE MEASUREMENT

A. Preliminaries

We now face the issue of estimatingf from a vantage point
outside the cache, which we callactive sampling. This problem
may be of interest to sources (e.g., CDN companies), where
the goal is to measure what types of freshness their TTL algo-
rithms produce at certain customer networks (e.g., Comcast,
Verizon). Additionally, caches may be remotely monitored by
campus networks administrators and researchers, who do not
have access to the logs, to characterize replication efficiency
and diagnose potential problems with bandwidth consumption,
staleness, and performance of deployed algorithms.

Due to the lacking cooperation from the cache, computation
of f is likely intractable unlessNQ is Poisson, which we
assume in the rest of the paper. To calculate (8), we need to
estimatep = P (RT < RU ) and hit rateh, the former of which
requires the residual TTL distributionGT (x) and the residual
update distributionGU (x). This is illustrated in Fig. 8, where
E[T ], λ, andFU (x) can be obtained with no extra overhead
once the three main parameters are known.

Note that sampling must be performed without intrusion
into the ON/OFF process of the cache, which would skew
the result. We therefore assume that the resolver accepts
iterative requests, to which it responds with an error, instead
of contacting the source, if the record is not currently cached.
For cached objects, the resolver returns their remaining TTL,
which equalsRT (t) at time t using our earlier notation.

B. Constant TTL

Previous measurement literature [2], [27], [31] is limited
to estimatingλ and h under constantT . However, even in
our setting with an extra distributionGU (x), the problem
becomes trivial under this condition. AssumeT is a fixed value
that is known to the observer from a-priori contacts with the
source or other means. Checking the cache everyT time units

ensures that every ON period receives at least one sample
point, which allows recovery of the corresponding download
instancedk = tk + RT (tk) − T for all query timestk. The
problem of estimatingGU (x) then becomes identical to that
in passive sampling, where Chameleon provides an excellent
supporting platform. Furthermore, knowledge of the starting
and ending point of each ON interval allows access to all
OFF durations, i.e.,dk − (dk−1 + T ), whose average tends to
1/λ. Finally, the hit rate follows from (6).

C. Random TTL

The issue is significantly more complex when the TTL
varies between cycles, which is our assumption from this point
forward. The challenge stems from the observer’s uncertainty
about the location of download pointdk since only the cache
knows this information. This precludes direct measurement
of the OFF duration or application of Chameleon. We now
formulate our framework for solving these issues.

Suppose the observer is a special client that sends only itera-
tive queries with an objective to determinef with asymptotic
accuracy as the observation window tends to infinity. Assume
that these requests are issued at points{sk} such that inter-
sample delaysSk = sk+1 − sk have some distributionFS(x)
andNS(t) = max(k : sk ≤ t) is an age-measurable process.
Given age-independence between(ND, NS), the ASTA (Ar-
rivals See Time Averages) property of the constructed system
[24] ensures that the fraction of sample points that return a
cached object tends toE[T ]/E[T + Q] as n → ∞. Since
this value directly equalsh, i.e., the first unknown parameter
in Fig. 8, the observer can measure the hit rate without any
additional bandwidth or computational overhead.

Leveraging [24], the observed TTL residuals{RT (sk)}nk=1

converge in distribution toRT ∼ GT (x) as n → ∞. With
iid {Sk} and PoissonNQ, reconstructingGT (x) should be
possible using arbitrary distributionsFS(x), including lattice
cases (e.g., constantSk). Since TTL density

gT (x) = G′

T (x) =
1− FT (x)

E[T ]
, (18)

this procedure yieldsFT (x) and E[T ] = 1/gT (0) using
numerical differentiation ofGT (x). Recalling (6), knowledge
of h andE[T ] producesλ. Finally, assumingGU (x) is known,
all remaining pieces fall into place, i.e.,

p = P (RT < RU ) =

∫

∞

0

(1 −GU (x))gT (x)dx (19)

and thusf = 1− h(1− p). The only still-unknown parameter
in Fig. 8 isGU (x). We focus on its estimation next.

D. Shark

Define s′k to be the first sample point that hits thek-th
ON period seen by the probes and letd′k be the preceding
download time. Then, the observer can lower-boundd′k by

Wk = max(s′k−1 +RT (s
′

k−1),max(si : si < s′k)), (20)

which is the end of the(k − 1)-st ON period or the pre-
ceding sample point, whichever happened later. Similar to
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passive sampling, suppose∆′

k is a binary process that is1
if a modification is detected during interval(s′k−1, s

′

k], i.e.,
the record is different at downloads′k. We further define
γ′(k) = max(i ≤ k : ∆′

i = 1) to be last sample (no later
than k) that detected an update. Note that variables∆k and
γ(k) from passive measurement are unavailable in the active
case, which is why they are replaced with those that can be
computed by the observer, i.e.,∆′

k andγ′(k).
Our main idea is to allow the estimator to utilize residuals

RT (s
′

k) togetherwith the already-recoveredGT (x) to proba-
bilistically determine the location of unknown download points
d′k. Recalling thatAT (s

′

k) is the age of the ON period ats′k, it
follows thatd′k = s′k−AT (s

′

k). The remaining elements of this
approach, which we call Shark2, is to determine the conditional
distribution ofAT (s

′

k) and change the EM algorithm to work
with random bounds[Lk, Rk].

There are two pieces of information known to the observer
that affect the distribution ofAT (s

′

k). The first is residual
y = RT (s

′

k) returned by the cache and the second is upper
boundz = s′k−Wk from preceding samples. Conditioning on
AT < z andRT = y, the tail distribution ofAT is

F̄A(x; y, z) := P (AT > x|RT = y,AT < z)

=
FT (y + z)− FT (x+ y)

FT (y + z)− FT (y)
, (21)

where FT (x) comes from (18). UnlessT is memoryless
(i.e., exponential), parametery provides useful clues about
the possible values of age. For light-tailed distributions(e.g.,
constant, uniform), the age is generally a decreasing function
of y. For heavy-tailed cases (e.g., Pareto), it is the opposite.

Leveraging (9), Shark constrains the update age using
randomupper/lower bounds

Lk = s′k −AT (s
′

k)− s′γ′(k) +AT (s
′

γ′(k)) (22)

Rk = s′k −AT (s
′

k)− s′γ′(k)−1 +AT (s
′

γ′(k)−1), (23)

whereAT (s
′

k) ∼ FA(x;RT (s
′

k), s
′

k −Wk). Note thatγ′(k) =
k implies thatLk = 0, which leaves only two random variables
on the right side of (22)-(23). Otherwise, there are three of
them, all with known parameters needed to construct (21).

For the computation, we discretize interval[0, s′k − Wk]
and replace (21) with a PMF that assigns weights to a number
of bins in that range. We then iterate over all possible ways
to draw the three (or possibly two) age variables from their
respective distributions and compute the probabilityνk for
each deterministic bound[lk, rk]. These are fed into concave
EM, which we modify to take weights into account, i.e., use

Wj(t) =

n
∑

k=1

ajk
Vk(t)

νk. (24)

as a replacement for (17).

2Ram-ventilation sharks, which must continuously swim to avoid oxygen
depletion, are some of the most active animals in the world.
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Fig. 9. Passive estimation ofGU (x) (n = 10K samples).

40 70 130 230 400
10

−2

10
−1

10
0

update interval x+β

C
C

D
F

 

 

sampled
actual

(a) non-concave EM(ǫ = 10−5)

40 70 130 230 400
10

−3

10
−2

10
−1

10
0

update interval x+β

C
C

D
F

 

 

sampled
actual

(b) concave EM(ǫ = 10−5)

Fig. 10. Passive estimation ofFU (x) in Chameleon (n = 10K samples).

VI. EXPERIMENTS

A. Setup

To investigate the accuracy of the developed sampling
techniques, we registered an Internet domain and developed
a custom authoritative serverA, written in C++, that could
answer iterative IPv4 queries from arbitrary Internet hosts.
Each DNS record (i.e., a hostname in our domain) that
participated in the experiment was equipped with an update
processNU , which changed the returned IP at points{ui}. For
passive monitoring, we created another C++ solution that ran a
local DNS serverL, which accepted recursive/iterative queries
from IPs in our subnet and resolved them at the authoritative
server. Note thatA andL were placed on different hosts.

For active sampling, we needed a remote serverR that
allowed recursive queries, returned non-fake answers, and
complied with the source-provided TTL. To discover such
options, we performed a port-53 UDP scan of the Internet in
March 2017 (over2.8B probed IPs) and found 8M responding
hosts. Out of these,3.7M (47%) reported no error and3.2M
(41%) supplied correct answers fromA. We then selected a
subset of IPs from the last list, probed them for several days
to ensure longevity, tested for TTL compliance, and screened
against load-balancers that did not have a common cache. Out
of the surviving options, we picked one at random to beR.

Finally, we added into the mix an observer process and a
background-traffic generator whose purpose was to queryL
or R depending on the scenario. The observer asked iterative
queries after random delaysSk, while the generator sent
packets from the query processNQ. With the exception of
network RTTs and various OS scheduling delays, the system
functioned close to that in Fig. 2 and allowed controlled
experimentation with a known ground-truth.
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TABLE I
RUNTIME IN PASSIVE ESTIMATION OF GU (x)

n M6 Naive EM Algorithm 1
ǫ = 10−4 ǫ = 10−4

104 0.3 sec 9.4 sec 0.06 sec
105 58 sec 2.9 min 0.13 sec
106 2.2 hours 43 min 0.19 sec
107 – 5.5 hours 0.70 sec
108 – – 5.79 sec
109 – – 27.9 sec

Unless mentioned otherwise, we kept the average delay
between updatesE[U ] = 20 seconds. The values ofT
dispatched from the authoritative server were uniform in
[1, 19] seconds, which mimicked Akamai-style churn rates
and TTLs. Background clients sent traffic to the cache using
a PoissonNQ with rate λ = 1 query/sec and the active
observer utilized exponentialS with mean4 seconds. When a
variableX needed to be Pareto-distributed, we drew it from
F (x) = 1 − (1 + x/β)−α, wherex ≥ 0. We keptα = 3 and
β = 2E[X ] throughout all experiments, whereE[X ] was the
desired mean of the variable.

B. Passive Sampling

We start by examining recovery ofGU (x) using our im-
plementation of the local resolverL. As shown in Fig. 9(a)
for ParetoU , method M6 from [25] correctly identifies the
trend of the tail, but the produced estimate is rather noisy.
This approach is not well suited for such small samples sizes
n. Applying the non-concave Chameleon from (12) yields a
much better result in Fig. 9(b). Its main drawback, however,
is that conversion of the residual CDF intoFU (x) is often
impossible in practice. This is illustrated by the mishmash
of points in Fig. 10(a). Upgrading to the concave Chameleon
from (15) leads to an amazingly better outcome in Fig. 10(b).

Table I compares the runtime of M6, the naive implementa-
tion of EM that directly computes (10)-(12), and our version
of Chameleon in Algorithm 1. Observe that quadratic scaling
of M6 quickly makes it infeasible. In fact, in the last row of
the table it requires an extrapolated79 years to finish. The
naive EM scales much better, although it still does not offer
an appealing framework above100K samples. On the other
hand, Chameleon in the last column delivers blazingly fast
results for all input size up to1B. While collecting this many
observations in passive sampling is not likely in practice,recall
that Shark generates a huge number of deterministic bounds
[lk, rk] from (22)-(23). If ageAT (s

′

k) is discretized into50
bins, a workload with10K random bounds[Lk, Rk] produces
500M intervals for concave EM. Therefore, Algorithm 1 is by
far the only feasible way to compute the Shark estimator.

C. Active Sampling

We first analyze accuracy of recovery forGT (x), h, E[T ],
andλ from Fig. 8. The result forGT (x) and its densitygT (x)
is given by Fig. 11, which indicates a strong match. Table
II displays the remaining three parameters and also compa-
res against Chameleon. As expected, Chameleon’s averages
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Fig. 11. Distribution of TTL in active sampling (n = 10K samples).

TABLE II
RELATIVE ESTIMATION ERROR OFSIMPLE PARAMETERS

n Shark Chameleon
h E[T ] λ h E[T ] λ

102 2.94% 16.8% 51.6% 1.58% 4.18% 7.93%
103 0.88% 5.81% 11.5% 0.42% 1.58% 2.79%
104 0.29% 2.40% 3.73% 0.16% 0.41% 0.80%

converge quicker, although active measurement still produces
solid results. Another interesting fact is thatλ in the fourth
column is highly sensitive to errors inh, which comes from
its shapeλ = h/(1− h)/E[T ].

We next evaluate estimation accuracy ofGU (x). Fig. 12
shows the output of Shark, where it recovers all four classes
of distributions with excellent accuracy. A further confirmation
of these findings is given by Table III, where Shark comes
pretty close to matching the performance of Chameleon, even
through the latter operates with substantially more information.

Overall, concave Chameleon emerges as hands-down the
best tool for sampling update dynamics and staleness in
single-blind scenarios (i.e., only the update process is hid-
den) and Shark does the same indouble-blind (i.e., both
update/download processes are invisible to the observer).

VII. C ONCLUSION

We presented a general framework for modeling freshness
in TTL-based caching systems, proposed two novel techniques
for remotely measuring this metric in the current Internet,
and improved the performance of existing update-sampling
algorithms. Even under random TTL, our most advanced
method can recover all unknown parameters of the system (i.e.,
hit and request rate, update/TTL distributions, and freshness),
without requiring any change to the DNS infrastructure.
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