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Simulating the Internet

* Important for:
— Understanding its evolution
— Testing new protocols

— Verifying the performance of network applications
— Etc.

 The key Is to create a random graph that
has the same fundamental properties as the
Internet.




Properties of Internet Graph

* The Internet is a small-world graph

— Small diameter

* Bu et al. found that the average shortest path
between pairs of nodes is small.

— High clustering coefficient
* Measured by Bu et al. in 2002.

* Power-law degree distribution
— First measured by Faloutsos et al. in 1999.
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* The clustering of node v is

where d, is the degree of node vand T, is
the number of triangles containing node v.

* The clustering of a graph is the average of
y, foralld, >2.
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* The Internet graph evolves over time
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Time




Properties of Internet Graph V

« Clustering coefficient as the Internet evolves.




Internet Graph Generators |

« Existing generators can be categorized into
two groups
— Non-evolving: Produces a graph with a fixed
number of nodes n which cannot evolve.
» Given expected degree (GED)
« Power-law random graph (PLRG)
— Evolving: Allows for a variable number of nodes
and maintains properties throughout evolution
« Barabasi-Albert (BA)
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e Given expected degree (GED)

— N pre-assigned weights (w,, ..., w_) are drawn
from a power-law distribution and distributed to n
nodes in the graph

— Edge (i,j) exists with probability:
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e Power-law random graph (PLRG)

— Weight w; drawn from a power-law distribution is
assigned to node i for all n nodes

— Then w; virtual copies of node | are produced
and edges are randomly created among all
virtual copies of the nodes

— Merge the edges created by all virtual copies
into the original n nodes

— Gives results similar to GED
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e Barabasi-Albert (BA)

— BA evolves at discrete time steps

— Initially, m, nodes are created in the graph

— At each time step, a new node is added to the

graph by attaching m edges to existing nodes
chosen with probability:
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where d (1) is the degree of node i at time t.
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Internet Graph Generators V

e These three generators provide a
representative example of the state of
Internet graph generators

e They have two desirable common properties

— They each produce power-law degree
sequences

— They exhibit low diameter

e However, they fail to exhibit the high
clustering property of the Internet graph

— In fact, clustering tends to zero as n increases
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Problem Statement

* Clustering should increase, not decrease!

« Given a connected graph G and a target

clustering value v+, rewire G’s edges and
produce a new graph G’ satisfying

— G’ is connected

— The degree sequence in G’ is the same as that
in G

— G’ has low diameter

— Clustering of G’ is larger than or equal to y; .
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Our Algorithm

1. Mark all edges that are in at least one triangle.

2. Break an edge that is in some k-loop that is not
marked. (V K> 4)

— This maintains the connectivity of the graph

— Degree of the two nodes incident on the edge will be reduced

3. Randomly connect two nodes if
— Their degree is smaller than in the original graph G
— Connecting them will produce at least one new triangle

4. Loop back to step 2 until the clustering of G’ reaches
the target value vy,




Simulation Results |

* Fine control of increase in clustering can be
done by limiting the number of k-cycles broken
per iteration

— We break edges on 2% of all nodes each iteration

* |n all simulations the shape parameter of the
degree distribution is oo = 1.2 and scale
parameteris f = 0.63

* The target clustering y; = .3 in all cases

e Qur algorithm increases the clustering of the
graphs created by existing generators in a
small number of iterations
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Simulation Results V

* Average clustering is increased in all cases

 Distribution of node degree is not changed

— The degree of each node remains relatively
unchanged after our algorithm is run

» Average path length is still small

— After the algorithm is run, the average path
length increases by a very small percentage
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« Table of average path length before and after our
algorithm is run

G G’
GED| 3.68216 3.706753
PLRG| 3.85151 3.633815
BA| 4.10205 4.252274

« Average Path Length is not significantly changed
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Sampling Technigue |

 Calculating the clustering of a graph is not a
trivial operation

— Each edge must be examined at every node.

|t would be very inefficient to calculate the
exact clustering coefficient at every iteration
of our algorithm

« Make use of sampling to estimate clustering

* |n each iteration of the algorithm, this
technique reduces the time complexity from
O(mn) to O(m)
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 Estimate actual clustering vy,(G) by sampled
clustering y,(G) such that:
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« To do this we use a well-known result from
sampling theory to determine the sample size
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Sampling Technique Il

* This guarantees that [y,(G) - v,(G)| does not
exceed error E with probability 1-p.

* Note that the sample size in the formula
does not depend on the number of nodes in
the graph.

« Example: for a graph with 100,000 nodes,
margin of error E=0.1 and p=0.05, we get
Z,,=1.96
— We only need to sample s=1.962/0.22~ 97 nodes.




Conclusions and Future Work

* Our algorithm successfully increases the
clustering of G without modifying its degree

— GED, PLRG, and BA better match the Internet
small-world properties after our algorithm is run

Time complexity of the algorithm needs to
be further analyzed

Devise a new method for generating

Internet graphs that inherently incorporates
the properties of the Internet
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