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Simulating the Internet

• Important for:
– Understanding its evolution
– Testing new protocols 
– Verifying the performance of network applications
– Etc.

• The key is to create a random graph that 
has the same fundamental properties as the 
Internet.



Properties of Internet Graph

• The Internet is a small-world graph
– Small diameter

• Bu et al. found that the average shortest path 
between pairs of nodes is small.

– High clustering coefficient
• Measured by Bu et al. in 2002.

• Power-law degree distribution
– First measured by Faloutsos et al. in 1999.



Properties of Internet Graph II

• The clustering of node v is

where dv is the degree of node v and Tv is 
the number of triangles containing node v.

• The clustering of a graph is the average of 
γv for all dv ≥ 2.



Properties of Internet Graph III
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Properties of Internet Graph IV
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• The Internet graph evolves over time

• Small-world graph properties are maintained 
regardless of the size of the Internet!



Properties of Internet Graph V

• Clustering coefficient as the Internet evolves.

• The clustering coefficient increases over time!
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Internet Graph Generators I

• Existing generators can be categorized into 
two groups
– Non-evolving:  Produces a graph with a fixed 

number of nodes n which cannot evolve.
• Given expected degree (GED)
• Power-law random graph (PLRG)

– Evolving: Allows for a variable number of nodes 
and maintains properties throughout evolution

• Barabasi-Albert (BA)



Internet Graph Generators II

• Given expected degree (GED)
– N pre-assigned weights (w1, …, wn) are drawn 

from a power-law distribution and distributed to n
nodes in the graph

– Edge (i,j) exists with probability:



Internet Graph Generators III

• Power-law random graph (PLRG)
– Weight wi drawn from a power-law distribution is 

assigned to node i for all n nodes

– Then wi virtual copies of node i are produced 
and edges are randomly created among all 
virtual copies of the nodes

– Merge the edges created by all virtual copies 
into the original n nodes 

– Gives results similar to GED



Internet Graph Generators IV
• Barabasi-Albert (BA)

– BA evolves at discrete time steps

– Initially, m0 nodes are created in the graph

– At each time step, a new node is added to the 
graph by attaching m edges to existing nodes 
chosen with probability:

where di(t) is the degree of node i at time t.



Internet Graph Generators V
• These three generators provide a 

representative example of the state of 
Internet graph generators

• They have two desirable common properties
– They each produce power-law degree 

sequences
– They exhibit low diameter

• However, they fail to exhibit the high 
clustering property of the Internet graph
– In fact, clustering tends to zero as n increases



Internet Graph Generators VI
• Clustering in GED decreases as n  increases
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Internet Graph Generators VII
• Clustering in PLRG decreases as n  increases
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Internet Graph Generators VIII
• Clustering in BA decreases as n  increases
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Problem Statement
• Clustering should increase, not decrease!

• Given a connected graph G and a target 
clustering value γT, rewire G’s edges and 
produce a new graph G0 satisfying
– G0 is connected
– The degree sequence in G0 is the same as that 

in G
– G0 has low diameter
– Clustering of G0 is larger than or equal to γT .
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Our Algorithm
1. Mark all edges that are in at least one triangle. 

2. Break an edge that is in some k-loop that is not 
marked. (∀ k ≥ 4)

– This maintains the connectivity of the graph

– Degree of the two nodes incident on the edge will be reduced

3. Randomly connect two nodes if
– Their degree is smaller than in the original graph G

– Connecting them will produce at least one new triangle

4. Loop back to step 2 until the clustering of G0 reaches 
the target value γT



Simulation Results I

• Fine control of increase in clustering can be 
done by limiting the number of k-cycles broken 
per iteration
– We break edges on 2% of all nodes each iteration

• In all simulations the shape parameter of the 
degree distribution is α = 1.2 and scale 
parameter is β = 0.63

• The target clustering γT = .3 in all cases

• Our algorithm increases the clustering of the 
graphs created by existing generators in a 
small number of iterations



Simulations Results II
• Increase in clustering for a GED graph
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Simulations Results III
• Increase in clustering for a PLRG graph
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Simulations Results IV
• Increase in clustering for a BA graph

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50

Iterations

A
ve

ra
ge

 C
lu

st
er

in
g



Simulation Results V

• Average clustering is increased in all cases

• Distribution of node degree is not changed
– The degree of each node remains relatively 

unchanged after our algorithm is run

• Average path length is still small
– After the algorithm is run, the average path 

length increases by a very small percentage 



Simulation Results VI

• Table of average path length before and after our 
algorithm is run

• Average Path Length is not significantly changed

4.2522744.10205BA
3.6338153.85151PLRG
3.7067533.68216GED

G0G
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Sampling Technique I
• Calculating the clustering of a graph is not a 

trivial operation
– Each edge must be examined at every node.

• It would be very inefficient to calculate the 
exact clustering coefficient at every iteration 
of our algorithm

• Make use of sampling to estimate clustering

• In each iteration of the algorithm, this 
technique reduces the time complexity from 
O(mn) to O(m)



Sampling Technique II
• Estimate actual clustering γa(G) by sampled 

clustering γs(G) such that: 

• To do this we use a well-known result from 
sampling theory to determine the sample size 
s:



Sampling Technique III

• This guarantees that |γa(G) - γs(G)| does not 
exceed error E with probability 1-ρ.

• Note that the sample size in the formula 
does not depend on the number of nodes in 
the graph. 

• Example: for a graph with 100,000 nodes, 
margin of error E=0.1 and ρ=0.05, we get 
Zρ/2=1.96
– We only need to sample s=1.962/0.22≈ 97 nodes.



Conclusions and Future Work
• Our algorithm successfully increases the 

clustering of G without modifying its degree
– GED, PLRG, and BA better match the Internet 

small-world properties after our algorithm is run

• Time complexity of the algorithm needs to 
be further analyzed

• Devise a new method for generating 
Internet graphs that inherently incorporates 
the properties of the Internet
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