
644 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

On Lifetime-Based Node Failure and Stochastic
Resilience of Decentralized Peer-to-Peer Networks

Derek Leonard, Student Member, IEEE, Zhongmei Yao, Student Member, IEEE, Vivek Rai, and
Dmitri Loguinov, Member, IEEE

Abstract—To model P2P networks that are commonly faced with
high rates of churn and random departure decisions by end-users,
this paper investigates the resilience of random graphs to life-
time-based node failure and derives the expected delay before a
user is forcefully isolated from the graph and the probability that
this occurs within his/her lifetime. Using these metrics, we show
that systems with heavy-tailed lifetime distributions are more re-
silient than those with light-tailed (e.g., exponential) distributions
and that for a given average degree, -regular graphs exhibit
the highest level of fault tolerance. As a practical illustration of
our results, each user in a system with = 100 billion peers,
30-minute average lifetime, and 1-minute node-replacement delay
can stay connected to the graph with probability 1 1 using
only 9 neighbors. This is in contrast to 37 neighbors required
under previous modeling efforts. We finish the paper by observing
that many P2P networks are almost surely (i.e., with probability
1 (1)) connected if they have no isolated nodes and derive
a simple model for the probability that a P2P system partitions
under churn.

Index Terms—Lifetime node failure, network disconnection,
peer-to-peer networks, stochastic resilience, user isolation.

I. INTRODUCTION

RESILIENCE of both random graphs [6] and different types
of deterministic networks [7], [20] has been a topic of en-

during popularity in research literature. A classical problem in
this line of study is to understand failure conditions under which
the network disconnects and/or starts to offer noticeably lower
performance (such as increased routing distance) to its users.
To this end, many existing models assume uniformly random
edge/node failure and examine the conditions under which each
user [38], certain components [6], or the entire graph [7], [25]
stay connected after the failure.

Analysis of current P2P networks often involves the same
model of uniform, concurrent node failure and varies from
single-node isolation [18], [38] to disconnection of the entire
graph [3], [13], [16], [28]. However, it is usually unclear how
to accurately estimate failure probability in real P2P systems1
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1In the absence of a better estimate, value p = 1=2 is often used for illustra-
tion purposes [38].

such as KaZaA or Gnutella and whether large quantities of users
indeed experience simultaneous failure in practice. Additional
P2P resilience studies examine the required rate of neighbor
replacement to avoid isolation [24], derive the delay before the
system recovers from inconsistencies [29], analyze network
connectivity assuming the existence of an adversary [12], [34],
examine how stabilization delays affect the consistency of
Chord’s finger table [19], and give specific recommendations
for improving routing resilience under user churn [32].

In contrast to the traditional studies above, recent research
[5] suggests that realistic models of P2P node failure should
consider the inherent behavior of Internet users who join and
leave the system asynchronously and base their decisions on a
combination of complex (often unmeasurable) factors including
attention span, browsing habits, and altruistic inclinations [15].
To examine the behavior of such systems, this paper introduces
a simple node-failure model based on user lifetimes and studies
the resilience of -regular P2P networks in which nodes stay
online for random periods of time. In this model, each arriving
user is assigned a random lifetime drawn from some distri-
bution , which reflects the behavior of the user and repre-
sents the duration of his/her services (e.g., forwarding queries,
sharing files) to the P2P community.

We begin our analysis with the passive lifetime model in
which the failed neighbors are not continuously replaced. We
observe that even in this case, a large fraction of nodes are able
to stay online for their entire lifespan without suffering an isola-
tion. Through this relatively simple model, we also show that de-
pending on the tail-weight of the lifetime distribution, the prob-
ability of individual node isolation can be made arbitrarily small
without increasing node degree.

While the passive model certainly allows P2P networks to
evolve as long as the newly arriving nodes replenish enough
broken links in the system, a much more resilient approach
is to require that each user utilize a special neighbor-recovery
strategy that can repair the failed segments of the graph and
maintain constant degree at each node. We thus subsequently
study the active model, where each failed neighbor is replaced
by another node after some random search delay. For this sce-
nario, we derive both the expected time to isolation and
the probability that this event occurs within the lifetime of a
user. We conclude our analysis of the active model by deriving
an upper bound on with heavy-tailed lifetimes and comparing
the resilience of -regular networks to that of degree-irregular
systems.

We finish the paper by bridging the gap between local re-
silience (i.e., isolation of a single node from the graph) and
global resilience (i.e., network disconnection) and show that
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tightly-connected structures (such as DHTs and many -regular
random graphs) partition with at least one isolated node with
probability as the size of the network . This
result demonstrates that metric solely determines the proba-
bility that an evolving P2P network partitions under churn and
that disconnection of such graphs for sufficiently small almost
surely involves a single node.

The rest of the paper is organized as follows. Section II
introduces the lifetime model and discusses our assumptions.
Section III studies the passive model while Sections IV, V
analyze the active model. Section VI extends our node isolation
results to network partitioning and Section VII concludes the
paper.

II. LIFETIME-BASED NODE FAILURE

In this section, we introduce our model of node failure and
explain the assumptions used later in the paper.

A. Lifetime Model and Paper Overview

In the discussion that follows, we consider -regular P2P
graphs and analyze the probability that a randomly selected
node is forced to disconnect from the system because all of
its neighbors have simultaneously departed and left it with no
way to route within the graph. For each user in the system,
let be the amount of time that the user stays in the network
searching for content, browsing for information, or providing
services to other peers.

It has been observed that the distribution of user lifetimes in
real P2P systems is often heavy-tailed (i.e., Pareto) [8], [35],
where most users spend minutes per day browsing the network
while a handful of other peers exhibit server-like behavior and
keep their computers logged in for weeks at a time. To allow
arbitrarily small lifetimes, we use a shifted Pareto distribution

, , to represent heavy-
tailed user lifetimes, where scale parameter can change
the mean of the distribution without affecting its range .
Note that the mean of this distribution
is finite only if , which we assume holds in the rest of
the paper. While our primary goal is the study of human-based
P2P systems, we also aim to keep our results universal and ap-
plicable to other systems of non-human devices and software
agents where the nodes may exhibit non-Pareto distributions of

. Thus, throughout the paper, we allow a variety of additional
user lifetimes ranging from heavy-tailed to exponential.

The most basic question a joining user may ask about the
resilience of lifetime-based P2P systems is what is the proba-
bility that I can outlive all of my original neighbors? We call
this model “passive” since it does not involve any neighbor re-
placement and study it in fair detail in the next section. This
model arises when the search time to find a neighbor replace-
ment is prohibitively high (i.e., significantly above ) or
when peers intentionally do not attempt to repair broken links.
If degree is sufficiently large, it is intuitively clear that a given
node is not likely to out-survive other peers; however, it is
interesting to observe that Pareto distributions of make this
probability significantly smaller compared to the “baseline” ex-
ponential case.

Fig. 1. Degree evolution process leading to isolation under (a) passive and (b)
active models.

In a later part of the paper, we allow users to randomly (with
respect to the lifetime of other peers) search the system for new
neighbors once the failure of an existing neighbor is detected.
We call this model “active” to contrast the actions of each user
with those in the passive model. Defining to be the degree
of at time , the difference between the passive and active
models is demonstrated in Fig. 1, which shows the evolution
of and the isolation time for both models.

B. Modeling Assumptions

To keep the derivations tractable, we impose the following re-
strictions on the system. We first assume that joins a network
that has evolved sufficiently long so as to overcome any tran-
sient effects and allow asymptotic results from renewal process
theory to hold. This assumption is usually satisfied in practice
since P2P systems continuously evolve for hundreds of days or
weeks before being restarted (if ever) and the average lifetime

is negligible compared to the age of the whole system
when any given node joins it.

Our second modeling assumption requires certain stationarity
of lifetime . This means that users joining the system at dif-
ferent times of the day or month have their lifetimes drawn
from the same distribution . While it may be argued that
users joining late at night browse the network longer (or shorter)
than those joining in the morning, our results below can be
easily extended to non-stationary environments and used to de-
rive upper/lower bounds on the performance of such systems.

Finally, we should note that these stationarity assumptions do
not apply to the number of nodes , which we allow to vary
with time according to any arrival/departure process as long as

stays sufficiently large. We also allow arbitrary routing
changes in the graph over time and are not concerned with the
routing topology or algorithms used to forward queries. Thus,
our analysis is applicable to both structured (i.e., DHTs) and
unstructured P2P systems.

III. PASSIVE LIFETIME MODEL

We start by studying the resilience of dynamic P2P systems
under the assumption that users do not attempt to replace the
failed neighbors. As we show below, this analysis can be re-
duced to basic renewal process theory; however, its application
to P2P networks is novel. Due to limited space, we omit the
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Fig. 2. (a) A neighbor’s lifetime L = d � a and its residual life R =

d � t . (b) Location of t is uniformly random with respect to the lives of all
neighbors.

proofs of certain straightforward lemmas and refer the reader to
the conference version [23].

A. Model Basics

We first examine the probability that a node can outlive
randomly selected nodes if all of them joined the system at

the same time. While the answer to this question is trivial, it
provides a lower-bound performance of the system and helps us
explain the more advanced results that follow.

Lemma 1: The probability that node has a larger lifetime
than randomly selected nodes is .

Consider an example of fully-populated Chord [38] with
neighbor table size equal to , where is the total number
of nodes in the P2P network. Thus, in a system with 1 million
nodes, the probability that a randomly selected node outlives

other peers is approximately 4.8%. This implies that
with probability 95.2%, a user does not have to replace any
of its neighbors to remain online for the desired duration .

Note, however, that in current P2P networks, it is neither de-
sirable nor possible for a new node to pick its neighbors such
that their arrival times are exactly the same as ’s. Thus, when

joins a P2P system, it typically must randomly select its
neighbors from the nodes already present in the network. These
nodes have each been alive for some random amount of time be-
fore ’s arrival, which may or may not affect the remainder of
their online presence. In fact, the tail-weight of the distribution
of will determine whether ’s neighbors are likely to exhibit
longer or shorter remaining lives than itself.

Throughout the paper, we assume that neighbor selection
during join and replacement is independent of 1) neighbors’ life-
times or 2) their current ages . The first assumption clearly
holds in most systems since the nodes themselves do not know
how long the user plans to browse the network. Thus, the value
of is generally hard to correlate with any other metric (even
under adversarial selection). The second assumption holds in
most current DHTs [18], [30], [33], [38] and unstructured graphs
[9], [14], [37] since neighbor selection depends on a variety of
factors (such as a uniform hashing function of the DHT space
[38], random walks [14], interest similarity [37], etc.), none of
which are correlated with node age.

The above assumptions allow one to model the time when
selects each of its neighbors to be uniformly random within
each neighbor’s interval of online presence. This is illustrated in
Fig. 2(a), where is the join time of node , and and are
the arrival and departure times of neighbor , respectively. Since
the system has evolved for sufficiently long before joined, the

probability that finds neighbor at any point within the in-
terval can be modeled as equally likely. This is schemat-
ically shown in Fig. 2(b) for four neighbors of , whose intervals

are independent of each other or the value of .
Next, we formalize the notion of residual lifetimes and ex-

amine under what conditions the neighbors are more likely to
outlive each joining node . Define to be the re-
maining lifetime of neighbor when joined the system. As
before, let be the CDF of lifetime . Assuming that
is large and the system has reached stationarity, the CDF of
residual lifetimes is given by [31]

(1)

For exponential lifetimes, the residuals are trivially exponen-
tial using the memoryless property of : ;
however, the next result shows that the residuals of Pareto dis-
tributions with shape are more heavy-tailed and exhibit shape
parameter .

Lemma 2: The CDF of residuals for Pareto lifetimes with
, is given by

(2)

This outcome is not surprising as it is well-known that
heavy-tailed distributions exhibit “memory,” which means
that users who survived in the system for some time
are likely to remain online for longer periods of time than the
arriving users. In fact, the larger the current age of a peer, the
longer he/she is expected to remain online. The occurrence of
this “heavy-tailed” phenomenon in P2P systems is supported
by experimental observations [8] and can also be explained on
the intuitive level. If a user has already spent 10 hours in the
system, it is generally unlikely that he/she will leave the network
in the next 5 minutes; however, the same probability for newly
arriving peers is substantially higher as some of them depart
almost immediately [35].

Since the rest of the derivations in the paper rely on (1), it
is important to verify that asymptotic approximations from re-
newal process theory actually hold in practice, which we ac-
complish via numerical simulations. We created a hypothetical
system with users and degree , in which each
node lived for a random duration and then departed from the
system. To prevent the network size from depleting to zero, each
failed node was immediately replaced by a fresh node with an-
other random lifetime (the exact arrival process was not es-
sential and had no effect on the results). For each new arrival
into the system, we recorded the residual lifetimes of the neigh-
bors that randomly selected from the pool of online
peers.

Results of two typical simulations are plotted in Fig. 3 for the
exponential and Pareto lifetimes. As we often do throughout the
paper, parameters and are selected so that is 0.5 hours
for both distributions and the scaling parameter is set to 1 in
the Pareto . As the figure shows, the residual exponential
distribution remains exponential, while the Pareto case becomes
more heavy-tailed and indeed exhibits shape parameter
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Fig. 3. Residual lifetimes in simulation. (a) Exponential with� = 2; (b) Pareto
with � = 3, � = 1.

. Further notice in the figure that the exponential are limited
by 4 hours, while the Pareto stretch to as high as 61 hours.

While it is clear that node arrival instants are uncorrelated
with lifespans of other nodes, the same observation holds
for random points at which the th neighbor of fails. We
extensively experimented with the active model, in which addi-
tional node selection occurred at instants and found that all
obtained in this process also followed (1) very well (not shown
for brevity).

B. Resilience Analysis

Throughout the paper, we study resilience of P2P systems
using two main metrics—the time before all neighbors of are
simultaneously in the failed state and the probability of this oc-
curring before decides to leave the system. We call the former
metric isolation time and the latter probability of isolation .
Recall that the passive model follows a simple pure-death degree
evolution process illustrated in Fig. 1(a). In this environment, a
node is considered isolated after its last surviving neighbor fails.
Thus, is equal to the maximum residual lifetime among all
neighbors and its expectation can be written as (using the fact
that is a non-negative random variable) [40]:

(3)

which leads to the following two results after straightforward
integration.

Theorem 1: Assume a passive -regular graph. Then, for ex-
ponential lifetimes:

(4)

and for Pareto lifetimes with :

(5)

Fig. 4. Comparison of models (4), (5) and (10), (11) with simulations.
(a) E[T ]; (b) �.

Proof: For exponential lifetimes, using
in (3) and setting , we get

(6)

which directly leads to (4).
For Pareto lifetimes, substituting

into (3) and setting , we obtain

(7)

where is the Gauss hypergeometric function,
which for is always 1 and for is [11]:

(8)

Expanding (8) and keeping in mind that , we
get (5).

Note that the gamma function in the numerator of (5) is neg-
ative due to , which explains the term outside the
brackets. Simulation results of (4), (5) are shown in Fig. 4(a)
for the average lifetime equal to 0.5 hours. Note that in
the figure, simulations are plotted as isolated points and the two
models as continuous lines. As the figure shows, simulation re-
sults for both exponential and Pareto distributions match the cor-
responding model very well. We also observe that for the same
degree and average lifetime, Pareto nodes exhibit longer average
times to isolation. For , is 1.46 hours given ex-
ponential lifetimes and 4.68 hours given Pareto lifetimes. This
difference was expected since is determined by the residual
lives of the neighbors, who in the Pareto case have large and
stay online longer than newly arriving peers.

We next focus on the probability that isolation occurs within
the lifespan of a given user. Consider a node with lifetime .
This node is forced to disconnect from the system only if
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is greater than , which happens with probability
, where is the CDF

of time and is the PDF of user lifetimes. This leads to

(9)

Next, we study two distributions and demonstrate the ef-
fect of tail-weight on the local resilience of the system.

Theorem 2: Assume a passive -regular graph. Then, for ex-
ponential lifetimes:

(10)

and for Pareto lifetimes with :

(11)

Proof: For exponential lifetimes, straightforward integra-
tion of (9) readily leads to the desired result:

(12)

For Pareto lifetimes, we have

(13)

Reorganizing the terms in (13), using from (2), and
setting :

(14)

Using (8) and the properties of Gauss hypergeometric func-
tions discussed in the previous proof, we immediately obtain
(11).

The exponential part of this theorem was expected from the
memoryless property of exponential distributions [31], [40].
Hence, when a new node joins a P2P system with exponen-
tially distributed lifetimes , it will be forced to disconnect if
and only if it can outlive other random nodes that started at
the same time . From Lemma 1, we already know that this
happens with probability .

The accuracy of (10), (11) is shown in Fig. 4(b), which plots
obtained in simulations together with that predicted by the

models. The simulation again uses a hypothetical P2P system
with nodes and . As the figure shows,
simulations agree with predicted results well.

C. Discussion

Notice from Fig. 4(b) that the Pareto decays more quickly
and always stays lower than the exponential . To better under-
stand the effect of on the isolation probability in the rather

Fig. 5. Impact of tail weight on the average time to isolation and probability �
for k = 10 and Pareto lifetimes. (a) E[T ]; (b) �.

cryptic expression (11), we first show that for all choices of
, Pareto systems are more resilient than exponential. We then

show that as , (11) approaches from below its upper
bound (10).

Setting , rewrite (11) expanding the
gamma function in the denominator:

(15)

and notice that (15) always provides a faster decay to zero as a
function of than (10). For the Pareto example of shown
in Fig. 4(b), follows the curve , which decays
faster than the exponential model by a factor of . This dif-
ference is even more pronounced for distributions with heavier
tails. For example, (11) tends to zero as for
and as for . The effect of tail-weight on
isolation dynamics is shown in Fig. 5, where small values of
indeed provide large and small . Fig. 5(b) also demon-
strates that as shape becomes large, the Pareto distribution no
longer exhibits its “heavy-tailed” advantages and is essentially
reduced to the exponential model. This can also be seen in (15),
which tends to for .

Given the above discussion, it becomes apparent that it is pos-
sible to make arbitrarily small with very heavy-tailed distri-
butions (e.g., and produce ).
While these results may be generally encouraging for networks
of non-human devices with controllable characteristics, most
current peer-to-peer systems are not likely to be satisfied with
the performance of the passive model since selection of is not
possible in the design of a typical P2P network and isolation
probabilities in (11) are unacceptably high for . The
second problem with the passive framework is that its applica-
tion to real systems requires accurate knowledge of the shape
parameter , which may not be available in practice.

We overcome both problems in the next two section, where
we show that active node replacement significantly increases re-
silience and that all Pareto distributions have a reasonably tight
upper bound on that does not depend on .

IV. ACTIVE LIFETIME MODEL: STATIONARY ANALYSIS

To reduce the rate of isolation and repair broken routes in P2P
networks, previous studies have suggested distributed recovery
algorithms in which failed neighbors are dynamically replaced
with nodes that are still alive [32]. In this section, we offer a



LEONARD et al.: ON LIFETIME-BASED NODE FAILURE AND STOCHASTIC RESILIENCE OF DECENTRALIZED PEER-TO-PEER NETWORKS 649

Fig. 6. On/off processes fY (t)g depicting neighbor failure and
replacement.

model for this strategy, derive the expected value of using sta-
tionary techniques in renewal process theory, and analyze per-
formance gains of this framework compared to the passive case.
In the next section, we apply the theory of rare events for mixing
processes to and derive a reasonably good upper bound
on .

It is natural to assume that node failure in P2P networks
can be detected through some keep-alive mechanism, which
includes periodic probing of each neighbor, retransmission
of lost messages, and timeout-based decisions to search for a
replacement. We do not dwell on the details of this framework
and assume that each peer is capable of detecting neighbor
failure through some transport-layer protocol. The second step
after node failure is detected is to repair the “failed” zone of the
DHT and restructure certain links to maintain consistency and
efficiency of routing (non-DHT systems may utilize a variety
of random neighbor-replacement strategies [9], [14], [37]).
We are not concerned with the details of this step either and
generically combine both failure detection and repair into a
random variable called , which is the total “search” time for
the th replacement in the system.2

A. Preliminaries

In the active model, each neighbor of node
is either alive at any time or its replacement is being sought
from among the remaining nodes in the graph. Thus, neighbor
can be considered in the on state at time if it is alive or in the
off state otherwise. This neighbor failure/replacement procedure
can be modeled as an on/off process :

neighbor alive at
otherwise

(16)

This framework is illustrated in Fig. 6, which shows the
evolution of neighbor processes . Using
this notation, the degree of node at time is equal to

. Similar to our definition in Section II-A,
a node is isolated at such time when all of its neighbors
are simultaneously in the off state (see Fig. 1(b)). Thus, the
maximum time a node can spend in the system before it is
forced to disconnect can be formalized as the first hitting time
of process on level 0:

(17)

Notice that under proper selection of the tail-weight of the
lifetime distribution (i.e., the length of on periods),

2Note that we assume that replacement only occurs after a failure of an out-
degree neighbor. This behavior occurs in unstructured P2P systems and certain
DHTs (such as Randomized Chord) where new arrivals do not replace the out-
degree neighbors of existing nodes.

Fig. 7. On/off regenerative model of process W (t).

becomes a super-position of heavy-tailed on/off processes and
may exhibit self-similarity for sufficiently large [17], [21],
[39]. Due to limited space, we omit log-log variance plots that
confirm this effect, but note that to our knowledge, the fact that
node degree in P2P networks may become self-similar has not
been documented before.

B. Expected Time to Isolation

In what follows in the rest of this section, we apply stationary
renewal process techniques to and derive a closed-form
expression for .

Theorem 3: Assuming asymptotically small search delays
and the active lifetime model, the expected time a node can re-
main in the system before becoming isolated is

(18)

where is the mean search time and is
the expected residual lifetime.

Proof: To simplify the analysis, we also view as an
alternating on/off process, where each on period corresponds
to and each off period corresponds to .
Let be the time that spends in its th off state and
represent the time in the th on state. As shown in Fig. 7,
alternates between its on/off cycles and our goal is to determine
the expected length of the first on period . The proof consists
of two parts: we first argue that the length of cycle is similar
to that of the remaining cycles , , and then apply Smith’s
theorem to to derive , .

First, notice that cycle is different from the other on pe-
riods since it always starts from , while the other
on cycles start from . However, since we already as-
sumed that the search times are sufficiently small, at the
beginning of each on period almost immediately “shoots back”
to . This can be shown using arguments from large-de-
viations theory [36], which derives bounds on the return time of
the system from very rare states back to its “most likely” state.
This generally makes cycles and different by a
value that is negligible compared to in all real-life situa-
tions (see examples after the proof).

Second, approximate a superposition of renewal processes
as regenerative and assume that points

when goes into the th off state (i.e., makes a transi-
tion from 1 to 0) are its regenerative instances. Then, applying
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Fig. 8. Comparison of model (18) to simulation results with E[L ] = 0:5 and k = 10. (a) Uniform S ; (b) binomial S ; (c) exponential S ; (d) Pareto S with
� = 3.

Smith’s theorem [31] to , the probability of finding it in an
isolated state at any random time is given by

(19)

Notice that (19) can also be expressed as the probability of
finding all neighbors in their off state

(20)

Combining the last two equations and solving for ,
we get

(21)

Next, we compute . As before, suppose that the first
instant of the th off cycle of starts at time . At this time,
there are already-failed neighbors still “searching” for their
replacement and one neighbor that just failed at time . Thus,

is the minimum time needed to find a replacement for the
last neighbor or for one of the on-going searches to complete.

More formally, suppose that are (from the
Palm-Khintchine approximation) i.i.d. random variables that
represent the remaining replacement delays of the
already-failed neighbors and is the replacement time
of the last neighbor. Then duration of the current off
cycle is . Assuming that

is the CDF of search times , the distribution of
is given by [40]

(22)

Notice that can also be written as and
its expectation is

(23)

Substituting (22) into (23) and setting ,
we get

(24)

Integrating (24) leads to

(25)

which gives us (18).
Note that for small search delays this result does not gener-

ally depend on the distribution of residual lifetimes or search
times , but only on their expected values. Fig. 8 shows
obtained in simulations in a system with 1,000 nodes, ,
and four different distributions of search delay. In each part
(a)–(d) of the figure, the two curves correspond to exponen-
tial and Pareto lifetimes with mean 30 minutes (as before, the
models are plotted as solid lines and simulations are drawn using
isolated points). Notice in all four subfigures that the model
tracks simulation results for over 7 orders of magnitude and that
the expected isolation time is in fact not sensitive to the distri-
bution of .

As in the passive model, the exponential distribution of life-
times provides a lower bound on the performance of any Pareto
system since exponential are always smaller than the cor-
responding Pareto . Further observe that the main factor
that determines is the ratio of to and not their
individual values. Using this insight and Fig. 8, we can conclude
that in systems with 10 neighbors and expected search delay at
least 5 times smaller than the mean lifetime, is at least one
million times larger than the mean session length of an average
user. Furthermore, this result holds for exponential as well as
Pareto distributions with arbitrary . This is a significant im-
provement over the results of the passive model in Section III.

C. Example

We next rephrase the results obtained in the previous subsec-
tion in more practical terms and study several examples that
demonstrate the usage of model (18). For the sake of this ex-
ample, suppose that each node relies on a keep-alive protocol
with timeout . Then the distribution of failure-detection delays
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TABLE I
EXPECTED TIME E[T ] FOR E[R ] = 1 hour

is uniform in depending on when the neighbor died with
respect to the nearest ping message. The actual search time to
find a replacement may be determined by the average number of
application-layer hops between each pair of users, may depend
on the bootstrap delay if a centralized server is used for neighbor
replacement, or may be simply zero if users select backup neigh-
bors from a local cache. Using the notation above, we have the
following re-statement of the previous theorem.

Corollary 1: The expected isolation time in P2P systems with
active neighbor replacement is given by

(26)

Consider a system with the average replacement delay
seconds and hour. Table I shows the expected

time to isolation for several values of timeout and degree .
For small keep-alive delays (2 minutes or less), even
provides longer expected times to isolation than the lifetime of
any human being. Also notice that for minutes, degree

provides more years before expected isolation than there
are molecules in a glass of water [4].

Since routing delay in the overlay network is generally
much smaller than keep-alive timeout , the diameter of the
graph does not usually contribute to the resilience of the system.
In other cases when is comparable to , P2P graphs with
smaller diameter may exhibit higher resilience as can be ob-
served in (26).

D. Real P2P Networks

Finally, we address the practicality of the examples shown in
the paper so far. In particular we consider the results shown in
[8], which suggest that the empirical distribution of user life-
times in real P2P networks follows a Pareto distribution with
shape parameter . Such heavy-tailed distributions re-
sult in and do not lead to much inter-
esting discussion. At the same time, notice that while it is hy-
pothetically possible to construct a P2P system with ,
it can also be argued that the measurement study in [8] sam-
pled the residuals rather than the actual lifetimes of the users.
This is a consequence of the “snapshots” taken every 20 min-
utes, which missed all peers with minutes and short-
ened the lifespan of all remaining users by random amounts of
time. As such, these results point toward , which is
a much more realistic shape parameter even though it still pro-
duces enormous for all feasible values of . This is
demonstrated for model (26) in Table II where the expected life-
time of each user is only double that in Table I, but is 5–12
orders of magnitude larger. This is a result of rising from
1 hour in the former case to 16.6 hours in the latter scenario.

TABLE II
EXPECTED TIME E[T ] FOR PARETO LIFETIMES WITH � = 2:06

(E[L ] = 0:93 hours, E[R ] = 16:6 hours)

V. ACTIVE LIFETIME MODEL: TRANSIENT ANALYSIS

Given the examples in the previous section, it may at first
appear that must automatically be very small since is
so “huge” under all practical conditions. However, in principle,
there is a possibility that a large mass of is concentrated on
very small values and that a handful of extremely large values
skew the mean of to its present location. We additionally
are interested in more than just knowing that is “small”—we
specifically aim to understand the order of this value for dif-
ferent .

As in previous sections, let denote the lifetime of and
the random time before ’s neighbors force an isolation. Notice
that is an integral of the
CDF function of the first hitting time of
process on level 0. The exact distribution of is difficult
to develop in closed-form since it depends on transient proper-
ties of a complex process . To tackle this problem, we first
study the asymptotic case of and apply results
from the theory of rare events for Markov jump processes [2],
[36] to derive a very accurate formula for assuming exponen-
tial lifetimes. We then use this result to upper-bound the Pareto
version of this metric.

A. Exponential Lifetimes

We start with exponential lifetimes and assume reasonably
small search times. For larger than , accurate
isolation probabilities are available from the passive model in
Section III.

Theorem 4: For exponential lifetimes and exponential
search delays , the probability of isolation converges to the
following as :

(27)

Proof: Given exponential lifetimes and search delays,
notice that can be viewed as a continuous-time Markov
chain, where the time spent in each state before making a
transition to state is the minimum of exactly exponential
variables (i.e., the time to the next failure). Assume that the CDF
of is , where . Then the CDF
of is , which
is another exponential variable with rate . Next notice that
the delays before makes a transition from state to
(i.e., upon recovering a neighbor) are given by the minimum of

residual search times, which is yet another exponential
random variable with rate , where .

To bound the CDF of , one approach is to utilize the classical
analysis from Markov chains that relies on numerical exponen-
tiation of transition (or rate) matrices; however, it does not lead
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Fig. 9. Comparison of model (27) to simulation results for exponential lifetimes with E[L ] = 0:5 and k = 10. (a) Uniform S ; (b) constant S ; (c) exponential
S ; (d) Pareto S with � = 3.

to a closed-form solution for . Instead, we apply a
result for rare events in Markov chains due to Aldous et al. [2],
which shows that asymptotically behaves as an exponential
random variable with mean :

(28)

where is the expected time between the visits to the rare
state 0 and is the relaxation time of the chain. Re-writing (28)
in terms of and applying Taylor expansion
to :

(29)

Next, recall that relaxation time is the inverse of the second
largest eigenvalue of , where is the rate matrix of the
chain. For birth-death chains, matrix is tri-diagonal with

:

(30)

We treat state as non-absorbing and allow the chain
to return back to state 1 at the rate . Then, the second largest
eigenvalue of this matrix is available in closed-form (e.g., [22])
and equals the sum of individual rates: .
Noticing that

(31)

we conclude that is on the order of and is generally
very small. Writing and integrating the upper bound
of (29) over all possible values of lifetime , we get

(32)

We similarly obtain a lower bound on , which is equal to
. Neglecting small , observe that

both bounds reduce to (27).

Interestingly, for non-exponential, but asymptotically small
search delays, can usually be approximated by an equiva-
lent, but quickly-mixing process. Further note that bounds sim-
ilar to (29) are reasonably accurate regardless of the distribution
of [1]. This is demonstrated in Fig. 9 using four distributions
of search time—exponential with rate , constant
equal to , uniform in , and Pareto with .
As shown in the figure, all four cases converge with acceptable
accuracy to the asymptotic formula (27) and achieve isolation
probability when the expected search time re-
duces to 3 minutes. Also notice in the figure that for all values
of and all four search delay distributions, model (27) pro-
vides an upper bound on the actual , which means that real
systems are more resilient than suggested by our model.

B. Heavy-Tailed Lifetimes

Although it would be nice to obtain a similar result
for the Pareto case, unfortunately the situation

with a superposition of heavy-tailed on/off processes is dif-
ferent since is slowly mixing and the same bounds no
longer apply. Intuitively, it is clear that large values of in
the Pareto case are caused by a handful of users with enormous
isolation delays, while the majority of remaining peers acquire
neighbors with short lifetimes and suffer isolation almost as
quickly as in the exponential case.

Consider an example that illustrates this effect and shows that
huge values of in Pareto systems have little impact on .
For 10 neighbors, , minutes , and
constant search time minutes, the Pareto is larger
than the exponential by a factor of 865. However, the ratio
of their isolation probabilities is only 5.7. For and

minutes , the expected times to isolation
differ by a factor of , but the ratio of their is only 7.5.

It may be possible to derive an accurate approximation for
Pareto ; however, one may also argue that the usefulness of
such a result is limited given that shape parameter and the
distribution of user lifetimes (lognormal, Pareto, etc.) are often
not known accurately. We leave the exploration of this problem
for future work and instead utilize the exponential metric (27) as
an upper bound on in systems with sufficiently heavy-tailed
lifetime distributions. One example for minutes
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Fig. 10. Exponential � as an upper bound for Pareto � in simulations with E[L ] = 0:5 hours and k = 10. (a) Uniform S ; (b) constant S ; (c) exponential S ;
(d) Pareto S with � = 3.

and is illustrated in Fig. 10, where the exponential
indeed tightly upper-bounds the Pareto over the entire range
of search delays and their distributions. In fact, it can be seen
in each individual figure that the ratio between the two metrics
does not depend on and that both curves decay at the same
rate as .

The above observations are summarized in the next result,
which formally follows from the fact that heavy-tailed imply
stochastically larger residual lifetimes and a straightforward
expansion of in (27).

Corollary 2: For an arbitrary distribution of search delays and
any lifetime distribution with an exponential or heavier
tail, which includes Pareto, lognormal, Weibull, and Cauchy dis-
tributions, the following upper bound holds:

(33)

where is the ratio of the mean user lifetime to
the mean search delay.

For example, using 30-minute average lifetimes, 9 neighbors
per node, and 1-minute average node replacement delay, the
upper bound in (33) equals , which allows the
joining users in a 100-billion node network to stay connected
to the graph for their entire lifespans with probability .
Using the uniform failure model of prior work and ,
each user required 37 neighbors to achieve the same regard-
less of the actual dynamics of the system.

Even though exponential is often several times larger than
the Pareto (the exact ratio depends on shape ), it turns out
that the difference in node degree needed to achieve a certain
level of resilience is usually negligible. To illustrate this result,
Table III shows the minimum degree that ensures a given
for different values of search time and Pareto lifetimes
with (to maintain the mean lifetime 30 minutes, the
distribution is scaled using ). The column “uniform

” contains degree that can be deduced from the
-percent failure model (for ) discussed in previous

studies [38]. Observe in the table that the exponential case
in fact provides a tight upper bound on the actual minimum
degree and that the difference between the two cases is at most
1 neighbor.

TABLE III
MINIMUM DEGREE NEEDED TO ACHIEVE A CERTAIN � FOR PARETO LIFETIMES

WITH � = 2:06 AND E[L ] = 0:5 hours

C. Irregular Graphs

The final issue addressed in this section is whether P2P net-
works can become more resilient if node degree is allowed to
vary from node to node. It is sometimes argued [10], [35] that
graphs with a heavy-tailed degree distribution exhibit highly re-
silient characteristics and are robust to node failure. Another
question raised in the literature is whether DHTs are more re-
silient than their unstructured counterparts such as Gnutella.
In this section we prove that, given the assumptions used so
far in the paper, -regular graphs offer the highest local re-
silience among all systems with a given average degree. This
translates into “optimality”of DHTs as long as they can balance
their zone-sizes and distribute degree evenly among the peers.

Consider a P2P system in which node degrees are
drawn from an arbitrary distribution with mean . Using
Jensen’s inequality for convex functions and the upper bound in
(33), the following result follows effortlessly.

Theorem 5: Assuming that lifetimes are independent of node
degree and are not used in the neighbor-selection process, reg-
ular graphs are the most resilient for a given average degree

.
Proof: We proceed by computing the disconnection prob-

ability of an arriving user who is assigned random degree
from some arbitrary distribution. Notice that in (27), (33) can
be written as some strictly convex function:

(34)
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Fig. 11. (a) Degree distribution in irregular graphs. (b) User isolation proba-
bility � for irregular graphs (average degree E[k ] = 10, lifetimes are Pareto
with E[L ] = 0:5 hours).

Then, the probability of disconnection averaged over all joining
users is

(35)

Using Jensen’s inequality [40] for convex functions, we have
, which means that (35) is always no less

than the same metric in graphs with a constant degree equal to
.

To demonstrate the effect of node degree on isolation proba-
bility in irregular graphs, we examine three systems with 1,000
nodes: 1) Chord with a random distribution of out-degree, which
is a consequence of imbalance in zone sizes; 2) a graph
with binomial degree for ; and 3) a heavy-tailed graph
with Pareto degree for and . We selected these
parameters so that each of the graphs had mean degree
equal to 10. The distribution of degree in these graphs is shown
in Fig. 11(a). Notice that Chord has the lowest variance and its
probability mass concentration around the mean is the best of
the three systems. The binomial case is slightly worse, while
the heavy-tailed graph is the worst. According to Theorem 5,
all of these systems should have larger isolation probabilities
than those of 10-regular graphs and should exhibit performance
inverse proportional to the variance of their degree.

Simulation results of are shown in Fig. 11(b) for Pareto
lifetimes with and hours (search times are
constant). Observe in the figure that the -regular system is in
fact better than the irregular graphs and that the performance of
the latter deteriorates as increases. For (6 min-
utes), the -regular graph offers lower than Chord’s by a factor
of 10 and lower than that in by a factor of 190. Further-
more, the P2P system with a heavy-tailed degree distribution in
the figure exhibits the same poor performance regardless of the
search time and allows users to become isolated
times more frequently than in the optimal case, all of which is
caused by 37% of the users having degree 3 or less.

Thus, in cases when degree is independent of user lifetimes,
we find no evidence to suggest that unstructured P2P systems
with a heavy-tailed (or otherwise irregular) degree can provide
better resilience than -regular DHTs.

VI. GLOBAL RESILIENCE

We finish the paper by analyzing the probability of network
partitioning under uniform node failure and showing that this
metric has a simple expression for a certain family of graphs,
which includes many proposed P2P networks. We then apply
this insight to lifetime-based systems and utilize the earlier de-
rived metric to characterize the evolution of P2P networks
under churn.

A. Classical Result

One may wonder how local resilience (i.e., absence of
isolated vertices) of P2P graphs translates into their global
resilience (i.e., connectivity of the entire network). While this
topic has not received much attention in the P2P community,
it has been extensively researched in random graph theory
and interconnection networks. Existing results for classical
random graphs have roots in the work of Erdös and Rényi in
the 1960s and demonstrate that almost every (i.e., with proba-
bility as ) random graph including ,

, and is connected if and only if it has no
isolated vertices [6], i.e.,

is connected as (36)

where is the number of isolated nodes after the failure. After
some manipulation, this result can be translated to apply to un-
structured P2P networks, where each joining user draws some
number of random out-degree neighbors from among the ex-
isting nodes (see below for simulations that confirm this).

For deterministic networks, connectivity of a graph after
node/edge failure has also received a fair amount of attention
(e.g., [7], [25]). In interconnection networks, exact formulas
for the connectivity of deterministic graphs exist [25]; how-
ever, they require computation of NP-complete metrics and no
closed-form solution is available even for the basic hypercube.
However, from the perspective of random graph theory, it
has been shown [6], [7] that hypercubes with faulty elements
asymptotically behave as random graphs and thus almost surely
disconnect with isolated nodes as becomes large.

Even though the necessary condition for a deterministic graph
to satisfy (36) is unknown at this time, sufficient conditions

can be extrapolated from the proofs of this relationship for the
hypercube [6]. The general requirement on is that its expan-
sion (strength of the various cuts) must be no worse than that of
the hypercube.3 Due to limited space and wide variety of deter-
ministic P2P constructs, we do not provide a rigorous re-deriva-
tion of this fact, but instead note that Chord [38], Pastry [33], and
CAN with the number of dimensions [30] can be
directly reduced to hypercubes; de Bruijn graphs [18] exhibit
better connectivity than hypercubes [26]; and hybrid networks
(such as Symphony [27], Randomized Chord [27], and [3]) gen-
erally have connectivity no worse than .

We next show simulation results that confirm the applica-
tion of classical result (36) to two types of DHTs and one un-
structured Gnutella-like network (all three are directed graphs).

3For each set S in the original graph G, its node boundary must satisfy a cer-
tain inequality that is an increasing function of jSj [7]. Graphs that do not fulfill
this requirement include trees, cycles, and other weakly connected structures.
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TABLE IV
GLOBAL RESILIENCE FOR n = 16, 384 AND OUT-DEGREE k = 14

Table IV shows simulations of fully-populated Chord, Sym-
phony, and a -regular Gnutella network under uniform -per-
cent node failure using 100,000 failure patterns. Note that for
directed graphs, (36) applies only to the definition of weak con-
nectivity, which means that is disconnected if and only if its
undirected version is and a node is isolated if and only
if it is isolated in . Since the total degree (which is the sum of
out-degree and in-degree) at each node is different between the
graphs in the table, their respective disconnection probabilities
are different.

As the table shows, (36) holds with high accuracy and a vast
majority of disconnections contain at least one isolated node
(see the last three columns of the table). Additional simulations
show that (36) applies to Pastry, CAN, de Bruijn graphs, Ran-
domized Chord, and degree-irregular Gnutella. We omit these
results for brevity.

B. Lifetime-Based Extension

It is not difficult to notice that (36) holds for lifetime-based
P2P graphs and that dynamic P2P networks are also much more
likely to develop disconnections around single nodes rather than
along boundaries of larger sets . However, instead of having a
single node-failure metric , we have a probability of isolation

associated with each joining user . Thus, one may ask the
question what is the probability that the system survives user
joins and stays connected the entire time? The answer is very
simple: assuming is a geometric random variable measuring
the number of user joins before the first disconnection of the
network, we have for almost every sufficiently large graph

(37)

Simulation results of (37) for a degree-regular, fully-popu-
lated CAN (i.e., each failed node is immediately replaced by
a new arrival with the same hash index) are shown in Table V
using million joins and 10,000 iterations per search time,
where metric is disconnected is the prob-
ability that the graph partitions with at least one isolated node
and is the probability that the largest connected component
after the disconnection contains exactly nodes. As the table
shows, simulations match the model very well and also confirm
that the most likely disconnection pattern of lifetime-based sys-
tems includes at least one isolated node (i.e., ). In fact,
the table shows an even stronger result—for reasonably small
search delays, network partitioning almost surely affects only
one node in the system (i.e., ). The same conclusion

TABLE V
COMPARISON OF P (Z > 10 ) IN CAN TO MODEL (37) (EXPONENTIAL

LIFETIMES WITH E[L ] = 30 minutes, 6 DIMENSIONS, DEGREE k = 12,
AND n = 4096 NODES)

holds for other P2P graphs, Pareto lifetimes, and random search
delays. We omit these results for brevity.

Model (37) suggests that when search delays become very
small, the system may evolve for many months or years be-
fore disconnection. Consider a 12-regular CAN system with
1-minute search delays and 30-minute average lifetimes. As-
suming that and each user diligently joins the system
once per day, the probability that the network can evolve for
2,700 years ( joins) before disconnecting for the
first time is 0.9956. The mean delay between disconnections is

user joins, or 5.9 million years.

VII. CONCLUSION

This paper examined two aspects of resilience in dynamic
P2P systems—ability of each user to stay connected to the
system in the presence of frequent node departure and parti-
tioning behavior of the network as . We found that under
all practical search times, -regular graphs were much more
resilient than traditionally implied [18], [24], [38] and further
showed that dynamic P2P networks could almost surely remain
connected as long as no user suffered simultaneous neighbor
failure. We also demonstrated that varying node degree from
peer to peer can have a positive impact on resilience only when
such decisions are correlated with the users’ lifetimes. Future
work involves additional analysis of user churn in networks
where lifetimes are allowed to be used in neighbor selection.
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