
Vortex: Extreme-Performance Memory Abstractions
for Data-Intensive Streaming Applications

Carson Hanel, Arif Arman, Di Xiao, John Keech, and Dmitri Loguinov
Texas A&M University, College Station, TX 77843 USA

carson@cse.tamu.edu,arman@tamu.edu,di@cse.tamu.edu,jkeech@tamu.edu,dmitri@cse.tamu.edu

Abstract
Many applications in data analytics, information retrieval,
and cluster computing process huge amounts of informa-
tion. The complexity of involved algorithms and massive
scale of data require a programming model that can not
only offer a simple abstraction for inputs larger than RAM,
but also squeeze maximum performance out of the avail-
able hardware. While these are usually conflicting goals, we
show that this does not have to be the case for sequentially-
processed data, i.e., in streaming applications. We develop
a set of algorithms called Vortex that force the application
to generate access violations (i.e., page faults) during pro-
cessing of the stream, which are transparently handled in
such a way that creates an illusion of an infinite buffer that
fits into a regular C/C++ pointer. This design makes Vortex
by far the simplest-to-use and fastest platform for various
types of streaming I/O, inter-thread data transfer, and key
shuffling. We introduce several such applications – file I/O
wrapper, bounded producer-consumer pipeline, vanishing
array, key-partitioning engine, and novel in-place radix sort
that is 3 − 4× faster than the best prior approaches.

CCS Concepts • Software and its engineering → Vir-
tual memory.

Keywords Virtualmemory; streaming; sorting;MapReduce

ACM Reference Format:
Carson Hanel, Arif Arman, Di Xiao, John Keech, and Dmitri Logu-
inov. 2020. Vortex: Extreme-Performance Memory Abstractions
for Data-Intensive Streaming Applications. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’20), March
16–20, 2020, Lausanne, Switzerland. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3373376.3378527

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378527

1 Introduction
In the big-data world, computation on large datasets often
uses the dataflow model and relies on streaming, i.e., sequen-
tial transfer of data, between the components. In such appli-
cations, pipelines direct bulk data between a number of pro-
ducer/consumer threads, which perform processing of input
and send results to output. Examples include Google MapRe-
duce [4], [17], [55], Microsoft Dryad [25], Stratosphere [1],
Cloud Dataflow [20], and Apache projects Apex [2], Flink
[3], Kafka [5], Samza [6], Spark [7], and Storm [8].
Unfortunately, most traditional streaming applications

and software packages are not well-suited for extreme-perfor-
mance data delivery, by which we mean rates close to the
speed of the underlying hardware. In many cases, their
throughput barely reaches 100 MB/s, even between threads
on the same machine [26], [31], [35]. To put this in perspec-
tive, RAM bandwidth of desktop CPUs is approaching 100
GB/s and I/O speed will soon hit 50 GB/s with the release of
PCIe 5.0 and 400 Gbps Ethernet. As a result, high-bandwidth
C/C++ applications are in need of data-streaming abstrac-
tions that can operate at tens of gigabytes per second, far
exceeding the capabilities of current platforms, but with-
out the development cost that comes with designing custom
optimized solutions for each specific application.
Scalable data computing has seen substantial develop-

ments at higher layers, where numerous open-source and
proprietary projects, wrappers, and pipelining frameworks
are built using standard OS primitives and iterator abstrac-
tions of various languages. Difficulty of debugging such ap-
plications, high coding effort, bloated structure, and reduced
efficiency partially stem from programmer interaction with
memory, which has not kept up with transitions towards
data streaming and continues to offer the same block-based
communication model of the 1950s.

Consider a long stream of data (i.e., much larger than RAM)
that may be created on the fly or delivered by an I/O device.
When building a new high-performance data-processing
framework, for which existing solutions are inadequate, the
user has to design algorithms for chunking the data, handling
of records split across adjacent buffers, and enforcing proper
synchronization between threads. Avoiding subtle bugs re-
lated to reads past buffer boundaries and truncation of tokens
involves a large number of tedious out-of-bounds checks,
while parallelization and read-ahead require additional lay-
ers of complexity. Further challenges include processing of

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

623

https://doi.org/10.1145/3373376.3378527
https://doi.org/10.1145/3373376.3378527

Algorithm 1: Block-based string search.

1 Function Search (char* str)
2 strLen = strlen(str); buf = new char [blockSize];
3 pos = 0; bufStart = 0; ⊲ current position in buffer/file
4 while (not end of data) do
5 size = blockSize − 1 − pos; ⊲ remaining bytes
6 bytes = ReadData (buf + pos, size);
7 buf[pos + bytes] = 0 ⊲ NULL-terminate buffer
8 if ((ptr = strstr (buf, str)) != NULL) then
9 return ptr − buf + bufStart;

10 bufStart += bytes + pos − (strLen − 1);
11 pos = strLen − 1; ⊲ bytes carried over to next buffer
12 memcpy (buf, buf + blockSize − 1 − pos, pos);

records larger than RAM, supporting existing libraries that
assume in-memory operation, and managing input that does
not have well-defined boundaries between tokens. For ex-
ample, a single call to the C function strstr, which finds
the first occurrence of a given substring, cannot be used to
process an entire 10-TB stream arriving from the network
into a host with 8 GB of RAM. At the same time, developing
a highly optimized block-compatible version of strstr, as
well as numerous other existing library functions, is not only
expensive, but also wasteful.

As an alternative to discretizing input into blocks, we pro-
pose a C/C++ buffer abstraction called Vortex that allows the
producer to perform unlimited sequential writes into a char*
pointer in a way that appears uninterrupted to the compiler,
i.e., as if the data entirely fit in RAM. Similarly, we aim for
the consumer to read the same pointer sequentially and ob-
serve the written data in correct order, enabling scenarios
such as strstr in the preceding paragraph. Because no ex-
plicit synchronization or block management is needed from
the programmer, this framework is simple to use. Eliminat-
ing unnecessary compiler bottlenecks (e.g., block-boundary
checking, offloading of registers to RAM) and ensuring zero-
copy transfer between producer-consumer, this approach
can be extremely fast, e.g., operate nearly at the speed of
L3 cache in thread-to-thread communication. Armed with
Vortex, streaming applications will no longer have to choose
between “fast, but complex" (e.g., hand-tuned assembly) and
“simple, but slow" (e.g., Hadoop [4]), which is a tradeoff often
seen in practice, especially in cluster computing [39].

2 Motivation
2.1 Coding Simplicity
To understand the intuition behind our stream-based archi-
tecture, consider the task of finding the first offset at which a
given substring appears in some input larger than RAM. For
this example, assume that the content is arriving from an-
other thread that supplies data on-the-fly. Under traditional
block-based operation, there exists a consumer API, which

Algorithm 2: String search on a stream buffer.

1 Thread Producer(char *buf, uint64 len)
2 memset (buf, ‘a’, len);
3 buf[len] = NULL;

4 Thread Consumer(char *buf)
5 return strstr (buf, “hello world");

we call ReadData(buf,size), that fills a buffer of a given
length and returns the number of bytes written.
Algorithm 1 shows a basic C solution, where function

strstr(p1,p2) returns a pointer to the first occurrence of
string p2 inside p1. In this scenario, strstr encapsulates a
third-party library thatmust see the entire record (e.g., string)
in RAM before it can determine the outcome of the requested
operation. To detect strings that span across adjacent blocks,
Algorithm 1must copy the last strLen-1 bytes of each buffer
to the beginning of the next logical block (Line 12), as well as
performmeticulous calculation of the remaining buffer space
in Line 5, the offset of this buffer from the start of the file in
Line 10, and the source address for memcpy in Line 12. Such
block-based data interaction forces the user to write code
that is not only convoluted, but also error-prone, neither of
which is particularly desirable.

Instead, we are interested in an interface that returns a
buffer pointer that “magically" contains the entire stream,
even if it is larger than RAM. This functionality is shown in
Algorithm 2, where the first thread generates len bytes (e.g.,
10 TB) of letter ‘a’ into the stream and the second thread
searches the resulting buffer for the string “hello." This archi-
tecture removes the necessity to copy partial strings around,
eliminates tedious coding, resulting in better debug time and
resilience to pointer errors, and allows strstr to be replaced
with other libraries (e.g., an HTML parser, data-analysis soft-
ware) without adapting them for block-based operation.

Because threads are not aware of who supplies data into
their stream pointer buf (or consumes from it), this exam-
ple should be able to effortlessly accommodate data arrival
from a file, network socket, or some real-time sensor de-
vice. Additional desired features of this framework include
zero-copy I/O transfers (i.e., DMA into user space), config-
urable amounts of read-ahead, easy extendability to sup-
port diverse application needs, ability to instantiate multiple
streams within a process, and minimal RAM usage.

2.2 Faster Iterator Abstractions
While jobs similar to Algorithm 1 require the user to con-
struct complex wrappers on top of existing APIs, there are
certain applications whose streams can be broken into inde-
pendent records, each of which can be processed in isolation
from the surrounding bytes. Such specialized cases allow
the block-management functionality to be hidden behind an
iterator interface, which can reduce the user’s coding effort;

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

624

Algorithm 3: Summation producer-consumer with an iterator.

1 Thread Producer(Iterator *it, uint64 len)
2 for (i = 0; i < len; i++) do ⊲ produce 10 TB
3 it->Write(i);

4 Thread Consumer(Iterator *it, uint64 len)
5 for (i = 0; i < len; i++) do ⊲ consume 10 TB
6 x = it->Read(); sum += x;

Algorithm 4: Block-based iterator class.

1 Function Iterator::Write(int x)
2 bufW[posW] = x;
3 if posW == blockSize − 1 then ⊲ last item of the block?
4 full.push (bufW); bufW = empty.pop (); posW = 0;
5 else
6 posW++; ⊲ move writer position forward
7 Function Iterator::Read()
8 x = bufR[posR];
9 if posR == blockSize − 1 then ⊲ last item of the block?
10 empty.push (bufR); bufR = full.pop (); posR = 0;
11 else
12 posR++; ⊲ move reader position forward
13 return x;

however, this sometimes creates a substantial performance
penalty as we discuss next.

Algorithm 3 illustrates one example, where the producer
writes a sequence of items (e.g., integers) into the stream and
the consumer sums them up. Both threads receive the same
pointer it to a block-based iterator class whose implemen-
tation is shown in Algorithm 4. The producer writes into
block bufW at offset posW until the block overflows. It then
sends the block pointer into the full queue and resets bufW
to the next empty block. Both queues contain an internal
mutex and two semaphores to ensure proper access from
concurrent threads. The consumer operates using its own
pair of class member variables (i.e., bufR and posR), which
are placed into a different cache line from bufW and posW to
prevent false sharing with the producer thread.
Even when both functions it->Write and it->Read are

inlined in Algorithm 3, the compiler has no way of knowing
whether the Iterator class variables can be modified by the
program, which forces it to reload them on each iteration of
the loop. Furthermore, it cannot predict if variable updates
require global visibility, which results in every increment to
posW and posR being stored back to RAM. Thus, the producer
often issues at least three unnecessary loads (i.e., bufW, posW,
blockSize) and one extra store (i.e., posW) per item. The
consumer usually behaves similarly, i.e., loads bufR, posR,
blockSize and stores posR, although some deviation is pos-
sible depending on the compiler and its optimization logic.
Modern CPUs (e.g., Intel Skylake, Coffee Lake) can issue

two loads from the L1 cache and one store per cycle. It thus
appears that the penalty of using iterators would be no more
than two cycles per iteration; however, there are additional

Algorithm 5: Summation producer-consumer on a stream buffer.

1 Thread Producer(int *buf, uint64 len)
2 for (i = 0; i < len; i++) do ⊲ produce 10 TB
3 buf[i] = i;

4 Thread Consumer(int *buf, uint64 len)
5 for (i = 0; i < len; i++) do ⊲ consume 10 TB
6 sum += buf[i]

caveats. Because one of the three loads (i.e., posW) follows a
previous store to the same address, there is a pipeline stall
that has to wait for store-to-load forwarding to complete.
This explains why in practice the iterator cost can be as high
as 4 − 5 cycles per item. Depending on what else the pro-
ducer is doing, this may account for 50-80% of the runtime.
Unfortunately, it is difficult for the user to correct this per-
formance loss without eliminating the iterator and resorting
to the tedious block-handling practices of Algorithm 1.

The desired solution to this problem, shown in Algorithm
5, is to present the compiler with an uninterrupted virtual
buffer that conceals stream-related variables and various
housekeeping code in a completely separate location. Note
that buf is an int* pointer and this is done without C++
tricks (e.g., overloading operator []). Because buf, len, i,
and sum are all stack-allocated, the compiler knows that no
other part of the program has a pointer to them. This allows
it to keep them in registers the entire duration of the loop,
which curbs memory traffic to just one store per iteration
for the producer and one load for the consumer.

2.3 Non-Counting Partitioning
The next problem that commonly arises in data processing
(e.g., sorting, graph partitioning) is distribution of 𝑛 input
keys across 𝐾 arrays, where the number of items delivered
to each destination buffer is unknown a-priori. Assuming
the application has an auxiliary array of size 𝑛, this task is
normally solved by first performing a histogram pass over
the input data to compute the number of keys that fall into
each partition. With this knowledge, the second pass moves
the keys into their position in the auxiliary array.
The main issue is that the histogram pass may account

for 30-50% of the runtime depending on the complexity of
the partitioning scheme (e.g., bit operations vs binary search
over non-uniform boundaries). Thus, a stream abstraction
that allows unlimited writes into a char* pointer can elimi-
nate the counting pass and lead to significant performance
benefits in such applications. While iterators with chain-
linked blocks [43], [46] can be used for this purpose, their
relatively low efficiency leaves much room for improvement.

2.4 In-Place Data Shuffling
Continuing with the partitioning example, the second draw-
back of the classical technique is the obligation to maintain
physical memory for 2𝑛 items (i.e., both input and auxiliary

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

625

arrays). Because each key needs to exist only in one of two
places – either on input or output – this problem calls for a
better solution. The desired operation of a stream buffer is to
transparently free physical memory immediately after it has
been read and move it to the location of the next write, which
allows partitioning to run without doubling memory usage.
Furthermore, after the keys have been processed, it would be
ideal to copy them back into the input array without exceed-
ing the existing memory envelope of size 𝑛, which would
give rise to a new family of streaming sorters that operate
in-place. Although block-based iterators can also partition
keys using physical memory 𝑛, they cannot return the data
back to the original array or rival the performance of a native
memory interface, such as the one shown in Algorithm 5.

3 Virtual Memory in User Space
3.1 Paging
We start by reviewing capabilities exposed by the OS kernel
to user applications, which will be needed later in the paper.
Recall that each 64-bit virtual-memory address (i.e., C/C++
pointer) is converted into the corresponding physical address
by means of a page table maintained by the OS [49]. Access
to memory either absent from the page table of the execut-
ing process or lacking appropriate permissions causes page
faults, which are hardware interrupts that invoke the kernel
memory manager. We split the faults into three types – soft,
which can be solved by remapping existing pages (e.g., on
first access); hard, which require loading data from disk; and
exception, which indicate some type of access violation. The
last type is passed to the exception handler of the process,
which by default terminates the application.

Our key observation is that virtual streams can be set up to
generate controlled access violations, which are intercepted
by a custom exception handler that transparently fixes the
problem and allows the program to continue. Developing
algorithms and techniques for doing so is our general topic.
To cover both Linux and Windows, we use the terminology
from Figure 1, which shows the main states of virtual mem-
ory seen by a user process. All space is initially owned by
the OS and considered free. There is a reservation procedure
(i.e., mmap(PROT_NONE, MAP_NORESERVE|MAP_ANONYMOUS)
on Linux, VirtualAlloc(MEM_RESERVE) on Windows) that
allows the application to set aside contiguous blocks of the
virtual space in order to avoid conflicts with future alloca-
tion requests (e.g., from malloc/new). While not immedi-
ately usable, this space can later be converted to committed-
untouched, which is done through mprotect(PROT_READ|
PROT_WRITE) or VirtualAlloc(MEM_COMMIT).
Mapping to physical pages does not occur until the pro-

gram first writes to committed pages, at which time they
become committed-touched and added to the working set of
the process. Pages that are no longer needed can be returned
to the operating system, by either keeping the reservation

Free

Committed

untouched

Committed

touched

working set

Reserved

decommit

access

release reserve

decommit commit

release release

Figure 1. Taxonomy of virtual-memory states.

in place (i.e., VirtualFree(MEM_DECOMMIT)) or completely
discarding it (i.e., munmap, VirtualFree(MEM_RELEASE)). In
the algorithms below, we use the terms decommit and re-
lease synonymously. It should also be noted that pages in
the working set can be remapped from one virtual address
to another, while preserving their contents, using mremap
(Linux) or MapUserPhysicalPages (Windows).

RAM usage of a process is generally measured by the
size of its working set; however, there are additional costs
incurred by the OS. Each page in the working set is accom-
panied by an 8-byte descriptor. Assuming common 4-KB
pages, this yields an overhead ratio of 8/4096 = 2−9 ≈ 0.2%.
For reserved pages, Linux has 𝑂 (1) cost (i.e., the size of one
node in the VMA tree), while Windows requires 1 bit for
every 64 KB. Even in the latter case, this overhead is small
enough (i.e., 2−19 ≈ 0.0002%) to be considered negligible in
many cases. For example, a 10-TB reservation on Windows
requires only 20 MB of physical memory.

3.2 Exceptions
Memory-related exception handling on Linux is done by
catching the SIGSEGV signal; on Windows, the same is ac-
complished by registering a callback through VEH (Vectored
Exception Handling). When a user handler is invoked, the
OS provides enough parameters to determine the address
of the fault, the attempted operation (read/write), and the
type of error (e.g., access violation, illegal instruction, stack
overflow). The last piece that completes the puzzle is that the
kernel suspends only the thread experiencing the exception,
while letting other threads continue as normal. This makes
many interesting scenarios possible, in which one thread at-
tempts to read a block of memory that is not available yet and
gets suspended in an exception, followed by another thread
loading the missing block and releasing the first thread.

4 Producer Consumer
4.1 Vortex-A: Conceptualization
We start by noting that invocation of a fault handler for each
4-KB page is not likely to provide sufficient performance for
memory-demanding applications. For example, Sandy Bridge

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

626

read fault

committed reserved reserved free

produce size

before

after

A B C

B C D

M = 2

Figure 2. Operation of Vortex-A.

Intel i7 CPUs can process access violations at roughly 3M/sec,
which yields 12 GB/s of throughput. Since this is well below
the corresponding RAM bandwidth (e.g., 51 GB/s), it might
be useful for the stream to offer additional mechanisms that
control the frequency of calls to the page handler. We do this
by grouping pages into blocks of size 𝐵 (usually 1-2 MB) and
issuing commit/decommit/remap on them as one unit.

Now assume existence of a producer that offers bulk data
that must be processed by a consumer thread. To handle
these scenarios, our first design is called Vortex-A. It is a
simple stream that works synchronously (i.e., without read-
ahead) and embeds the producer into the fault handler. This
example serves as a platform for helping understand the
more advanced cases in later sections. Suppose the consumer
intends to read data almost sequentially, by which we mean
that a read in block 𝑥 in the buffer must be followed by reads
in blocks 𝑦 ≥ 𝑥 −𝑀 , where𝑀 ≥ 0 is the number of blocks
by which the program may need to come back to reprocess
the already-visited bytes.

In some cases (e.g., finding the largest 8-byte integer in a
stream), 𝑀 might be trivially zero; however, more general
situations are supported as well. In Algorithm 2, strstr
may have to return by the length of the sought-after string.
As long as strLen is smaller than 𝐵, usage of 𝑀 = 1 guar-
antees correctness. Because Vortex is a low-level program-
ming interface for extreme-performance applications, where
memory interaction demands the highest throughout, we as-
sume that the programmer can either eliminate repeat passes
over the same bytes or at least deploy libraries/algorithms
with well-defined comeback thresholds. For the majority of
streaming scenarios, however, we expect either 𝑀 = 0 or
𝑀 = 1 to work without a glitch.
The logic behind Vortex-A is illustrated in Figure 2. The

top picture shows that the producer reserves enough virtual
memory to accommodate the entire stream (e.g., 1 TB on
a system with 8 GB of RAM). As discussed above, this car-
ries almost no physical-memory cost. Before providing the
buffer to a user application, such as the consumer thread
in Algorithm 2, the producer installs a custom exception
handler whose purpose is to perform transparent page com-
mits/decommits. In the figure, location of the next read fault

Algorithm 6: Vortex-A fault handler.

1 Function Handler(char *fPtr)
2 dPtr = fPtr − (M+1)*B; ⊲ decommit pointer
3 if dPtr ≥ buf then
4 Decommit(dPtr, B); ⊲ discard block A
5 Commit(fPtr, B); ⊲ commit block D
6 ProduceData(fPtr, B); ⊲ write data into the block

Figure 3. Consumer comeback 𝑀 , producer comeback 𝐿,
and read-ahead 𝑁 .

is shown with an arrow after block 𝐶 . Upon gaining control,
the handler decommits chunk A, commits D, fills up the latter
with data, and continues execution of the CPU instruction
that caused the preceding exception. The working set of the
process consists of𝑀 + 1 blocks, regardless of stream size.
The corresponding fault handler is shown in Algorithm

6, where buf is the start of the reserved space, fPtr is the
address of the fault, and dPtr is the decommit pointer.

4.2 Vortex-B: Virtual Data Streams
The system developed in Figure 2 is a good start; however,
it has several drawbacks. First, it requires that the producer
code be inserted into the fault handler, which prevents it
from running concurrently with the consumer. Instead, a
more desirable solution would allow function ProduceData
to execute for the next few blocks, while the consumer is
munching on the previous bytes. Second, the strength of our
desired architecture is that the producer is unaware that the
virtual space is split into discrete chunks. This means that it
should be able to cover the entire 1-TB buffer using a single
function call or CPU instruction that appears uninterrupted
in user mode (e.g., memset in C/C++, rep stos in assembly).
Unfortunately, the producer in Algorithm 6 is still block-
based. Finally, to support overlapped (i.e., asynchronous) I/O
with multiple pending DMA requests and other types of out-
of-order writes into the virtual space, it is beneficial to allow
the producer non-monotonic access to the shared buffer.
To enable the new interface, a few modifications are re-

quired. As sketched in Figure 3, let 𝐿 ≥ 0 be the size of the
producer comeback region, given in full blocks. The producer
guarantees that following a write fault in block 𝑥 it never
touches blocks below 𝑥 − 𝐿. In the figure, suppose it issues
𝐿+1 = 3 overlapped I/O requests into blocks (𝐷, 𝐸, 𝐹), where
chunk 𝐹 completes first and causes a write fault. This allows

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

627

Figure 4. Operation of Vortex-B with 𝐿 = 0.

the consumer to enter block 𝐶 ; however, since blocks (𝐷, 𝐸)
are still pending, the stream must stop the consumer from
going any further. Additionally, let 𝑁 + 𝐿 ≥ 1 be the maxi-
mum number of ready blocks that the stream can maintain.
If the producer in Figure 3 is so quick that it manages to
complete all five blocks 𝐷 − 𝐻 while the consumer is still in
block 𝐶 , the stream needs to suspend the producer when it
attempts to write into block 𝐼 .
We now explain how the stream can limit the maximum

distance between the producer and consumer at 𝑁 +𝐿 blocks.
Even though write faults into reserved space give away the
location of the producer, there is no such mechanism for
the consumer. Our solution, which we call Vortex-B, is to
trip up the consumer on guard pages scattered across its
commit space. This is accomplished by changing the pro-
tection of the page to PROT_NONE in mprotect (Linux) or
PAGE_NOACCESS in VirtualProtect (Windows). Note that
the guard status does not destroy the contents of the page
and can be applied to memory that is already in the working
set of a process. Access violations on guard pages provide
an indication to the stream where the next read is being at-
tempted, which allows the handler to advance the producer
and decommit old chunks. To make guard memory readable
again, the protection is changed to PROT_READ|PROT_WRITE
(Linux) or PAGE_READWRITE (Windows).

Consider an illustration on top of Figure 4, where six
blocks are currently in the commit state. The producer has
just finished block 𝐺 and triggered a write fault at the next
block. During previous write violations, the stream placed
guard pages at the start of all preceding blocks. The con-
sumer has gone though 𝐴 − 𝐶 and removed their guards,
but those at the beginning of blocks (𝐷, 𝐸) are still in place
(marked with solid rectangles).

In response to thewrite fault on top of Figure 4, the handler
installs a guard page at the start of 𝐺 and waits for the
consumer to finish 𝐶 . Attempts to advance into block 𝐷 by
the consumer spike a guard exception with a read violation.
Once that happens, the stream decommits the oldest block
𝐴 and commits the newest block 𝐻 , allowing both producer

Algorithm 7: Vortex-B handler.

1 semFull = CreateSemaphore (0); ⊲ no full blocks
2 semEmpty = CreateSemaphore (N+L); ⊲ all blocks are empty
3 buf = ReserveMemory (size); ⊲ main buffer
4 Function Handler(char *fPtr, int type)
5 if type == WRITE_FAULT then
6 gPtr = fPtr − (L+1)B; ⊲ guard-block pointer
7 if gPtr ≥ buf then
8 SetGuardPage (gPtr);
9 Release (semFull); ⊲ consumer can use guarded block

10 Wait (semEmpty); ⊲ wait for consumer to catch up
11 Commit (fPtr, B); ⊲ this block ready for producer
12 else ⊲ GUARD violation
13 dPtr = fPtr − (M+1)*B; ⊲ decommit pointer
14 if dPtr ≥ buf then
15 Decommit (dPtr, B);
16 Release (semEmpty); ⊲ let producer move forward
17 Wait (semFull); ⊲ wait for producer to make next block

Algorithm 8: Usage of Vortex-B.

1 Function main()
2 len = 10 ≪ 40; ⊲ 10 TB
3 Stream s (len + 1); ⊲ create a stream object
4 thread p (Producer, s.GetWriterBuffer(), len);
5 thread c (Consumer, s.GetReaderBuffer());
6 p.join(); ⊲ wait for producer to finish
7 s.ProducerFinished(); ⊲ releases semFull by L+1
8 c.join(); ⊲ wait for consumer to finish

and consumer to continue. This is shown at the bottom of
Figure 4. Algorithm 7 implements the corresponding handler
using the classical bounded producer-consumer problem [49]
with two semaphores that count the number of empty and
full blocks in the committed space.
The application interface of Vortex-B is given by Algo-

rithm 8, which starts producer/consumer threads (such as
those in Algorithm 2) and gives them both a char* pointer
to work with. These threads are not aware of the underlying
stream operation and treat it as a contiguous 10-TB buffer.
It should also be noted that function s.GetReaderBuffer()
must wait on semFull before returning to ensure that a
guard has been placed in the first block of the stream before
the consumer begins.

4.3 Vortex-C: Physical Data Streams
While Algorithms 7-8 satisfy the minimum requirements of
a virtual stream, improvement is still possible in two aspects.
First, Vortex-B is not particularly fast because decommitted
pages are given back to the OS and the kernel must spend
non-trivial amounts of work to allocate them again. This
includes not only finding the best physical page for each
commit request, but also memsetting that memory to zero
for security reasons. Second, Vortex-B breaks if the consumer
skips over guard pages and jumps forward into a partially

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

628

Figure 5. Operation of Vortex-C with 𝐿 = 0.

filled block. An example would be a graph, stored using
adjacency lists, in which the application needs to examine
all source nodes, skipping over the neighbors.
Our immediate goal is to build a solution that removes

both of these limitations. Assume that the next stream, which
we call Vortex-C, returns two pointers – bufP to the producer
and bufC to the consumer. These are virtual memory buffers,
both reserved to the size of the stream. The producer at-
tempts to write into bufP and causes only write faults, while
the consumer reads from bufC and generates only read vi-
olations. The key to this architecture is quick remapping
of pages from one virtual buffer to the other. This idea is
illustrated in Figure 5, where the producer is stuck on a write
fault after block 𝐸 and the consumer just finished block𝐶 . To
continue, two things must happen – chunk 𝐷 gets remapped
to the consumer buffer at the current read location and block
𝐴 gets returned to the producer at its present write address.

Upon startup, the stream acquires a set of 𝑁 + 𝐿 + (𝑀 + 1)
blocks of physical pages that it can map to arbitrary vir-
tual addresses. On Linux, this is done by allocating a sep-
arate buffer with PROT_READ|PROT_WRITE permissions and
touching each page. On Windows, there is a dedicated API
for this purpose (i.e., AllocateUserPhysicalPages). Un-
like the commit/decommit approach of Vortex-B, remapping
does not return memory to the OS, which in turn avoids
the expensive re-allocation. Additionally, because of dual
virtual buffers, Vortex-C can track the consumer during non-
contiguous jumps forward into its reserve space. The under-
lying fault handler is the same as in Algorithm 7, except calls
to commit/decommit are replaced with remapping and there
is no need to set guard pages.

4.4 Multiple Streams
We now explain how different stream types can coexist
within a process and share an exception handler. Our ap-
proach is to create a parent C++ class called Stream, from
which individual Vortex-A/B/C classes are inherited. Pure-
virtual functions in Stream provide a standardized interface
(e.g., to get the read/write buffer pointer, process a page fault,
obtain stream size) that does not expose the internal imple-
mentation of the inherited class. This also allows the user, if

necessary, to write code for custom streams that automati-
cally receive fault notifications related to the virtual space
under their control.
In each process, we create a single instance of a special

StreamManager class, whose job is to register as an excep-
tion handler and maintain all streams created by the applica-
tion. This is done by placing the left/right boundaries [𝑎𝑖 , 𝑏𝑖]
of the buffer used by virtual stream 𝑖 into a balanced interval
tree. Given a page fault at address 𝑥 , the manager performs
a search for the largest 𝑎𝑖 ≤ 𝑥 and verifies that 𝑥 ∈ [𝑎𝑖 , 𝑏𝑖]
before passing the exception to the corresponding stream
𝑠 . After the stream deals with the exception, the manager
tells the OS to repeat the offending instruction, which allows
the program to continue. On the other hand, if no match-
ing stream is found, the manager passes control to the next
handler. Therefore, crash conditions unrelated to Vortex be-
have as usual, i.e., cause process termination or invoke the
debugger.

4.5 Discussion
Vortex should not be viewed as a set of algorithms just limited
to flavors A/B/C introduced above; instead, it encompasses
a new programming paradigm that supports fluid memory,
which appears on demand where needed and disappears af-
ter use, for various streaming producer/consumer purposes.
Vortex exposes applications to memory abstractions that al-
low computation to directly interact with the data, disposing
with traditional block-based iterators, boundary checking,
bloated code needed to handle records that split across adja-
cent blocks, and the resulting performance loss. The strength
of the proposed vision is that it is a user-level construct that
gives anyone the flexibility to add new features, modify ex-
isting streams, and provide extensions as needed. The next
section shows one such example where a hybrid of Vortex-B
and C is created to support faster sorting.

5 Partitioning and Sorting
5.1 Overview
Many big-data applications rely on sorting as an intermediate
step in their computation. Besides MapReduce [4], [17], other
classical examples include database table joins [10], [12], [15],
[18], [27], [40], [43], [51] and graph-processing tasks [33],
[34], [36], [38], [37]. We define a sorting algorithm to be
in-place if it can process inputs of size 𝑛 using 𝑛 +𝑂 (1) space
as 𝑛 → ∞ and return the keys back into the original array.
The 𝑂 (1) term may contain various counters, pointers, and
partially used pages that the OS has given to the application.
If a method requires 2𝑛 + 𝑂 (1) memory, we call it out-of-
place. In general, in-place algorithms are preferred as they
consume less RAM for a given input size and finish in fewer
I/O passes when operating in external-memory.
Assume input consisting of 𝑛 random keys of size 𝑙 = 64

bits, which is a common scenario of interest [15], [29], [43].

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

629

On uniform integers, radix sort has a significant speed advan-
tage over comparison-based methods (e.g., quick sort, merge
sort). It will thus be our focus here. The order of bit process-
ing in radix sort can be either MSB (most-significant bit first)
or LSB (least-significant bit first). If 𝑏 ≥ 1 bits are examined
at each step and the input is uniform, MSB terminates after
⌈log2 (𝑛)/𝑏⌉ scans over the data, where log2 𝑛 is the number
of upper bits that are sufficient for differentiation between
input keys. On the other hand, LSB always needs ⌈𝑙/𝑏⌉ iter-
ations, which makes it less desirable for 64-bit workloads.

For this reason, our approach builds upon MSB radix sort.
Its classical version [28] starts by distributing keys into 𝐾 =

2𝑏 buckets, which is done by examining the upper 𝑏 bits
and directing each key 𝑥 into bucket 𝑥 ≫ (𝑙 − 𝑏), where
≫ denotes bitwise shifting to the right. Once this is done,
each bucket is processed recursively in DFS order, except
extraction of bucket bits at depth 𝑘 now requires shifting by
𝑙 −𝑏𝑘 and a bitwise ANDwith 2𝑏 −1 to remove the irrelevant
upper bits. While the idea is pretty straightforward, there
are two caveats.
First, the in-place MSB version [11], [14], [15], [19], [21],

[43] swaps elements at random distances far greater than
cache size, which makes its memory-access pattern pretty
slow and causes the method to be unstable (i.e., not preserve
the original order between duplicate keys). In contrast, if
two arrays are allocated (i.e., doubling RAM usage to 2𝑛),
the out-of-place MSB version, also known as bucket sort, can
stream all keys sequentially, achieve much faster rates due
to better locality of reference, and maintain stability [23],
[29], [30], [43], [44], [50]. As a result, MSB radix sort offers
a well-defined tradeoff between speed and space.

Second, since the size of each bucket is unknown a-priori,
all flavors of radix sort must use two passes over each key per
level of recursion, i.e., once to precompute bucket lengths
and once to distribute the keys. An ideal algorithm would
eliminate the histogram pass and combine the best features of
both in-place/out-of-place MSB versions, i.e., avoid random
access (i.e., use streaming), offer an option to be stable, and
keep close to 𝑛 elements in the working set. As we discuss
next, Vortex enables us to do just that.

5.2 Main Idea
Algorithm 9 shows pseudocode for a single-pass bucket sort.
Line 1 declares an array of pointers bucket. Its first dimen-
sion 𝐷 = ⌈𝑙/𝑏⌉ is the maximum depth of recursion and its
second dimension 𝐾 = 2𝑏 is the number of available buck-
ets. During key distribution at level 𝑖 , pointer bucket[i][j]
specifies the address in bucket 𝑗 that will receive the next key.
In each recursive call, Lines 3-4 set up an array of pointers p
to provide bucket addresses for the current level and pNext
for the next level.
Since each bucket is assumed to have enough space to

accommodate all levels of recursion, newly partitioned data

Algorithm 9: Elementary single-pass bucket sort.

1 uint64 *bucket [D][K];
2 Function BucketSort(uint64 *buf, uint64 size, int shift, int level)
3 uint64 **p = &bucket[level][0]; ⊲ pointers for current level
4 uint64 **pNext = p + K; ⊲ pointers for next level
5 memcpy (pNext, p, sizeof (uint64*) * K);
6 for (i = 0; i < size; i++) do
7 idx = (buf [i] ≫ shift) & mask; ⊲ get bucket index
8 *pNext [idx] ++ = buf [i]; ⊲ write key into bucket
9 for (j = 0; j < K; j++) do
10 sizeNext = pNext [j] − p [j]; ⊲ size of bucket j
11 if sizeNext > 32 then
12 BucketSort (p [j], sizeNext, shift − b, level + 1);
13 else
14 (*sn[sizeNext])(p [j]); ⊲ call sorting network
15 memcpy (output, p [j], sizeof(uint64) * sizeNext);
16 output += sizeNext;

is appended to the back of each existing bucket (Lines 6-8),
allowing it to expand and shrink as needed. After bucket size
drops below 32, we switch to a sorting network, which is
accessed by the corresponding function pointer in Line 14. If
the sort needs to be stable, this call should be replaced with
insertion sort.
The main difficulty with using Algorithm 9 is that it re-

quires pre-allocating each bucket to the size of input times
the number of levels of recursion. This worst-case scenario
happens when all keys get appended back to the same bucket
(e.g., input consisting of all zeros). To overcome this problem,
our observation is that each bucket can be supported by a
separate Vortex stream and reserved to the maximum size
𝑛𝐷 , which carries little cost. More importantly, reads in Line
7 can be treated by our framework as those coming from a
consumer and writes in Line 8 as those from a producer. As
long as memory pages released by the former can be mapped
to locations needed by the latter, the algorithm can operate
without needing any additional blocks from the OS beyond
those obtained to support the first level of recursion.
While this framework sounds good in theory, there are

open issues. They include design of a new stream that can
support randomly interleaved reads/writes at each bucket
from Algorithm 9 and sharing of memory blocks between
different streams. The rest of the section addresses them.

5.3 Vortex-S: Sorting Streams
We start by examining why the streams developed earlier are
unsuitable for sorting. Vortex-A/B rely on the OS to manage
the pages, which runs into significant performance limita-
tions, especially considering the speed at which Algorithm
9 can operate. Vortex-C is quite appealing on the surface;
however, closer inspection shows that its usage of dual vir-
tual buffers makes bucket sort highly inefficient. At deeper
levels of recursion, Algorithm 9 may write to and read from

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

630

A

L2
′

D E B C

x

L0

y

L1
′

(a) read faults in reverse order

A

L2
′′

D E B C

y

L0

x

 L1
′′

(b) interleaved read/write faults

Figure 6. Tricky read faults in Vortex-S.

the same block a number of times in short succession. Be-
cause each access may involve just a few keys, performing
a full block remap wastes a lot of CPU cycles, which makes
Vortex-C slower than Vortex-B in this application.

Instead, our next design is Vortex-S, which uses the gen-
eral architecture of Vortex-B combined with physical pages.
The new stream employs a single virtual buffer shared by
the consumer/producer and relies on guard pages to trig-
ger read faults. But because both producer/consumer in Al-
gorithm 9 are in the same thread, Vortex-S does not need
semaphores from Algorithm 7. Furthermore, instead of de-
commiting blocks back to the OS, Vortex-S unmaps them
and returns their pointer into a special queue that is shared
across all buckets. When written keys cause expansion of a
bucket, its stream draws free blocks from the same queue
and maps them to the location needed (more on this below).

What is peculiar about Vortex-S is that not every read fault
allows deallocation of the preceding block. First, consider the
scenario in Figure 6(a), where a particular bucket 𝑗 consists
of five blocks 𝐴 − 𝐸. In this context, set 𝐿0 refers to the
keys written into bucket 𝑗 at recursion level zero and 𝐿′

𝑘
for

𝑘 ≥ 1 indicates the keys that were generated at level 𝑘 while
processing some other bucket 𝑖 < 𝑗 . In the figure, Algorithm
9 writes 𝐿0 and moves on to process buckets before 𝑗 . During
that time, it appends 𝐿′1 and 𝐿

′
2 to bucket 𝑗 , which sets up

guard pages in blocks 𝐵 − 𝐷 .
Since bucket sort is a variation of depth-first search, it

unwinds recursion by first processing 𝐿′2. This generates the
first read fault of bucket 𝑗 at address 𝑥 ; however, freeing block
𝐶 , as would be done by Vortex-B, deletes parts of set 𝐿′1 and
makes Algorithm 9 fail. Continuing, notice that after reading
𝐿′2, bucket sort eventually reads 𝐿′1, causing the second read
fault of this stream at location𝑦. Again, freeing the preceding
block 𝐵 discards parts of yet-unprocessed 𝐿0. Both issues can
be handled by allowing unmapping only if the current read
fault in a given bucket stream is exactly one block ahead of
the immediately preceding read fault, i.e., 𝑦 = 𝑥 + 𝐵.
Figure 6(b) shows the second scenario that needs special

handling. Assume that Algorithm 9 writes 𝐿0 into bucket 𝑗
and goes to read buckets 𝑖 < 𝑗 at level zero. This produces
several writes into bucket 𝑗 , which at some point set up the
guard page in block 𝐵. Eventually, all of the appended keys
after 𝐿0 are removed, which does not affect the guard in

𝐵, and bucket sort comes back to read 𝐿0. This generates a
read fault in position 𝑥 , which is later followed by process-
ing of some bucket 𝑖 > 𝑗 at level 0. Its split causes 𝐿′′1 and
subsequently 𝐿′′2 to be appended to the current bucket 𝑗 , as
shown in the figure. This creates guard pages in blocks 𝐶
and 𝐷 . Next, when Algorithm 9 goes to read 𝐿′′2 , it generates
a read fault at 𝑦, which is exactly one block beyond 𝑥 . Since
𝑦 = 𝑥 + 𝐵, the rule developed in the previous paragraph
allows deallocation of block 𝐵, which in turn destroys 𝐿′′1 .
We can now combine insight from both cases in Figure

6 to construct a robust set of unmapping rules in Vortex-S.
Suppose each stream stores internally the address 𝑥 of the
last read fault. Then, the next read fault at 𝑦 unmaps the
preceding block iff a) 𝑦 is one block larger than 𝑥 ; and b) the
guard page at 𝑦 was set up before the read fault at 𝑥 occurred.
Both conditions are easily implemented in the fault handler.

5.4 Stream Pools and Free Blocks
It should be noted that Vortex-A/B/C streams generally do
not need to share free blocks between each other. In Vortex-S,
however, it is imperative that they do; otherwise, the sort is
not in-place. To handle this functionality, the application cre-
ates a StreamPool object that allocates physical pages from
the OS and keeps them in a queue whose pointer is provided
to the constructor of all Vortex-S streams participating in
the pool. On write faults, streams draw blocks of size 𝐵 from
the shared queue; on read faults that satisfy conditions in
Section 5.3, they return the blocks back into the queue.
Upon initialization, StreamPool obtains enough blocks

to cover input size 𝑛, plus an additional 2𝑏 blocks. Over-
allocation is necessary because the last block of each stream
is only partially written to. Thus, StreamPool wastes 𝐵2𝑏
bytes of memory. To maintain reasonable sort speed in prac-
tice, both 𝑏 and 𝐵 must be constants, i.e., independent of 𝑛.
Thus, the extra blocks consume 𝑂 (1) space as 𝑛 → ∞.

5.5 Optimizations
Algorithm 9 can be deployed over Vortex-S without modifi-
cation; however, for it to be competitive against the fastest
alternatives certain optimizations are needed. The first two
methods we use are prefetch hints to the CPU and software
write-combining with non-temporal stores [10], [43], [47],
[53]. The third optimization implements sorting networks
using non-branching SWAP macros that translate into con-
ditional move instructions in assembly. This solution, origi-
nally proposed on stackoverflow [32], is currently the fastest
method for sorting small arrays. Note that at least one recent
paper, RADULS2 [29], uses all three techniques.
To make a separate contribution towards faster sorting

of uniform keys, we offer a novel approach to deciding the
fanout at each level. We have observed that the highest speed,
regardless of the CPU in our tests, was achieved when the
sorting network processed on average 2𝑟 = 8 elements. Us-
ing more keys makes sorting networks slow; at the same

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

631

Table 1. Available Configurations

𝑐1 𝑐2 𝑐3

i7 CPU 3930K (Q4’11) 4930K (Q3’13) 7820X (Q2’17)
Platform Sandy Bridge-E Ivy Bridge-E Skylake-X
Cores 6 6 8
Turbo clock 3.8 GHz 3.9 GHz 4.7 GHz
RAM 32 GB 32 GB 32 GB
RAM type DDR3-2400 DDR3-2400 DDR4-3000
Test drive 24-disk RAID 24-disk RAID M.2 SSD
Primary OS Server 2008 R2 Server 2008 R2 Server 2016
Secondary OS Ubuntu 17.10 – Ubuntu 18.10

time, aiming for less than 8 bottlenecks the program on the
function pointer in Line 14 of Algorithm 9. Since this call
cannot be inlined, a great deal of overhead can be saved by
running the last level of recursion at the optimal value.

This requires modifying Algorithm 9 to accept a sequence
of heterogeneous bit splits (𝑏0, . . . , 𝑏𝑑−1) and run bucket sort
to depth 𝑑 , where level 𝑖 uses 2𝑏𝑖 buckets. We define a com-
bination of bit counts (𝑏0, . . . , 𝑏𝑑−1) as admissible for a given
input size 𝑛 = 2𝑘 if 𝑘 −∑𝑑−1

𝑖=0 𝑏𝑖 = 𝑟 . For example, 𝑛 = 223 can
be processed using 10+10 bits (two levels of recursion), 8+8+4
or 7+7+6 (three levels), or 5+5+5+5 (four levels). If 𝑠 (𝑥) is the
speed at which the CPU can partition keys into 2𝑥 buckets,
the optimal solution (𝑏0, . . . , 𝑏𝑑−1) minimizes

∑𝑑−1
𝑖=0 1/𝑠 (𝑏𝑖),

subject to the constraint mentioned above. When function
𝑠 (𝑥) is not available, our bucket sort selects the smallest
depth such that 𝑏𝑖 ≤ 8 holds for all 𝑖 and aims to minimize
the variance of set (𝑏0, . . . , 𝑏𝑑−1). In such cases, 7+7+6 would
be preferred over 8+8+4 or 10+10.

6 Experiments
6.1 Setup
We now examine performance of Vortex, whose code is avail-
able online [52], in various use cases from Section 2. This
includes producer-consumer pipelines (both I/O and inter-
thread), in-memory partitioning of keys, writing into an
expanding array, and in-place sorting. Our benchmarks use
Visual Studio 2019 on Windows and gcc 7.4.0 on Linux, both
set to the maximum optimization level. We employ the hard-
ware configurations in Table 1, each running an Intel i7
desktop CPU. The file system on 𝑐1 − 𝑐2 consists of 24 spin-
ning hard drives (2 TB Hitachi Deskstar 7K3000), organized
into RAID-5 and driven by two Areca 1880ix controllers. On
the other hand, 𝑐3 runs an NVMe SSD (Samsung 960 Evo)
over the M.2 interface on the motherboard with a direct PCIe
3.0 x4 (4 GB/s) link to the CPU.

6.2 OS Bottlenecks
We start by benchmarking the rate at which Linux and Win-
dows can slide a single 1-MB block along a virtual buffer
using Vortex-B/C algorithms. Unless mentioned otherwise,

Table 2. Sliding-Block Speed on 𝑐3 (GB/s)

Test Linux Windows
w/o faults w/faults w/o faults w/faults

Vortex-B 5.9 5.9 5.7 5.7
Vortex-C 275 228 150 128

all experiments below use standard 4-KB pages. For Vortex-
B, we commit one block, touch each of its pages, and de-
commit it. This process repeats sequentially for every block
of the virtual space. For Vortex-C, we remap the previous
block forward instead of returning it to the OS. To assess the
penalty of catching page faults in user space, we consider
both explicit block movement (i.e., the user performs com-
mit/decommit/remap) and transparent (i.e., the fault handler
does it instead).

The result is shown in Table 2, where a single thread can
move blocks forward at over 220 GB/s on Linux and 125
GB/s on Windows. As expected, remapping in Vortex-C is
significantly (i.e., 26− 46×) faster than obtaining pages from
the kernel in Vortex-B. It is also 13− 23× faster than memcpy,
which maxes out at 12 GB/s on this host. Even with a user-
driven fault handler, which reduces the speed by roughly 15%,
both kernels easily exceed 100 GB/s. This is still immense
compared to the speed of most producer/consumer pairs.
While both operating systems post similar numbers in the
first row of Table 2, Linux is almost twice as fast in the
remapping test. Thus, in the remainder of this section, we
only focus on Windows, whose results should be viewed as
a lower bound on Vortex performance.

6.3 File I/O
Our first application is an I/Owrapper, built using overlapped
and unbuffered calls into the kernel, which we compare
against other known APIs. We use a 128-GB file (i.e., 4×
RAM), where the write test produces 64-bit values into the
file and the read test sums them up using SSE intrinsics.
Table 3 shows the result. Since 𝑐1 and 𝑐2 are identical in

this test, we only discuss the former. We start with a C++
wrapper class fstream, which offers a stream-like interface
to files. Its iterator provides users with one full token of data
(e.g., a string or an integer), keeping buffer management
hidden from the programmer. While fstream’s dismal speed
(i.e., 50−70× less than optimal) is not competitive against the
proposed methods, this result illustrates a common situation
with stream libraries and various high-level wrappers.

Usage of memory-mapped files in Windows is shown in
the second row of Table 3. Server 2008 R2 on 𝑐1 does only
slightly better – 69 MB/s in the inbound direction and 147
MB/s outbound. In addition, it occupies the entire 32 GB of
RAM with the file cache and ends up swapping idle applica-
tions to the pagefile. Server 2016 on 𝑐3 is more peculiar. The
read test completes fine @ 1,161 MB/s; however, the write
benchmark freezes the machine for 7 hours. Technically, this

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

632

Table 3. File I/O Speed (MB/s)

Framework 𝑐1 𝑐3 CPU RAM
read write read write

std::fstream 43 88 51 140 8% 2 MB
Windows MapViewOfFile 69 147 1,161 * 8% 32 GB
Linux mmap 1,892 1,170 1,917 641 3% 30 GB
Vortex-A 2,235 1,547 1,272 651 8% 5 MB
Vortex-B 2,231 2,394 3,211 650 8% 5 MB
Vortex-C 2,238 2,399 3,266 674 1% 5 MB

translates into 5.5 MB/s average rate, but because the OS is
unusable all this time, we mark the result with an asterisk.

Linux mmap in the third row does significantly better. For
example, it can read 25× faster thanWindows on 𝑐1 and 1.7×
on 𝑐3. However, its write speed on 𝑐1 and read speed on 𝑐3 are
about half of the achievable rate, even when using madvise
to declare sequential access to the file. This slow operation
of mmap during file I/O is well-known, with more details
and analysis provided in [16]. While their results suggest
that opening the file with MAP_POPULATE can speed up data
access, our tests indicate that this flag significantly increases
the initial delay of mmap, resulting in worse overall runtime.

The next three rows show Vortex streams using 𝐵 = 1MB
blocks. For read tests, we use 𝑁 = 1, 𝐿 = 4 (four overlapped
read calls), and𝑀 = 0. For write tests, we reverse the roles
of producer/consumer comeback, i.e., 𝐿 = 0 and 𝑀 = 4.
As predicted, Vortex-A struggles in certain cases because it
lacks multi-buffering. This becomes obvious in writing on
𝑐1 and reading on 𝑐3. Vortex-B fixes most of these problems,
but consumes 8% of the CPU, which is roughly one full core
occupied by the kernel memory manager. Vortex-C improves
this further by lowering the CPU utilization to 1%. In all three
cases, Vortex maintains just 5 MB of RAM.

6.4 Producer-Consumer
Our second application is an inter-thread data pipeline, where
the producer generates 8-byte numbers and the consumer
sums them up. Among the existing implementations, we
examine Apache Storm [8], a prominent streaming system,
and Naiad [41], a high-performance dataflow framework.
For Storm, our producer batches up data in chunks of 1 MB,
which we found to be optimal, before sending them for pro-
cessing; pushing one key at a time yields performance 3 − 4
orders of magnitude lower. Since Naiad can be instructed to
internally batch up the items, its operation is simpler as no
special processing is required from the user.

To take advantage of SSE instructions, we also implement
a version of this loop using a C++ iterator class, which in-
ternally allocates 𝑁 blocks of size 𝐵 per stream and sends
pointers to them through a shared queue (see Algorithms 3-4).
Experiments show that the best throughput is achieved using
𝑁 = 2 and 𝐵 = 2MB. For maximum speed, each block is pro-
cessed using vectorized intrinsics (i.e., _mm_store_si128,

Table 4. Batched Producer-Consumer Rate (GB/s)

Framework Two cores All cores RAM
𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3

Storm [8] 1.7 1.4 2.4 11.1 9.5 12.8 1.6 GB
Naiad [41] 2.7 3.1 4.4 7.4 7.9 13.1 65 MB
Queue of blocks 6.4 7.3 11.4 17.1 16.5 24.8 24 MB
Vortex-B 4.3 4.4 4.6 5.1 5.2 3.9 9 MB
Vortex-C 13.5 16.4 23.3 38.3 38.4 65.4 9 MB

_mm_load_si128, _mm_add_epi64) and all functions from
the iterator class are inlined. The Vortex user executes Algo-
rithm 5, similarly modified to issue SSE instructions and run
with the same values of (𝑁, 𝐵).

In the first row of Table 4, Storm’s single stream reaches
2.4 GB/s on 𝑐3 and its rate across all cores peaks at 12.8
GB/s. Its main drawback is high RAM usage, i.e., 25× more
than any of the other methods, which comes from the large
number of packages it needs to load (i.e., ZooKeeper, Maven,
Nimbus) and general inefficiencies of the Java runtime. Naiad
performs better with a single stream, pushing over 4 GB/s
on 𝑐3, but cannot go much faster than Storm when utilizing
all cores. Our version with a shared queue of block pointers
doubles this performance, culminating in 24.8 GB/s.

Vortex-B, with one stream in the system (i.e., two cores), is
capped to 4.6 GB/s. This is sufficient for some I/O devices, but
is far too slow for data transport between threads, 100 Gbps
networks, and SSD-based RAID setups. Going to multiple
independent streams within a single process, the aggregate
speed of Vortex-B does not increase much and, in one case,
even goes down. This is caused by the Windows kernel not
being able to parallelize commit/decommit requests.

On the other hand, Vortex-C is significantly faster. It more
than doubles the rate of the block queue and exceeds the
throughput of Storm/Naiad by 3 − 10×. To appreciate the
numbers in the last row of the table, consider the Skylake-
X architecture of 𝑐3. A multi-threaded memcpy maxes out
at 36.5 GB/s (i.e., 73 GB/s combined read/write bandwidth).
In the same configuration, Vortex-C reaches 65.4 GB/s (i.e.,
130.8 GB/s combined) using three concurrent streams, which
is seemingly impossible. As it turns out, the consumer in
Vortex-C reads from the L3 cache, which allows the system
to run at almost double the speed of memcpy.
To follow up on the discussion in Section 2.2, we now

revisit the issue of why iterators can be much slower (e.g.,
2 − 3× in Table 4) than native access to pointers in memory-
intensive benchmarks. Table 5 shows Intel performance coun-
ters from processing a stream with 100×230 bytes, where we
compare the queue of blocks (i.e., iterator) against Vortex-C.
The column marked IR shows the number of instructions
retired, which is followed by the number of loads/stores is-
sued by the CPU. The last column records the number of
cycles spent on each 16-byte __m128i item. The bottom row
of the table presents the ideal Vortex values that would be

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

633

Table 5. CPU Performance Counters on 𝑐3 (100-GB Stream)

Producer Consumer Cycles
IR Loads Stores IR Loads Stores per iter

Queue of blocks 87.3B 26.9B 13.4B 94.3B 20.2B 6.8B 6.6
Vortex-C 33.5B 1.7B 7.6B 51.6B 10.9B 2.2B 3.2
Ideal in theory 26.8B 0 6.7B 33.5B 6.7B 0 2.3

possible if a) the OS did not incur any overhead during page
faults/remapping and b) inter-thread throughput were equal
to the single-core bandwidth of the L3 cache (i.e., 33 GB/s).
Since the loop runs 100 × 230/16 = 6.71B times, the first

row shows that the iterator producer issues 13 CPU instruc-
tions per item (in a loop with 38 instructions and two con-
ditional jumps), four loads, and two stores. Out of these,
only four instructions and one store, which are given in the
last row of the table, would be needed if the program were
written in assembly and no block boundaries existed. For
the iterator consumer, the program executes 14 instructions
per item (in a loop with 52 instructions and two conditional
jumps), three loads, and one store, while the correspond-
ing optimal values would be five, one, and zero. In the end,
the iterator requires 6.6 cycles per item, which is 4.3 cycles
higher than would be theoretically possible without block
boundaries. Furthermore, had the stores been to L1 instead
of L3, the iterator could have been 5.3× slower than the ideal
rate (i.e., 1 cycle/item). Our analysis in Section 2.2 explains
the issues faced by the compiler that generate this outcome.
For Vortex-C, the program runs with the optimal four

instructions in the producer and five in the consumer, with
no unnecessary memory traffic. Thus, the only difference
between the second and third rows of Table 5 comes from the
OS overhead. Because the consumer is generally faster than
the producer, our implementation is asymmetric in the sense
that the producer issues one map call, while the consumer
does the rest of the work in Figure 5 (i.e., two unmaps and
onemap). Producer counters in Table 5 indicate that mapping
100 GB of space costs 6.7B instructions, 1.7B loads, and 0.9B
stores in the kernel, most of which are probably wasted on
spin-locks. The consumer side is predictably more expensive
– 18B instructions, 3.2B loads, and 2.2B stores. In the end,
we can estimate that the OS penalty of Vortex-C amounts to
roughly 0.9 cycles for each 16-byte item, which is 4.8× less
than the cost of the iterator.

6.5 Vanishing Array
Our next application is a vanishing array, which is a Vortex-S
stream that has been simplified to omit handling of tricky
cases from Figure 6. On startup, the array contains no data; as
the user writes into the buffer pointer, the exception handler
maps free blocks from a shared queue to the correspond-
ing virtual addresses. When the user goes to read the buffer,
page faults cause just-processed memory to be unmapped
and inserted back into the queue, which makes it available

Table 6. Populating an 8 GB Vector on 𝑐3 (GB/s)

Framework Memory
untouched pre-faulted

std::vector 0.7 –
RUMA rewired vector, 4KB pages – 5.3
RUMA rewired vector, 2MB pages – 14.3
Chained blocks 6.8 18.8
Vanishing array (Vortex-S) 25.1 25.1
Regular buffer 8.0 28.5

elsewhere in the program (e.g., in other Vortex-S streams).
This abstraction is useful when memory needs to transpar-
ently migrate from one place to another. For example, we
can use a vanishing array for input keys during bucket sort,
which allows empty pages to be reused in the buckets and
later returned into the same buffer when the sort is finished.
Limited functionality of the vanishing array can be achi-

eved using RUMA rewired vectors [46], which is a recent
framework that supports buffer resizing using virtual mem-
ory. From the usage standpoint, their approach is quite differ-
ent since RUMA does not catch page faults in user space and
requires the application to manually call push_back on each
item. This is similar to iterator-based streaming discussed
in Section 2.2. On the technical side [45], their solution also
takes a different route – it does not use anonymous pages and
backs the virtual memory with files, which are created using
either shared memory (4-KB pages) or hugetlbfs (2-MB
pages). While RUMA pre-faults all pages ahead of time, the
initial buffer is unmapped and new VMAs (virtual-memory
areas) are created for subsequent writes as the buffer grows.

For the next test, we produce 8 GB of data into a resizing
buffer. To achieve maximum speed, we use 16-byte items (i.e.,
__m128i) with streaming (non-temporal) SSE instructions.
For RUMA, the sole method running on Linux, we use the
provided push_back function, which is modified to invoke
_mm_stream_si128 for memory access. The result is shown
in Table 6. On 4-KB pages, RUMA reaches 5.3 GB/s, which
is 7.5× faster than std::vector. It gets a 2.7× boost from
huge pages (i.e., 14 GB/s) because the kernel can rewire them
much quicker; however, the remaining methods in the table
achieve similar or better rates with standard 4-KB pages.

The next row in Table 6 is our C++ iterator implementation
of vectors using chained blocks, which is a technique that
starts with a pool of 1-MB buffers and chain-links them as the
producer runs of out space during calls to push_back [43],
[46]. It performs 31% better than the second row of RUMA,
but scatters the data in disjoint locations in RAM, which
may be a disadvantage in certain cases (e.g., when a binary
search needs to run over the vector). The vanishing array
performs identical in both columns, because physical pages
on Windows do not incur faults on first access, and exceeds
the best speed of chained blocks by 33%. The reason is similar
to the one highlighted in the previous section – block-based

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

634

Table 7. Partitioning Speed of 8 GB on 𝑐3 (M keys/s)

Framework WC 𝑏 = 8 𝑏 = 9

Alg. 9 with 2-pass 339 322
Alg. 9 with chained blocks 450 413
Alg. 9 with Vortex-S 492 445
Alg. 9 with preallocated buckets 509 464
Alg. 9 with 2-pass + 364 344
Alg. 9 with chained blocks + 461 449
Alg. 9 with Vortex-S + 607 523
Alg. 9 with preallocated buckets + 637 567

algorithms incur penalties in checking boundaries, offloading
registers to RAM, and running bloated loops.
In the last row, we provide the speed at which a pro-

cess can directly write into an 8 GB buffer, which indicates
that the vanishing array realizes 25.1/28.5 = 88% of usable
RAM bandwidth on this machine. In consumer tests, where
the vanishing array cleans up memory on read faults, it
achieves similar levels of performance (i.e., 89% of the peak).
In contrast, RUMA rewired vectors yield only 19% with 4-KB
pages and 50% with 2-MB. In the latter case, the majority of
the slow-down comes from compiler’s inability to optimize
push_back, even though the function gets inlined by gcc.
Linux performance counters show that RUMA expends 10
CPU instructions, three loads, and two stores for each item,
which is in agreement with our analysis in Section 2.2. This
leads to 5.3 cycles per iteration of the loop, compared to 2.6
for the regular buffer in the bottom row of Table 6. With
huge pages, the kernel is responsible for a negligible fraction
of the runtime, which means that this 50% performance loss
comes solely from the iterator interface.

6.6 Partitioning
Our fourth application partitions integer keys into 2𝑏 bins,
which is an elementary operation underlying radix sort. We
implement four flavors of this task, all of which use the same
optimizations and involve Algorithm 9 in the core. The only
difference lies in how they solve the issue of a-priori un-
known bucket sizes. These methods can perform complete
sorts, but, for the purposes of this test, are stopped after
producing level-0 splits. The first technique uses a counting
pass to decide the starting offsets of buckets within an aux-
iliary array of size 𝑛. The second approach sends keys into
buckets that dynamically expand using a chained set of 1-MB
blocks, which allows it to use a single pass. Vortex-S is our
third alternative, which is the only method that reads input
from a vanishing array; all others use slightly faster regu-
lar buffers. The final method allocates buckets to the exact
size needed, which represents the absolute best-case perfor-
mance, not achievable in practice unless the distribution of
keys is known in advance.

To achieve maximum speed, we ensure that any memory
into which the application writes has been memset before
partitioning begins. The result for uniform 64-bit keys is

Table 8. In-place Sort Speed (M keys/s)

Citation, type Year 8 GB of keys 24 GB of keys
𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3

[21], MSB radix 2011 17.4 17.9 22.0 20.7 21.7 25.8
[43], MSB radix 2014 19.2 22.5 26.4 18.4 21.2 26.0
[48], MSB radix 2017 24.1 25.2 31.5 23.9 25.9 31.6
[42], MSB radix 2019 16.8 19.3 26.2 25.3 29.7 38.6
[9], quicksort 2017 21.8 23.1 27.6 21.3 22.4 26.9
std::sort 2019 9.5 9.7 11.6 9.0 9.2 10.9
[24], Intel TBB 2019 8.5 8.6 10.7 8.0 8.2 10.1

Table 9. Vortex-S Speed (M keys/s)

𝐵 8 GB 24 GB
𝑐1 𝑐2 𝑐3 𝜖 𝑐1 𝑐2 𝑐3 𝜖

220 71 84 127 1.6% 68 80 121 1.1%
219 70 82 126 1.6% 67 78 121 0.8%
218 68 79 123 1.2% 65 75 119 0.7%

shown in Table 7, where a plus in the WC column indi-
cates that the method uses software write-combine with
non-temporal SSE instructions. The chained-block imple-
mentation is 26−32% faster than the 2-pass approach, which
is consistent with our discussion in Section 2.3. Vortex-S
improves this further by 7 − 31% and comes within 5-8%
of the optimal speed in the last row. Because partitioning
inherently runs at a lower rate (i.e., 3-4 GB/s) and does more
work compared to the algorithms in the last two subsections,
the chained-block iterator has a smaller relative penalty;
however, performance counters still show a non-negligible
amount of extra activity (i.e., 55% more CPU instructions,
14% more loads, and 31% more stores) compared to Vortex.

6.7 Sorting
Our fifth application of Vortex is in-place integer sorting
using Algorithm 9. While the benchmarks below involve uni-
form 64-bit keys, the same principles can be easily adapted
to sort 32-bit numbers, key-value pairs, and non-uniform
workloads. For prior methods, we port all code to Windows
and feed input from a regular buffer. On the other hand,
Vortex-S reads from a vanishing array and outputs the result
back into it, which allows it to remain in-place.

Table 8 lists seven competitor implementations for in-place
sorting. The bottom three are comparison-based, while the
top four are some of the fastest in-place radix-sort algorithms
in the public domain. Where appropriate and known, we
label rows with LSB or MSB depending on whether they use
the least-significant or most-significant bit first. For each
column, we also mark the fastest result using gray shading.
Table 9 displays performance of Vortex-S on the same input,
where block size 𝐵 ranges from 1MB in the first row (optimal
speed) to 256 KB in the last row. We additionally display the
fraction 𝜖 of memory occupied by partially-filled blocks at
the end of each bucket stream. These results demonstrate

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

635

Table 10. Out-of-Place Sort Speed (M keys/s)

Citation, type Year 8 GB 24 GB
𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3

[44], LSB radix 2011 24.6 24.7 39.3
[43], LSB radix 2014 23.8 26.4 42.0
[50], LSB radix 2016 19.2 23.3 34.0 unable to run
[30], MSB radix 2017 25.2 29.4 41.0
[29], MSB radix 2017 43.6 58.2 67.0
[23], Intel IPP 2019 9.3 9.8 42.3

Table 11. Speedup Factor of Vortex-S

Compared to 8 GB 24 GB
𝑐1 𝑐2 𝑐3 𝑐1 𝑐2 𝑐3

Best in-place 2.9 3.3 4.0 2.7 2.7 3.1
Best out-of-place 1.6 1.4 1.9 unable to run
std::sort 7.5 8.7 10.9 7.6 8.7 11.1

that Vortex-S achieves a substantial improvement over the
previous methods, while incurring negligible RAM overhead
𝜖 . On Skylake-X (i.e., 𝑐3), it beats the fastest in-place methods
[42], [48] by 3 − 4× and STL quicksort by 11×.
While Vortex-S is hands-down the fastest technique that

can sort 24 GB of keys on these machines, it is interesting
to see how its performance stacks up against the best out-
of-place methods. Table 10 shows six additional implementa-
tions, all based on radix sort, and their speed on 8-GB arrays.
As expected, out-of-place methods are noticeably faster than
those in Table 8, where the speed advantage of the current
champion RADULS2 [29] over the top in-place sort for 8 GB
arrays [48] is 1.8−2.3×. However, the candidates in Table 10,
including Intel’s optimized library IPP, are still no match for
Vortex-S. On Skylake-X, our implementation posts rates that
are 1.9 − 3.7× higher. Comparison between the best method
in each category and Vortex-S is summarized in Table 11.

7 Related Work
Operating systems have used virtual memory and paging for
decades [49]; however, explicit reliance on these features in
user space is more rare. One closely related paper in recent
literature is RUMA [46], which is a framework that offers
a rewired-vector abstraction that allows dynamic expansion
of arrays using virtual memory. While Vortex can achieve
RUMA functionality as well, its capabilities and speed go far
beyond those of rewired vectors. There are several important
differences between the two platforms as we discuss next.
First, RUMA equips the user with a vector push-back in-

terface, which acts as a write-only iterator over an internal
buffer. To decide whether the underlying array should be
expanded, the iterator must reload the current write pointer
from RAM and perform boundary verification on each mem-
ory access. As discussed earlier, this results in unnecessary
work being done in the tight loop of the application, which

significantly reduces performance. On the other hand, Vor-
tex avoids this overhead by presenting the compiler with an
infinite-buffer abstraction, which ensures that the hot path
contains no unnecessary CPU instructions.
Second, RUMA does not catch page faults in user space,

which prevents its application in software that is not aware
of the syntax needed to interface with this framework. In
contrast, Vortex can work with any C program, including
pre-compiled libraries, as long as they know how to use
a char* pointer. Third, RUMA does not perform memory
cleanup on reads, which is a crucial characteristic that allows
Vortex to achieve high-performance streaming and in-place
operation. Finally, RUMA cannot support concurrent pro-
duction and consumption out of a buffer, which is one of the
main scenarios of interest in large-scale data processing.
Our application of Vortex to sorting can be viewed as a

superset of the methods proposed in [53]. Their technique
uses an MSB radix split at level-0, after which it switches to
LSB within each bucket. Unlike Vortex, which uses single-
pass MSB for all levels of recursion and runs in-place, the
method in [53] neither releases memory on page faults nor
moves physical blocks between buckets, which makes it out-
of-place. In addition, their technique grows buckets using
slow commit requests of Vortex-B rather than physical-page
remapping, requires a counting pass at least once during the
sort, hardcodes the split factor at 𝑏 = 8 regardless of input
size, and has to perform 8 levels of partitioning on uniform
64-bit keys (instead of log2 (𝑛)/𝑏 in our sort).

Other uses of virtual memory in user space include pointer
swizzling during page faults in object-oriented databases
[54], maintenance of sorted lists in MonetDB [13], and hy-
brid approaches where a modified kernel helps applications
achieve some desirable functionality [22], [56]. These papers
do not address streaming scenarios considered here and their
techniques are orthogonal to ours.

8 Conclusion
The Vortex paradigm offers a simple and high-speed pro-
gramming model for manipulating large volumes of sequen-
tially presented data, enabling memory-sensitive applica-
tions that would be impossible otherwise (e.g., fast in-place
radix sort). The proposed approach is highly flexible since
new fault handlers can seamlessly co-exist with various
already-created streams within the same process. This opens
up avenues for the community to contribute to the develop-
ment of Vortex and incorporate its interfaces into current,
as well as future, applications, languages, and frameworks.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1717982. We are
also grateful to Tim Harris for excellent suggestions towards
improving the paper.

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

636

References
[1] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,

O. Kao, M. U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinlander,
M. J. Sax, S. Schelter, M. Hoger, K. Tzoumas, and D. Warneke, “The
Stratosphere platform for Big Data Analytics,” VLDB Journal, vol. 23,
no. 6, pp. 939–964, Dec. 2014.

[2] Apache Apex. [Online]. Available: https://apex.apache.org/.
[3] Apache Flink. [Online]. Available: https://flink.apache.org/.
[4] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/.
[5] Apache Kafka. [Online]. Available: https://kafka.apache.org/.
[6] Apache Samza. [Online]. Available: https://samza.apache.org/.
[7] Apache Spark. [Online]. Available: https://spark.apache.org/.
[8] Apache Storm. [Online]. Available: https://storm.apache.org/.
[9] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders, “In-place Super

Scalar Samplesort (IPS4o),” in Proc. European Symposium on Algorithms,
Sep. 2017, pp. 9:1–9:14.

[10] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, Main-
memory Joins: Sort vs. Hash Revisited,” VLDB Endow., vol. 7, no. 1, pp.
85–96, Sep. 2013.

[11] O. Birkeland, “Searching Large Data Volumes with MISD Processing,”
Ph.D. dissertation, Norwegian University of Science and Technology,
Sep. 2008.

[12] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian, “A
Comparison of Join Algorithms for Log Processing in MaPreduce,” in
Proc. ACM SIGMOD, Jun. 2010, pp. 975–986.

[13] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teub-
ner, “MonetDB/XQuery: A Fast XQuery Processor Powered by a Rela-
tional Engine,” in Proc. ACM SIGMOD, Jun. 2006, pp. 479–490.

[14] A. Burnetas, D. Solow, and R. Agarwal, “An analysis and implemen-
tation of an efficient in-place bucket sort,” Acta Informatica, vol. 34,
no. 9, pp. 687–700, Sep. 1997.

[15] M. Cho, D. Brand, R. Bordawekar, U. Finkler, V. Kulandaisamy, and
R. Puri, “PARADIS: An Efficient Parallel Algorithm for In-place Radix
Sort,” VLDB Endow., vol. 8, no. 12, pp. 1518–1529, Aug. 2015.

[16] J. Choi, J. Kim, and H. Han, “Efficient Memory Mapped File I/O for
In-Memory File Systems,” in Proc. USENIX HotStorage, Jul. 2017.

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proc. USENIX OSDI, Dec. 2004, pp. 137–150.

[18] J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Widmayer, “Progressive
Merge Join: A Generic and Non-blocking Sort-based Join Algorithm,”
in Proc. VLDB, Aug. 2002, pp. 299–310.

[19] G. Franceschini, S. Muthukrishnan, and M. Pătraşcu, “Radix Sorting
with No Extra Space,” in Proc. European Conference on Algorithms, Oct.
2007, pp. 194–205.

[20] Google Cloud Dataflow, “A fully-managed cloud service and
programming model for batch and streaming big data processing,”
2016. [Online]. Available: https://cloud.google.com/dataflow/.

[21] E. Gorset, “In-place Radix Sort,” Apr. 2011. [Online]. Available:
https://github.com/gorset/radix.

[22] K. Harty and D. R. Cheriton, “Application-controlled physical memory
using external page-cache management,” in Proc. ACM ASPLOS, Oct.
1992, pp. 187–197.

[23] Intel Corporation, “Intel Integrated Performance Primitives,” Mar.
2019. [Online]. Available: https://software.intel.com/en-us/intel-ipp.

[24] Intel Corporation, “Intel Threading Building Blocks,” Mar. 2019.
[Online]. Available: https://www.threadingbuildingblocks.org/.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed
Data-parallel Programs from Sequential Building Blocks,” in Proc. ACM
SIGOPS/EuroSys, Mar. 2007, pp. 59–72.

[26] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking Distributed Stream Processing Engines,” Feb.
2018. [Online]. Available: https://arxiv.org/abs/1802.08496.

[27] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. Hash Revisited: Fast
Join Implementation onModernMulti-core CPUs,” VLDB Endow., vol. 2,
no. 2, pp. 1378–1389, Aug. 2009.

[28] D. Knuth, The Art of Computer Programming, Vol. III, 2nd ed. Addison-
Wesley, 1998.

[29] M. Kokot, S. Deorowicz, and A. Debudaj-Grabysz, “Even Faster Sort-
ing of (Not Only) Integers,” in Proc. International Conference on Man-
Machine Interactions, Oct. 2017, pp. 481–491.

[30] M. Kokot, S. Deorowicz, and A. Debudaj-Grabysz, “Sorting data on
ultra-large scale with RADULS,” in Proc. International Conference: Be-
yond Databases, Architectures and Structures, Sep. 2017, pp. 235–245.

[31] J. Kreps, “Benchmarking Apache Kafka: 2 Million Writes Per
Second (On Three Cheap Machines),” Apr. 2014. [Online]. Avail-
able: https://engineering.linkedin.com/kafka/benchmarking-apache-
kafka-2-million-writes-second-three-cheap-machines.

[32] Kriss and other contributors. Fastest sort of fixed length 6 int array.
[Online]. Available: https://stackoverflow.com/questions/2786899/
fastest-sort-of-fixed-length-6-int-array.

[33] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale Graph
Computation on Just a PC,” in Proc. USENIX OSDI, 2012, pp. 31–46.

[34] H. Liu and H. H. Huang, “Graphene: Fine-Grained IO Management for
Graph Computing,” in Proc. USENIX FAST, Feb. 2017, pp. 285–299.

[35] M. A. Lopez, A. G. P. Lobato, and O. C. M. B. Duarte, “A Performance
Comparison of Open-Source Stream Processing Platforms,” in Proc.
IEEE Globecom, Dec. 2016.

[36] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-
stein, “Distributed GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud,” in Proc. VLDB, Aug. 2012, pp. 716–727.

[37] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim, “MO-
SAIC: Processing a Trillion-Edge Graph on a Single Machine,” in Proc.
ACM EuroSys, Apr. 2017, pp. 527–543.

[38] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A System for Large-Scale Graph Process-
ing,” in Proc. ACM SIGMOD, Jun. 2010, pp. 135–145.

[39] F. McSherry, M. Isard, and D. G. Murray, “Scalability! But at What
Cost?” in Proc. USENIX HOTOS, 2015, pp. 1–6.

[40] I. Müller, P. Sanders, A. Lacurie, W. Lehner, and F. Färber, “Cache-
Efficient Aggregation: Hashing Is Sorting,” in Proc. ACM SIGMOD, May
2015, pp. 1123–1136.

[41] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,
“Naiad: A Timely Dataflow System,” in Proc. ACM SOSP, Nov. 2013, pp.
439–455.

[42] O. Obeya, E. Kahssay, E. Fan, and J. Shun, “Theoretically-Efficient and
Practical Parallel In-Place Radix Sorting,” in Proc. ACM SPAA, Jun. 2019,
pp. 213–224.

[43] O. Polychroniou and K. A. Ross, “A comprehensive study of main-
memory partitioning and its application to large-scale comparison-
and radix-sort,” in Proc. ACM SIGMOD, 2014, pp. 755–766.

[44] A. Reinald, P. Harris, R. Rohrer, and J. Dirk, “Radix Sort,” 2011. [Online].
Available: http://www.cubic.org/docs/download/radix_ar_2011.cpp.

[45] RUMA Source Code. [Online]. Available: https://bigdata.uni-saarland.
de/publications/rewiring_codebase.zip.

[46] F. M. Schuhknecht, J. Dittrich, and A. Sharma, “RUMA has it: rewired
user-space memory access is possible!” VLDB Endow., vol. 9, no. 10, pp.
768–779, Jun. 2016.

[47] F.M. Schuhknecht, P. Khanchandani, and J. Dittrich, “On the Surprising
Difficulty of Simple Things: The Case of Radix Partitioning,” VLDB
Endow., vol. 8, no. 9, pp. 934–937, May 2015.

[48] M. Skarupke, “Ska Sort,” May 2017. [Online]. Available: https:
//github.com/skarupke/ska_sort.

[49] W. Stallings, Operating Systems: Internals and Design Priniciples, 8th ed.
Prentice Hall, 2014.

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

637

https://apex.apache.org/
https://flink.apache.org/
http://hadoop.apache.org/
https://kafka.apache.org/
https://samza.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://cloud.google.com/dataflow/
https://github.com/gorset/radix
https://software.intel.com/en-us/intel-ipp
https://www.threadingbuildingblocks.org/
https://arxiv.org/abs/1802.08496
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://stackoverflow.com/questions/2786899/fastest-sort-of-fixed-length-6-int-array
https://stackoverflow.com/questions/2786899/fastest-sort-of-fixed-length-6-int-array
http://www.cubic.org/docs/download/radix_ar_2011.cpp
https://bigdata.uni-saarland.de/publications/rewiring_codebase.zip
https://bigdata.uni-saarland.de/publications/rewiring_codebase.zip
https://github.com/skarupke/ska_sort
https://github.com/skarupke/ska_sort

[50] S. Thiel, G. Butler, and L. Thiel, “Improving GraphChi for Large Graph
Processing: Fast Radix Sort in Pre-Processing,” in Proc. ACM IDEAS,
Jul. 2016, pp. 135–141.

[51] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set-similarity Joins
Using MapReduce,” in Proc. ACM SIGMOD, Jun. 2010, pp. 495–506.

[52] Vortex. [Online]. Available: http://irl.cs.tamu.edu/projects/streams/.
[53] J. Wassenberg and P. Sanders, “Engineering a Multi-core Radix Sort,”

in Proc. Euro-Par, Aug. 2011, pp. 160–169.

[54] S. White and D. DeWitt, “QuickStore: A High Performance Mapped
Object Store,” in Proc. ACM SIGMOD, May 1994, pp. 395–406.

[55] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-
merge: Simplified Relational Data Processing on Large Clusters,” in
Proc. ACM SIGMOD, Jun. 2007, pp. 1029–1040.

[56] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss, “CRAMM: Virtual
Memory Support for Garbage-collected Applications,” in Proc. ACM
OSDI, Nov. 2006, pp. 103–116.

Session 7B: Streaming computational models — In the flow! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

638

http://irl.cs.tamu.edu/projects/streams/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Coding Simplicity
	2.2 Faster Iterator Abstractions
	2.3 Non-Counting Partitioning
	2.4 In-Place Data Shuffling

	3 Virtual Memory in User Space
	3.1 Paging
	3.2 Exceptions

	4 Producer Consumer
	4.1 Vortex-A: Conceptualization
	4.2 Vortex-B: Virtual Data Streams
	4.3 Vortex-C: Physical Data Streams
	4.4 Multiple Streams
	4.5 Discussion

	5 Partitioning and Sorting
	5.1 Overview
	5.2 Main Idea
	5.3 Vortex-S: Sorting Streams
	5.4 Stream Pools and Free Blocks
	5.5 Optimizations

	6 Experiments
	6.1 Setup
	6.2 OS Bottlenecks
	6.3 File I/O
	6.4 Producer-Consumer
	6.5 Vanishing Array
	6.6 Partitioning
	6.7 Sorting

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

