Introduction I

Dmitri Loguinov
Texas A&M University

September 1, 2015
Agenda

- Syllabus
- Homework requirements
- Motivation
- What is data computing?
- What is scalability?
- Wrap-up
Syllabus

• Office hours
 – TR 5:10-6:10 pm in 515C HRBB
 – Website: http://irl.cse.tamu.edu/courses/689
 – Forum: https://piazza.com/tamu/fall2015/csce689

• All lectures and homework will be on the website
 – Including hints on using Latex and various support files

• Final grades
 – A: 90-100%
 – B: 80-89%
Syllabus 2

• Assignments/exams
 – Midterm: 20%
 – Final: 20%
 – Homework (4): 60%

• Exams cover half a semester each

• Team work is not allowed

• Reminder: you may not pass any material from the web, other students, or publications as your own
Homework

• Homework involves analysis and implementation

• Coding must be done in Windows C/C++
 – Use MS Visual Studio 2015
 – Zip entire solutions (suitable for compilation) and submit through csnet.cs.tamu.edu
 – Include .sln, .cpp, .h, and .vc*proj* files
 – Delete all others, but preserve the directory structure
 – The deadline is noon on the day it is due

• Bring to class
 – A hardcopy of your report and program
Homework 2

• Report contents
 – Explain your implementation
 – Outline ideas to further improve efficiency
 – Specify the shortcomings of the studied algorithms (if any)
 – Explain non-trivial phenomena and interesting points
 – Discuss your conclusions and material learned

• Each homework wins a reward if your code is the fastest in class
 – Evaluated in two scenarios (slow/fast disk) on IRL server
 – Two rewards are needed to skip one test

• Since you don’t have access to benchmark server
 – Make sure your code produces the least amount of I/O
 – Has the lowest CPU complexity, maximum parallelization
Motivation

• This course focuses on efficient manipulation of large datasets (commonly known as Big Data)
 – Input files measure tera-, peta-, or soon exabytes
 – Do not fit in RAM, or even a single hard drive

• Examples
 – Twitter: generates 8 TB of content per day
 – Facebook: 40 PB accumulated, 100 TB/day created by users
 – Google page ranking: graphs with 30T nodes (1.4 PB)
 – Google HTML: 1T pages * 30 KB = 30 PB
 – Inverted index for search queries: 1 PB
 – Youtube uploads: 200 TB/day
 – Scientists: space telescopes produce 70 PB/year worldwide
- Ebay: 50 PB warehouse, 1T rows in database
- Cars: Ford Fusion estimated @ 25 GB/hour
- Financial markets: NYSE with 1 TB/day
- Retail: Walmart operated the first commercial database to reach 1 TB (in 1992); it was 2.5 PB in 2008

• **Big Data analytics** is a separate field now
 - Projected as a $125B market in 2015
 - Value in hardware and software for data centers, programmers, algorithms, patents, business advantage from data-mining
Motivation 3

- Exponential growth in data generation
 - Annual world-wide production doubles very two years
 - Around 8 ZB in 2015, perhaps 32 ZB by 2019
 - Internet traffic 900 EB/year according to Cisco

- Traditional databases
 - Use a structured data model (e.g., items stored in table format, rows sorted by key), rely on disk seeking (e.g., B+ trees, binary search), enforce transaction consistency

- Data computing often deals with unstructured data
 - The needed information is scattered all over input
 - The objective is not to insert/delete/retrieve items, but rather process huge input to answer certain questions
Motivation 4

- **Example**: find the most commonly href’ed URL in 100TB of HTML

- Operations on unstructured datasets
 - Linear complexity: scanning (e.g., capture/storage, playback)
 - Super-linear complexity: sort (e.g., aggregation, statistics, recommendations, ranking, usage analysis)

- Big Data computing uses the *streaming* model
 - Sequential scanning of input files, no disk seeking
 - Much faster than transactional databases

- Algorithms for Big Data processing
 - Must be efficient, scalable, easy to extend

- This is our topic in the rest of the semester
What is Data Computing

• Assume an input file that requires extraction of certain information scattered all over it
 - Example: 3TB out-graph from which we need 100 nodes with the largest in-degree
 - Graphs are stored as adjacency lists \((y, d_{\text{out}}(y), x_1, x_2, \ldots)\)

• This is usually solved by a MapReduce computation
 - First published by Google in 2004, now de-facto standard
 - Many proprietary versions exist, but the open-source market is dominated by Hadoop (created by Yahoo in 2005, later moved to Apache)

• MapReduce is a functional language
 - The system calls user-provided functions Map(), Reduce()
What is Data Computing 2

• The mapper accepts an iterator over the file and outputs (key, value) pairs
 – Allows users flexibility to process input any way they want

• Depending on the type of data, the iterator could produce one line of text, one record, or one neighbor list
 – Custom iterators can be coded as well

• The key type must support comparison, whereas the value field can be arbitrary
 – The two functions (f, g) are determined by the user

```c
Map (Iterator *input)
{
    while (!input->empty()) {
        x = input->next();
        output (f(x), g(x))
    }
}
```
What is Data Computing 3

- The reducer accepts a key and a list of all values that were earlier mapped to it.
 - We can view the reducer as applying a transformation \((k, v_1, v_2, \ldots) \rightarrow (k, h(v_1, v_2, \ldots))\) using some combiner function \(h\).

- Note that \(f\) must be scalar, while both \(g\) and \(h\) could produce vectors of elements.

- These two abstractions allow MapReduce to:
 - Transparently distribute data over multiple hosts.
 - Free the user of the burden to write the underlying code.
 - Handle input when the value list is longer than RAM.

```c
Reduce (KeyType key, Iterator *values)
{
    while (!values->empty()) {
        val = values->next();
        // compute/augment result
    }
    output (key, result)
}
```
What is Data Computing 4

- To handle reducer output larger than RAM, the model can be slightly changed →

- **Example**
 - Program accepts the out-graph and produces for each node x its in-degree $d_{in}(x)$

- **How does MapReduce work?**
 - It must detect all duplicate keys, bring the values together
 - Commonly done with distributed, external-memory sorting

- **Example**
 - List the top-10 highest in-degree nodes
What is Data Computing 5

- Assume persistent variables are available
- After all input is finished, your function cleanup() is called

• MapReduce splits input file into many chunks
 - These are distributed to various computers, each running multiple instances of Map()
 - Map results are similarly distributed across servers, which run multiple Reduce() jobs

• Constraint: all values for a given key must be brought into the same host, then reduced locally

• In that case, the basic top-10 program needs change
 - Each server will produce its local top-10 list
 - These results need to be reduced into one global list
What is Data Computing 5

• Another problem is MapReduce doesn’t know how to split the input to allow the mapper to work correctly

• Example
 – List the most-frequent href’ed URL in a large HTML file
 – Can we use the default line-by-line iterator?

• Multiple input files require several types of mappers
 – All of them use a common reducer

• Example
 – Trace analysis: given (crawled page ID, timestamp, out_link1, out_link2, ...), determine the first time t_i each URL i was encountered during the crawl
 – Do the same for the top-10 nodes with highest in-degree
What is Scalability

• Certain algorithms are deemed “unscalable”
 – But what does this mean?

• Notation
 – Assume \(n \) is the size of input (in records, bytes, nodes), \(S \) is the number of servers, \(c \) is the number of cores per host, \(R \) is their RAM size, and \(D \) is the corresponding disk space

• Scalability assesses how well the method performs (in terms of runtime) as \(n \to \infty \)
 – Fixed resources: \((S, c, D, R)\) are all constant
 – Vertically scaled: \(S \) constant, but \((c, D, R)\) increase with \(n \)
 – Horizontally scaled: \(S \) increases with \(n \), the other parameters constant
What is Scalability 2

- Vertical scaling has obvious limitations
 - Modern data centers and cloud networking utilize horizontally scaled infrastructure (many cheap servers)
 - Google, Facebook, Microsoft, Amazon lead in cluster size
 - Well over 1M servers per company

- MapReduce is a framework that scales well
 - Data partitioning allows each host to be loaded with small chunks of computation, easily parallelized to all cores
 - Chunks are shuffled during the reduce phase to bring all keys in a given range to a single host
 - As $n \to \infty$, runtime remains constant if $n/S = \Theta(1)$