1 Purpose

This homework applies renewal-process techniques to distributed P2P systems.

2 Description

Many decentralized peer-to-peer networks are built by dynamically constructing a routable graph using other peers as intermediate nodes. The goal of this problem is to understand the likelihood of node isolation, or local fault resilience, of such networks.

Assume that each joining peer v spends $L \sim F(x)$ time units in the system, where L is determined by the peer’s attention span and/or browsing habits. For the questions below, suppose that $E[L] < \infty$ holds. Upon join, each user obtains $k \geq 1$ uniformly random neighbors from the nodes already present in the network. If these neighbors all fail (i.e., depart the system) before v decides to leave, it becomes disconnected from the network and must re-join in a potentially different part of the graph. Many concurrent isolations may also cause the network to split into disjoint components, which is a highly undesirable event.

Note that for this problem we assume that failed neighbors are not replaced and that edges arriving to v from other joining users are not considered.

1. Define W_i to be the remaining lifetime of neighbor i. Obtain the distribution $G(x)$ of W_i and verify that its tail matches simulations using Pareto $F(x)$ with $\alpha = 3$. Using n at least 100K, simulate on/off processes $Z_i(t)$ shown in class. The length of off durations Y is not essential, e.g., you can make them uniform in $[0, 24]$ hours. Choose the join time t of user v to be large enough to have a fully randomized system, e.g., $t = 100(E[L]+E[Y])$.

2. Derive the expected time to isolation $E[T]$ and the probability p of this happening before v leaves the system. In the first two theorems, obtain respectively $E[T]$ and p using generic distributions of lifetime $F(x)$. In the next two theorems, simplify these expressions to a closed-form result (i.e., without any remaining integrals) for exponential and Pareto lifetimes. See the last section for helpful hints and use Wolfram Alpha as necessary.
3. How does Pareto \(\beta \) and exponential \(\lambda \) affect probability of isolation \(p \)?

4. Use simulations to verify your models of \(E[T] \) and \(p \). Since you confirmed the distribution of \(W_i \), each iteration of the simulation now consists of:
 a) drawing a random lifetime \(L \sim F(x) \);
 b) drawing variables \(W_1, \ldots, W_k \) from \(G(x) \);
 c) computation of \(T \) based on \((W_1, \ldots, W_k) \), and
 d) comparison of \(L \) against \(T \) to determine whether isolation occurred or not. Repeating 10M times and averaging the result should yield \(E[T] \) and \(P(L > T) \). Armed with these results, show the following plots of models vs simulation:
 a) Exponential \(F(x) \): vary \(k \in [1, 10] \) while keeping \(\lambda = 2 \) fixed;
 b) Pareto \(F(x) \): vary \(\alpha \in [1.5, 10] \) while keeping \(\beta = 1, k = 10 \) fixed;
 c) Pareto \(F(x) \): vary \(k \in [1, 10] \) while keeping \(\alpha = 3, \beta = 1 \).
 This should give you six figures total (i.e., three for \(E[T] \) and three for \(p \)).

5. Use the model to compute a numerical value of \(p \) under Pareto lifetimes with \(\alpha = 1.05 \) and \(k = 30 \). Assuming that 1 billion users join the system every day, obtain the average number of years between isolation events in this network. Hint: use the mean of the geometric distribution.

6. Explain how Pareto parameter \(\alpha \) affects the result and why Pareto \(L \) always yields more resilient graphs than exponential \(L \). Hint: show that \(R(t) \) under Pareto is stochastically larger than \(L \).

7. Analyze the model and determine what happens to Pareto \(E[T] \) as \(\alpha \to 2 \). Similarly, uncover what happens to \(p \) as \(\alpha \to 1 \). You can use Matlab to plot both functions as \(\alpha \) tends to the corresponding limit from above.

3 Integrals

You may find the following useful:

\[
\frac{\alpha}{\beta} \int_0^\infty \left(1 + \frac{z}{\beta}\right)^{-\alpha-1} \left(1 - (1 + \frac{z}{\beta})^{1-\alpha}\right)^k dz = \left(2F_1\left(\frac{\alpha}{\alpha-1}, -k; \frac{2\alpha-1}{\alpha-1}; z\right)z^{\alpha/(\alpha-1)}\right)|_0^1,
\]

where \(2F_1(a, b; c; z) \) is the Gauss hypergeometric function. Its value for \(z = 0 \) is 1 and for \(z = 1 \) is:

\[
2F_1(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c-b-a)}{\Gamma(c-a)\Gamma(c-b)},
\]

where \(\Gamma(\cdot) \) is the gamma function (available in Matlab under the same name).