Agenda

- Renewal theory connection
 - Stationary transition probabilities
- Random 1D walk
 - Null chain example
- Discrete chains continued
 - Boundary transition rates
 - Random walks on graphs
Renewal Theory Connection

• In this lecture, we examine Markov chains for which stationary distribution π exists
 - We will then show that it is the solution to the same equation $\pi = \pi P$

• Let T_{ij} be the first passage time from state i to state j:
 $$T_{ij} = \min(n \geq 1 : X_n = j | X_0 = i)$$

• For $i = j$, the visit is called a return
 - T_{ii} is the random variable giving the number of steps (delay) before the chain returns to state i after it started in state i
 - Notice that T_{ii} does not depend on how the chain arrived into state i (Markov property)
Renewal Theory Connection 2

• Suppose f_{ij} is the probability that the chain ever visits state j starting in state i

• **Definition**: state j is *recurrent* if $f_{jj} = 1$ and *transient* otherwise (i.e., $f_{jj} < 1$)

• **Definition**: assume j is recurrent; if $E[T_{jj}] < \infty$, then j is called *positive*; otherwise, it is called *null*

• Define a renewal process $M_{ij}(n)$ to count number of visits to state j by time n assuming that $X_0 = i$

$$M_{ij}(n) = \sum_{k=1}^{n} I_{ij}(k)$$

$$I_{ij}(n) = \begin{cases}
1 & X_n = j \\
0 & \text{otherwise}
\end{cases}$$
Renewal Theory Connection 3

- Graphical illustration:

\[I_{ij}(n) \]

\[W_1 \quad W_2 \quad W_3 \quad W_4 \]

- Note that \(W_1 \) has the same distribution as \(T_{ij} \)
 - All of the remaining \(W_k, k \geq 2 \), are iid random variables \(T_{jj} \), which yields from the Elementary Renewal Theorem

\[
\lim_{n \to \infty} \frac{E[M_{ij}(n)]}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)} = \frac{1}{E[T_{jj}]}\]
• From this point on, assume a positive chain

• Recall that

\[a^{(n)} = aP^n \]

- and

\[\pi = \lim_{n \to \infty} \frac{1}{n} \sum_{s=1}^{n} a^{(s)} = \lim_{n \to \infty} \frac{a}{n} \sum_{s=1}^{n} P^s \]

• From the previous slide, this limit exists and thus:

\[\pi_i = \frac{1}{E[T_{ii}]} \]

• Additionally, since

\[\pi P = \lim_{n \to \infty} \frac{a}{n} \sum_{s=1}^{n} P^{s+1} = \pi \]

- we get

\[\pi = \pi P \]
Random 1D Walk

• Example

\[P = \begin{pmatrix} 0 & 1 & 0 & \ldots & \ldots & \ldots \\ q & 0 & p & \ldots & \ldots & \ldots \\ 0 & q & 0 & p & \ldots & \ldots \\ 0 & 0 & q & 0 & p & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \end{pmatrix} \]

• The chain represents a random walk with a reflective (non-absorbing) boundary at 0
 - At each step, it goes left with probability \(q \) and right with probability \(p \)
 - Except one special case when it bounces off zero with probability 1
Random 1D Walk 2

- We assume that \(p + q = 1 \) and \(pq > 0 \)

- Next, we analyze the stationary distribution of this infinite chain

- Write:
 \[
 \begin{align*}
 \pi_0 &= q\pi_1 \\
 \pi_1 &= \pi_0 + q\pi_2 \\
 \pi_j &= p\pi_{j-1} + q\pi_{j+1}
 \end{align*}
 \]

- Solving this recursively and using induction:
 \[
 \begin{align*}
 \pi_1 &= \pi_0/q \\
 \pi_2 &= (p/q)\pi_0/q \\
 \vdots & \quad \vdots \quad \vdots \quad \vdots \\
 \pi_j &= (p/q)^{j-1}\pi_0/q, \ j \geq 1
 \end{align*}
 \]
• Note, however, that we still do not know π_0
 - This is accomplished using normalization since all π_j must sum up to 1:

$$1 = \sum_{j=0}^{\infty} \pi_j = \pi_0 \left(1 + \frac{1}{q} \sum_{j=1}^{\infty} \left(\frac{p}{q} \right)^{j-1} \right)$$

 - When $p < q$, the sum is finite and all states are positive (the walk is “pulled” towards zero and $E[T_{jj}]$ is finite for all states j):

$$\pi_0 = \frac{q - p}{2q}$$

 - If $p = q = 1/2$, then all states are null (the expected duration before return to each state is infinity)

 - Finally, if $p > q$, then all states are transient, i.e., the chain keeps drifting towards infinity
Example

- A PhD student goes through 3 states
 - Find the probability that on a given day the student is weird

Note: matlab eig(A) produces right eigenvectors; to get the left ones, transpose A first, i.e., eig(A')
Transition Rates

• In what follows, we establish a useful rule that allows a simpler computation of π

• First, notice that the number of transitions into and out of a given state j are almost the same
 - Define $A_j(n)$ to be the number of arrivals into j by time n and $D_j(n)$ the number of departures (including self-loops)
 - Clearly, the difference between these two metrics is no more than 1 at any time n

• Thus, arrival and departure rates are asymptotically the same:

$$\left| r_A - r_D \right| = \left| \frac{A_j(n)}{n} - \frac{D_j(n)}{n} \right| = \frac{|A_j(n) - D_j(n)|}{n} \to 0$$
Transition Rates 2

- Similarly observe the following
 - The probability to find a recurrent chain in state j is equal to the rate of transition from all states (including j) into j

$$
\pi_j = \sum_{i=0}^{\infty} \pi_i p_{ij}
$$

- To prove this, notice that this is an expansion of π_j from equation $\pi = \pi P$

- Consider the packet-loss chain (note: variables are different from last time to simplify formulas):

```
1 - p
  0  p
  q
  1
1 - q
```
Transition Rates 3

• For this example, we can write:

\[\pi_0 = \pi_0(1 - p) + \pi_1 q \]

 - Or in other words:

\[\frac{\pi_0}{\pi_1} = \frac{q}{p} \]

 - Since \(\pi_0 + \pi_1 = 1 \), we have

\[\pi_0 = \frac{q}{p + q} \]

• Another way to look at rates is to compute the total transition rate out of and into each state:

\[\pi_i \sum_{j \neq i} p_{ij} = \sum_{j \neq i} \pi_j p_{ji} \]
For the same example:

- The transition rate out of state 0 is $\pi_0 p$
 - The rate into the state is $\pi_1 q$
 - Equating the two, we again have:

$$\frac{\pi_0}{\pi_1} = \frac{q}{p}$$
Transition Rates 5

• In general, transition rates across any boundary must be the same
 – For any set of states A in a recurrent chain, we have:

$$\sum_{i \in A} \sum_{j \in A^c} \pi_i p_{ij} = \sum_{i \in A^c} \sum_{j \in A} \pi_i p_{ij}$$
• Example:
 - Assume a connected, undirected graph
 - The only thing known about the graph is that the degree of node \(i \) is \(d_i \)
 - A random walk starts at some initial vertex and moves between the nodes uniformly choosing among the neighbors of each current node

• Is this a Markov chain? What is its matrix \(P \)?
 - Let \(N(i) \) be set of all neighbors of node \(i \)

\[
p_{ij} = \begin{cases}
 1/d_i & j \in N(i) \\
 0 & \text{otherwise}
\end{cases}
\]
Transition Rates

- Direct solution in Matlab to $\pi = \pi P$ is not possible since it requires the knowledge of $N(i)$ for each i
 - Instead, we use the observation that the probability to find the random walk in state i is the combined rate of transitions from all states into i

$$\pi_i = \sum_{j=0}^{\infty} \pi_j p_{ji}$$

- Since these terms are non-zero only for neighbors of i, we have:

$$\pi_i = \sum_{j \in N(i)} \pi_j p_{ji} = \sum_{j \in N(i)} \frac{\pi_j}{d_j}$$
Transition Rates 8

• Due to normalization by d_j, we can guess the shape of the stationary distribution:

$$\pi_i = \frac{d_i}{C}$$

- where C is some constant that we determine below (proving that π is unique is beyond our scope)

• We next check if this guess is correct:

$$\pi_i = \sum_{j \in N(i)} \frac{\pi_j}{d_j} = \sum_{j \in N(i)} \frac{1}{C} = \frac{d_i}{C}$$

- and then find out C:

$$\sum_k \pi_k = \frac{1}{C} \sum_k d_k = 1 \Rightarrow C = \sum_k d_k$$
Wrap-up

• For computing $E[T]$, use these hints:
 - Pareto:

 $$\int (1-(1-z^{1-\alpha})^k)dz = z \left(1 - 2F_1\left(\frac{1}{1-\alpha}, -k, \frac{2-\alpha}{1-\alpha}, z^{1-\alpha}\right) \right)$$

 - Exponential:

 $$\frac{1 - z^k}{1 - z} = \sum_{i=0}^{k-1} z^i$$

• Midterm next Thursday
 - Covers everything since the first lecture