Review of Probability

Dmitri Loguinov
Texas A&M University

January 19, 2017
Agenda

- Probability space
- Probability measure
- Random variables
- Distributions
 - Discrete
 - Continuous
- Memoryless property
- Wrap-up
Probability Space

- **Definition:** probability space Ω is the set of all possible outcomes of a random experiment
 - We use ω to denote the random outcome of a particular experiment
- **Definition:** event A is a subset of Ω: $A \subset \Omega$
 - Thus, A may contain multiple outcomes
- **Definition:** event A occurs if and only if $\omega \in A$
- Probability theory examines the likelihood of events
 - For example, “rainy,” “cloudy,” and “sunny” are three outcomes of your weather report for today
 - Event A could be “rainy or cloudy”
Probability Space 2

- Formalizing the weather example
 - $\Omega = \{\text{rainy, cloudy, sunny}\}$, $A = \{\text{rainy, cloudy}\}$
- Q: how many events in this probability space?
• It is often convenient to write A^c for the complement of A: $A^c \cup A = \Omega$

• Basic set theory applies to events
 – Use Venn diagrams to show the following

\[
A \cap A = AA = A \\
AB = BA \\
A(B \cup C) = AB \cup AC \\
(AB)^c = A^c \cup B^c \\
A \cup (BC) = (A \cup B)(A \cup C) \\
(A \cup B)^c = A^cB^c
\]
Probability Measure

Definition: probability measure $P(A)$ is a function that maps events to real numbers and satisfies 3 axioms of probability:

1) $P(A) \geq 0$
2) $P(\Omega) = 1$
3) If $AB = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

(side note) For infinite sets, axiom 3 is usually strengthened to *countable additivity*:

- for any set $A_1, A_2, \ldots \subseteq \mathcal{F}, A_iA_j = \emptyset, i \neq j$
- we have $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
Probability Measure 2

• **Exercise 1**: show \(P(A^c) = 1 - P(A) \)

 - Proof (noticing that \(A \) and \(A^c \) do not overlap and applying axioms 3 and 2):
 \[
 P(A^c) + P(A) = P(A \cup A^c) = P(\Omega) = 1
 \]

• **Exercise 2**: show \(C \subseteq A \Rightarrow P(A \setminus C) = P(A) - P(C) \)

 - Proof (same reasoning, axiom 3):
 \[
 P(A \setminus C) + P(C) = P(A \setminus C \cup C) = P(A)
 \]

• **Exercise 3**: show \(P(A \cup B) = P(A) + P(B) - P(AB) \)

 - Proof:
 \[
 P(A \cup B) = P(A \cup B \setminus AB) = P(A) + P(B \setminus AB)
 = P(A) + P(B) - P(AB)
 \]

Probability Measure 3

- **Definition**: any two non-intersecting events A and B are called *mutually exclusive*
 - A set of events $\{A_i\}$ is called *pair-wise mutually exclusive* if for all $i \neq j$: $A_iA_j = \emptyset$

- **Definition**: the probability of observing event A given that B has occurred is called *conditional probability* $P(A|B)$, which is defined as

$$P(A|B) = \frac{P(AB)}{P(B)}, P(B) > 0$$

- **Example**: what is the probability that student X will attend the class given that Y showed up?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
• **Definition:** set of events \(\{A_i\} \) is called **exhaustive** if
\[
\bigcup_{i=1}^{n} A_i = \Omega
\]
- If in addition set \(\{A_i\} \) is pair-wise mutually exclusive, then it is called a **partition** of \(\Omega \)

• **Conditional probability is a useful tool in practice**
 - Observe that if \(\{A_i\} \) is exhaustive, then \(B \) can be decomposed as:
 \[
 B = \bigcup_{i=1}^{n} BA_i
 \]
 - and if additionally \(\{A_i\} \) is a partition:
 \[
 P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)
 \]
Probability Measure 7

• Inverting conditional probability
 – Suppose we know $P(B|A)$ and need to find out $P(A|B)$

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(BA)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

 – This is also known as Bayes Theorem

• Task: compute $P(Y|X)$ for the students

• Furthermore, if set $\{A_i\}$ is a partition:

$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_i P(B|A_i)P(A_i)}$$
Independence

- **Definition**: events A and B are independent if and only if $P(A \mid B) = P(A)$

- From the definition:

$$P(A \mid B) = \frac{P(AB)}{P(B)} = P(A)$$

- Therefore for independent events:

$$P(AB) = P(A)P(B)$$

- **Task**: show that if A and B are independent, then so are these pairs of events:
 - $(B, A), (A, B^c)$
 - $(A^c, B), (A^c, B^c)$

 hints: $AB^c = A \setminus AB$

 $A^cB^c = (A \cup B)^c$
Random Variables

- For convenience, we would rather work with numbers than actual outcomes ω.

Definition

- A random variable $X(\omega)$ is a real-valued function that maps Ω to \mathbb{R}.

- One of the simplest random variables is an indicator of event A.

\[
X(\omega) = \begin{cases}
1 & \omega \in A \\
0 & \text{otherwise}
\end{cases}
\]

- Often ω is omitted.

\[
X = \begin{cases}
1 & A \text{ happens} \\
0 & \text{otherwise}
\end{cases}
\]
Random Variables 2

• Once we know that the set where X assumes values below x belongs to \mathcal{F}, we can define the cumulative distribution function (CDF) $F(x)$

$$F(x) = P(\{\omega : X(\omega) \leq x\})$$

• It is the probability that outcome ω is such that the value of $X(\omega)$ is no more than x
 - We usually write:

$$F(x) = P(X \leq x)$$

• $F(x)$ is non-decreasing with $F(\infty) = 1$ and $F(-\infty) = 0$
 - Finally define the tail distribution F^c:

$$F^c(x) = P(X > x) = 1 - F(x)$$
Random Variables 3

- **Definition**: a random variable is **discrete** if it assumes values from some countable (possibly infinite) set
 - Assume the set consists of \(x_1, x_2, \ldots \)
 - Then in addition to the CDF, we often use the **probability mass function** (PMF): \(p(i) = P(X = x_i) \)

- Clearly, the following holds for all discrete distributions:
 \[
 \sum_{i=1}^{\infty} p(i) = 1
 \]

- One example of discrete \(X \) is the **Bernoulli** random variable:
 \[
 X = \begin{cases}
 1 & \text{w.p. } p \\
 0 & \text{w.p. } 1 - p
 \end{cases}
 \]
• Example
 - Coin toss where probability of a head is p
 - Outcome ω of each toss is either heads or tails
 - Define $X(\text{head}) = 1$, $X(\text{tail}) = 0$
 - Then X is a Bernoulli variable (if $p = \frac{1}{2}$, the coin is called fair)

• Define Z to be the number of independent tosses before we get the first occurrence of heads
 - What is the PMF of Z?

• To get the first head on toss k, we clearly must sit through $k - 1$ tails:

$$P(Z = k) = (1 - p)^{k-1}p$$
Random Variables 5

• What we just defined is the geometric distribution

• In the next example, we define Y to be the number of heads that come out in n independent tosses
 - Find out $P(Y = k)$

• We need the probability of k heads and $n - k$ tails
 - If we know the position of each head and tail, then:

 $$P(Y = k, \text{fixed set of heads}) = p^k(1 - p)^{n-k}$$

 - Accounting for all possible permutations:

 $$P(Y = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

 - we get the binomial distribution
Random Variables 6

- What do these distributions look like?
 - We can directly plot the value of \(P(Y = k) \) for each \(k \)
 - Examples below use \(p = \frac{1}{2} \) and \(n = 15 \)
Here is another example for $p = 0.2$ and $n = 10$

- Notice the change in shape for the binomial distribution
- For large n, it tends to the Gaussian (previous slide) or Poisson (this slide) distribution
Random Variables 8

• Definition:
 - If \(P(X = x) = 0 \) for all \(x \) (or the cardinality of the set of its values is continuum), then \(X \) is said to be continuous.

• In such cases, we assume that \(F(x) \) is differentiable and call its derivative the density (PDF) of \(X \):

\[
f(x) = F'(x)
\]

• Note certain properties of \(f(x) \) and \(F(x) \):

\[
F(t) = \int_{-\infty}^{t} f(x) \, dx
\]

\[
P(a \leq X \leq b) = F(b) - F(a) = \int_{a}^{b} f(x) \, dx
\]
Random Variables 9

- Also notice that we can differentiate the tail to obtain the density

\[f(x) = \frac{dF(x)}{dx} = \frac{d(1 - F^c(x))}{dx} = -\frac{dF^c(x)}{dx} \]

- Next define some useful distributions
 - Uniform in \([a, b] \):
 \[f(x) = \frac{1}{b - a}, \quad F(x) = \frac{x - a}{b - a} \]
 - Exponential:
 \[f(x) = \lambda e^{-\lambda x}, \quad F(x) = 1 - e^{-\lambda x} \]
Memoryless Distributions

• We can now demonstrate how exponential distributions “forget” memory

• Suppose inter-bus delays are exponential and we know that the last bus left t time units ago
 - What is the distribution of the remaining waiting time?

• Define X to be the inter-bus delay and $W = X - t$ to be the wait time
 - Then we have:

$$P(W > x|X > t) = P(X - t > x|X > t)$$
$$= P(X > x + t|X > t)$$
Memoryless Distributions 2

• Rewriting:

\[
P(W > x | X > t) = \frac{P(X > x + t, X > t)}{P(X > t)} = \frac{F^c(t + x)}{F^c(t)}
\]

• Now substituting the tail of the exponential distribution, we have complete independence of \(t \):

\[
P(W > x | X > t) = \frac{e^{-\lambda (t+x)}}{e^{-\lambda t}} = e^{-\lambda x}
\]
Memoryless Distributions 3

• This means that regardless of how long ago the last bus left, the delay to the next bus is only determined by x

 Thus, W is another exponential distribution with the same mean, which explains why the wait was always 20 minutes in the previous lecture.

• Definition

 A distribution is called memoryless if and only if

 $$P(X - t > x | X > t) = F^c(x)$$

• This means that the current “age” of X does not affect its remaining life.
Wrap-up

Using the last equation, observe:

\[P(X > t + x) = P(X - t > x | X > t)P(X > t) = F^c(x)F^c(t) \]

Since the left side is \(F^c(t+x) \), we have an equivalent definition of memoryless distributions:

\[F^c(t + x) = F^c(x)F^c(t) \]

Exercise: show that the exponential distribution is the only memoryless distribution.
Practice

• Driver decisions
 – Your gas tank holds 20 gallons, but fuel gauge is broken
 – You drive around and all of a sudden see a good deal
 – If filling up \(X \) gallons and \(X < 10 \), you pay \(X^2 \) dollars, otherwise \(1.5X \) dollars; but have to fill the tank to the max
 – You only have $20 on you
 – What is the likelihood of successful fill-up?

• Suppose \(Y \) is the cash due if you go for it

\[
P(Y < 20) = P(Y < 20|X < 10)P(X < 10) + P(Y < 20|X \geq 10)P(X \geq 10)
\]
Practice 2

• Assuming a uniform distribution for X

$$P(Y < 20) = P(0 \leq X < \sqrt{20}|X < 10)\frac{1}{2}$$

$$+ P(10 \leq X < 20/1.5|X \geq 10)\frac{1}{2}$$

• This can be easily computed as

$$P(Y < 20) = \frac{\sqrt{5} + 5/3}{10} \approx 0.3903 \cdots$$

• Graphical explanation only valid when ω is uniform