Introduction

Dmitri Loguinov
Texas A&M University

January 17, 2017
Agenda

• Course overview
• Homework requirements
• What is modeling?
• What are simulations?
• Examples
• Wrap-up
Course Overview

• This course focuses on analytical modeling and simulation of computer systems/networks

• Since many events computer science are random, a huge part of modeling relies on various types of probability theory
 – Also true for other engineering fields

• There will be a review of basic probability theory, but it helps if you remember some of it
 – Other pre-requisites: undergraduate calculus, some matrix algebra, basic graph theory, programming
Course Overview 2

- This class is a mix of several applied topics
 - Probability theory (review), stochastic processes, Markov chains, random graph theory, and control theory

Review of probability theory

Renewal theory / Markov chains

Random graph theory

Congestion control

midterm

final
Course Overview 3

• Some of the homework problems
 - **Bus wait**: you randomly walk to a bus stop where the average delay between buses is 20 min; how long is your wait?
 - **Bank robbery**: suppose it takes 6 minutes to rob a bank; police periodically drive by (mean delay 20 min); what is the probability the robber is caught?
 - **TV surfing**: you randomly flip channels and stumble onto a movie whose duration is X; you watch it until it ends or you get bored after T time units; both X,T are random variables; how long will you be watching?
 - **Save the forest**: fire can jump between trees if they are within 20 feet of each other; given an area of 100x100 miles with K trees, what is the probability that one randomly ignited tree burns down the whole forest?
Syllabus

• Homework is a combination of simulations and analytical derivations
 – All homework must be accompanied by a clearly written report in Latex that explains your results and simulation setup

• Team work is not allowed

• Reminder: you may not pass any material from the web, other students, or publications as your own
 – Penalty for cheating is an F*
 – See rule 20 at http://student-rules.tamu.edu/
Syllabus 2

• Office hours
 – TR 5:10-6:10pm in HRBB 515C
 – Website: http://irl.cse.tamu.edu/courses/619

• All lectures and homework on the website
 – Including hints on using Latex and various support files

• Final grades
 – A: 80-100%
 – B: 70-79%
 – C: 60-69%
 – D: 50-59%
 – F: 0-49%
Syllabus 3

• Assignments/exams
 – Midterm: 20%
 – Final: 20%
 – Quizzes (3): 30% total
 – Homework (6): 30% total

• Quizzes cover
 – Probability theory
 – Renewal processes
 – Random graphs

• Exams cover half a semester each
Syllabus 4

• Recommended reading:
What is Modeling

• **Example**: can we determine if a particular person will have a car accident today (e.g., for insurance purposes)?
 - Depends on the time they leave for work, route taken, speed at different times t, number of cars encountered, delay at each intersection, decision-making, etc.
 - This deterministic system is very complex

• In research, we aim to understand the behavior of complex systems and then hopefully improve them
 - To do this, we first need to describe the system in mathematical terms, or create a *model* for it
 - Most models are approximations to real behavior
What is Modeling 2

• Complex deterministic systems often replaced with much simpler stochastic ones
 – Back to our example: insurance companies assign accident probabilities to different drivers

• Even simple systems require a model, but we sometimes neglect this

• Example: you have x apples and you sell half of them
 – How many apples are you left with?
 – What assumptions did you make?
What is Modeling 3

- Building models
 - Involves a tradeoff between complexity and fidelity

- Complexity means how difficult it is to obtain the parameter in question from the model

- Fidelity is how far this parameter deviates from that in real systems and under what assumptions
Simulations

• Models need to be verified
 - Either in real systems or simulations

• Simulations are easier
 - Real-life experiments are usually costly,
 hard to control, and generally non-repeatable

• What is a simulation?
 - Execution of an algorithm to produce
 an estimate of parameters in question

• Use a good number generator
 - See course website (Mersenne Twister for C/C++)

```c
init_genrand(((DWORD)time(NULL)));
double u = genrand_res53();
```
Simulations 2

• Plotting results
 - When comparing results against a model, follow the examples below (circles for discrete points, solid curves for continuous functions)
Summary

- Modeling is a reduction of your system to some set of equations that allow one to obtain knowledge about its behavior.

Diagram:
- System
- Build model
- Solve model
- Verify model
- Answer questions about the system
- Additional questions
Renewal Example

• Bus-wait problem
 - Imagine a bus stop and a sequence of buses arriving to it with inter-bus delays X_1, X_2, \ldots

• Distribution of X_i is unknown and only its average $E[X_i] = s = 20$ minutes is posted
 - Q1: Determine your expected wait time from a random point t when you approach the bus stop
Renewal Example 2

• Common sense suggests half of $E[X_i]$, i.e., 10 min
 - Can we prove this rigorously?
 - How accurate is this model?

• This is true if buses arrive exactly every 20 minutes, but does not hold in any other case

• Inter-bus delays are uniform in $[0, 2s]$
 - What is the expected wait time? $P(X_i < x) = \frac{x}{2s}$

• What if they are exponentially distributed?
 - Is the wait time more or less on average in this case compared to the previous two?

$$P(X_i < x) = 1 - e^{-x/s}$$
Suppose that inter-bus delays are Pareto (from a class of heavy-tailed distributions):

\[P(X_i < x) = 1 - (1 + x/\beta)^{-\alpha} \]

- For \(\alpha = 2.5 \), your expected wait is \(4s = 80 \) minutes, and so on.
- For \(1 \leq \alpha \leq 2 \), the average wait time is infinity.

\[E[X_i] = \beta / (\alpha - 1) \]

The heavier the tail, the longer the wait.

- For \(\alpha = 3 \), your expected wait is \(2s = 40 \) minutes.

Interestingly, under Pareto inter-bus delay, your expected wait time is more than \(E[X_i] \).
Renewal Example 4

- Another question is related to **conditional expectations**
 - **Q2**: Suppose you know that the last bus left 5 minutes ago, what is your expected wait delay now?

- **Constant** X_i is easy
 - Simply 15 minutes

- **Uniform** X_i
 - Wait time uniform in $[0, 35]$
 - Expected wait time is $E[X_i - 5 \mid X_i > 5] = 17.5$ minutes

- **Exponential** X_i
 - Still 20 minutes
Renewal Example 5

- For Pareto X_i and $\alpha = 3$, expected wait is 22.5 min
- Well, now suppose the last bus left $t = 1$ hour ago
 - What is the wait now? Exponential? Pareto?
- In the $\alpha = 3$ Pareto case, the wait now is 50 min
 - For $t = 2$ hours, your expected wait is 80 minutes
 - The longer you’ve waited, the longer you will continue waiting on average (inspection paradox)

- Intuition
 - You’re likely to miss sequences of buses with very small delays and arrive during a very long inter-bus interval
Renewal Example 6

- Solutions to these problems are studied in renewal process theory and Markov chains, which can be used to model a variety of systems
 - Packet arrivals and queuing delays in routers (queuing theory, Markov chains)
 - User and job arrivals into computers, web servers, distributed systems, social and peer-to-peer networks
 - Google PageRank model of users randomly browsing the web, which gives higher weight to important nodes
 - Many other recurring phenomena

- In the homework, we use renewal process theory to study resilience of P2P systems to disconnection