1. Purpose

Your job is to write a C/C++ transport-layer service over UDP that can sustain non-trivial transfer rates (hundreds of megabits/sec) under low packet loss and avoid getting bogged down under heavy loss.

2. Description

This part implements only the connection handshake (SYN) and termination (FIN).

To allow you control over network loss/delay, the receiving server emulates two queues at its nearest router (in forward/reverse directions) to the specifications requested by the client. This includes the RTT, link speed, and average packet-loss rate. These parameters must be specified in the SYN in order to complete the connection setup (see below).

2.1. Code (25 pts)

The homework must accept as input seven command-line parameters of the transfer – destination server (hostname or IP), a power-of-2 buffer size to be transmitted (in DWORDs), sender window (in packets), the round-trip propagation delay (in seconds), the probability of loss in each direction, and the speed of the bottleneck link (in Mbps). For example:

```
C:\> rdt.exe s3.irl.cs.tamu.edu 24 50000 0.2 0.00001 0.0001 100
```

requests communication with s3.irl.cs.tamu.edu, an input buffer of size 2^{24} DWORDs (i.e., 2^{26} bytes), $W = 50K$ packets in the sender window, 200-ms RTT, 10^{-5} loss rate in the forward direction, 10^{-4} loss in the return path, and 100-Mbps bottleneck-link speed. If the parameters are incorrect, the program should print usage information and quit. Note that the receiver running on s3.irl.cs.tamu.edu never intentionally reorders or corrupts packets. You thus do not need to deal with packet checksums and superfluous retransmissions arising from reordering.

To make sure the receiver detects packet loss and incorrect retransmission, it is important to initialize the buffer to values that cannot be easily interchanged without being detected. For this purpose, you have to allocate an array of DWORDs and then set each element to a unique value given below.

Your transport layer must consist of a class called SenderSocket that provides OS-like APIs Open, Send, and Close (highlighted in bold below):

```c
// SenderSocket.h
#define MAGIC_PORT 22345 // receiver listens on this port
#define MAX_PKT_SIZE (1500-28) // maximum UDP packet size accepted by receiver

class SenderSocket {
...
```
void main (void)
{
 // parse command-line parameters
 int power = atoi (...); // command-line specified integer
 int senderWindow = atoi (...); // command-line specified integer

 UINT64 dwordBufSize = (UINT64) 1 << power;
 DWORD *dwordBuf = new DWORD [dwordBufSize]; // user-requested buffer
 for (UINT64 i = 0; i < dwordBufSize; i++) // required initialization
 dwordBuf [i] = i;

 SenderSocket ss; // instance of your class
 if ((status = ss.Open (targetHost, MAGIC_PORT, senderWindow, ...)) != STATUS_OK)
 // error handling: print status and quit

 char *charBuf = (char*) dwordBuf; // this buffer goes into socket
 UINT64 byteBufferSize = dwordBufSize << 2; // convert to bytes
 UINT64 off = 0; // current position in buffer
 while (off < byteBufferSize)
 {
 // decide the size of next chunk
 int bytes = min (byteBufferSize - off, MAX_PKT_SIZE - sizeof(SenderDataHeader));
 // send chunk into socket
 if ((status = ss.Send (charBuf + off, bytes)) != STATUS_OK)
 // error handing: print status and quit
 off += bytes;
 }

 if ((status = ss.Close ()) != STATUS_OK)
 // error handing: print status and quit
}

Successful operation follows this example:

Main: sender W = 10, RTT 0.200 sec, loss 1e-05 / 0.0001, link 100 Mbps
Main: initializing DWORD array with 2^20 elements... done in 0 ms
[0.002] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.82
[0.223] <-- SYN-ACK 0 window 1; setting initial RTO to 0.663
Main: connected to s3.irl.cs.tamu.edu in 0.221 sec, pkt size 1472 bytes
[0.233] --> FIN 0 (attempt 1 of 5, RTO 0.663)
[0.457] <-- FIN-ACK 0 window 0
Main: transfer finished in 0.010 sec

The first two lines, printed by main(), reiterate input parameters\(^1\). The next two come from
ss.Open() as it sends a SYN and receives a SYN-ACK. Both rows start with the current time in
seconds since the constructor of the SenderSocket class was called. This is followed by a tab
and an arrow specifying the direction of the packet (i.e., → outgoing and ← incoming). Each
printout carries the corresponding sequence number (i.e., 0 in this case), with SYNs additionally
reporting the attempt number, the retransmission timeout (RTO) before the packet was sent, and
the destination IP. SYN-ACKs display the window size in the response and the new RTO based
on the handshake round-trip time. This value is set to three times the RTT of the connection
phase (i.e., 221 * 3 = 663 ms in the above trace).

\(^1\) To print fractional numbers in compact notation as in this example use %g in printf. This will automatically switch
the number between scientific (1e-05) and dotted (0.0001) formats depending on whichever is shorter.
Main() performs its own timing of \texttt{ss.Open()} and reports that to the screen, together with \texttt{MAX_PKT_SIZE} it plans to use. The next two lines come from \texttt{ss.Close()} as it sends a FIN and receives a FIN-ACK. Finally, \texttt{main()} confirms a successful transfer and prints its duration. This is the time between returning from \texttt{ss.Open()} and calling \texttt{ss.Close()}. Using the trace above, the delay is $233 - 223 = 10$ ms.

For higher packet loss, the SYN/SYN-ACK or FIN/FIN-ACK pairs may get lost. Here is an example that requests 40% loss in the forward direction and requires multiple retransmissions:

```
Main:   sender W = 10, RTT 0.200 sec, loss 0.4 / 0.0001, link 100 Mbps
Main:   initializing DWORD array with $2^{20}$ elements... done in 0 ms
[ 0.002] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.82
[ 1.014] --> SYN 0 (attempt 2 of 3, RTO 1.000) to 128.194.135.82
[ 2.028] --> SYN 0 (attempt 3 of 3, RTO 1.000) to 128.194.135.82
[ 2.239] <-- SYN-ACK 0 window 1; setting initial RTO to 0.631
Main:   connected to s3.irl.cs.tamu.edu in 0.210 sec, pkt size 1472 bytes
[ 2.247] --> FIN 0 (attempt 1 of 5, RTO 0.631)
[ 2.886] --> FIN 0 (attempt 2 of 5, RTO 0.631)
[ 3.097] <-- FIN-ACK 0 window 0
Main:   transfer finished in 0.007 sec
```

Before the first RTT is measured, the RTO starts at its default value of 1 second. The FIN phase is similar, except it starts with the last known RTO. Set the maximum number of attempts to 3 for SYN packets and 5 for all others. After exceeding these thresholds, you should abort the connection.

The full list of errors that \texttt{SocketSender} functions should be able to produce is given by:

```
// possible status codes from ss.Open, ss.Send, ss.Close
#define STATUS_OK 0  // no error
#define ALREADY_CONNECTED 1 // second call to ss.Open() without closing connection
#define NOT_CONNECTED 2  // call to ss.Send()/Close() without ss.Open()
#define INVALID_NAME 3  // ss.Open() with targetHost that has no DNS entry
#define FAILED_SEND 4  // sendto() failed in kernel
#define TIMEOUT 5      // timeout after all retry attempts are exhausted
#define FAILED_RECV 6  // recvfrom() failed in kernel
```

Examples (100xx errors come from WSAGetLastError):

```
Main:   sender W = 1, RTT 0.200 sec, loss 0.9 / 0.0001, link 100 Mbps
Main:   initializing DWORD array with $2^{24}$ elements... done in 31 ms
[0.006] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.82
[1.020] --> SYN 0 (attempt 2 of 3, RTO 1.000) to 128.194.135.82
[2.032] --> SYN 0 (attempt 3 of 3, RTO 1.000) to 128.194.135.82
Main:   connect failed with status 5

Main:   sender W = 1, RTT 0.200 sec, loss 0.1 / 0.0001, link 100 Mbps
Main:   initializing DWORD array with $2^{24}$ elements... done in 78 ms
[0.001] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 0.0.0.0
[0.001] --> failed sendto with 10049
Main:   connect failed with status 4

Main:   sender W = 1, RTT 0.200 sec, loss 0.9 / 0.0001, link 100 Mbps
Main:   initializing DWORD array with $2^{24}$ elements... done in 31 ms
[0.001] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 0.0.0.0
[0.001] --> failed recvfrom with 10054
Main:   connect failed with status 6

Main:   sender W = 8000, RTT 0.010 sec, loss 0 / 0, link 1000 Mbps
Main:   initializing DWORD array with $2^{30}$ elements... done in 1076 ms
[0.002] --> target s38.irl.cs.tamu.edu is invalid
```
Main: connect failed with status 3

2.2. Packet Headers

*Make sure to `#pragma pack all network structs to 1 byte`. Connection setup is performed by exchanging a pair of packets – SYN from the sender and SYN-ACK from the receiver. The format of SYN packets is given by class `SenderSynHeader`:

```c
#define FORWARD_PATH 0
#define RETURN_PATH 1

class LinkProperties {
   public:
      // transfer parameters
      float   RTT;  // propagation RTT (in sec)
      float   speed;  // bottleneck bandwidth (in bits/sec)
      float   pLoss[2]; // probability of loss in each direction
      DWORD   bufferSize; // buffer size of emulated routers (in packets)

      LinkProperties () { memset(this, 0, sizeof(*this)); }
   }

class SenderSynHeader {
   public:
      SenderDataHeader sdh;
      LinkProperties  lp;
   }
}
```

The header for outgoing data packets and FINs consists of the flags and the packet sequence number:

```c
class SenderDataHeader {
   public:
      Flags   flags;
      DWORD   seq;  // must begin from 0
   }
}
```

The Flags header contains five fields:

```c
#define MAGIC_PROTOCOL 0x8311AA

class Flags {
   public:
      DWORD   reserved:5;   // must be zero
      DWORD   SYN:1;
      DWORD   ACK:1;
      DWORD   FIN:1;
      DWORD   magic:24;

      Flags () { memset(this, 0, sizeof(*this)); magic = MAGIC_PROTOCOL; }
   }
```

The reserved field must be zero, SYN/ACK/FIN are the same as in TCP, and the magic protocol number must be 0x8311AA as set in the constructor. *The receiver runs on Windows and thus requires no conversion of fields to network byte order.*

All response packets have the same structure and just consist of the header:

```c
class ReceiverHeader {
   public:
      Flags   flags;
      DWORD   recvWnd; // receiver window for flow control (in pkts)
   }
```
DWORD ackSeq; // ack value = next expected sequence

Since your SenderSocket class needs the RTT, speed, and loss from main(), it makes sense to just pass a pointer to a LinkProperties structure to ss.Open:

LinkProperties lp;
lp.RTT = atof (...);
lp.speed = 1e6 * atof (...); // convert to megabits
lp.pLoss [FORWARD_PATH] = atof (...);
lp.pLoss [RETURN_PATH] = atof (...);
if ((status = ss.Open (targetHost, MAGIC_PORT, senderWindow, &lp)) != STATUS_OK)

Note that lp.bufferSize is not specified by the user and is the only parameter that ss.Open() needs to determine automatically based on the other variables of the system. The goal is to size the router buffer to never lose packets. If the window is W and the maximum number of retransmissions is R, you should never have more than $W+R$ packets in flight. Thus, you can safely set lp.bufferSize to this value.

2.3. Invalid Conditions

Note that incorrect flags and/or combinations of parameters will be rejected by the server silently. The following checks are performed by the receiver: a) link speed must be larger than zero and no more than 10 Gbps; b) the RTT must be non-negative and smaller than 30 seconds; c) both probabilities of loss must be in $[0, 1)$; and c) router buffer size must be between 1 and $1M$ packets. Additional reasons that cause packets to be discarded – FIN or data packets are received before a connection has been set up; incorrect magic protocol in the flags header or the reserved field is not zero; packet size is smaller than sizeof(SenderDataHeader); FIN packets arriving before completion of the transfer (i.e., the receiver window has gaps); SYN packets with size smaller than sizeof(SenderSynHeader); data packets with invalid sequence numbers; and bogus flag combinations (such as SYN + FIN).

2.4. UDP

Socket operation is identical to that in Homework 2 – you should open a UDP socket, bind it to port 0, and then utilize sendto/recvfrom. The receiver dispatches only compliant packets, which allows you to receive them directly into the corresponding struct:

ReceiverHeader rh;
if ((bytes = recvfrom(sock, &rh, sizeof(ReceiverHeader), ...)) == SOCKET_ERROR)
 // report GetLastError() and return control to main()

2.5. Standalone Receiver

You can download the receiver from C:\463 on TS/TS2 and run it locally for debugging purposes (make sure to set your destination to 127.0.0.1 instead of s3.irl.cs.tamu.edu). In Part 3, depending on your CPU, you may be able to achieve rates in excess of 2.5 Gbps on localhost. There is also a dummy receiver that omits checksums, bypasses router emulation, and allows (9000-28)-byte packets. You could get over 10 Gbps with this version.
463/612 Homework 3 Grade Sheet (Part 1)

Name: ______________________________

<table>
<thead>
<tr>
<th>Function</th>
<th>Points</th>
<th>Break down</th>
<th>Item</th>
<th>Deduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printouts</td>
<td>25</td>
<td>1</td>
<td>Incorrect summary (W, RTT, loss, speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Incorrect array initialization and delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Bad SYN (timer, seq, attempt, RTO, IP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Bad SYN-ACK (seq, window, RTO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Wrong main connect (host, delay, pkt size)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Bad FIN (seq, attempt, RTO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Bad FIN-ACK (seq, window)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Incorrect final transfer delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Fails to retx on SYN timeout</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Fails to retx on FIN timeout</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Fails to print WSAGetLastError() on sendto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Fails to print WSAGetLastError() on recvfrom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Main does not report status 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Main does not report status 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Main does not report status 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Main does not report status 6</td>
<td></td>
</tr>
</tbody>
</table>

Total points: ________________