
CSCE 463/612: Networks and Distributed Processing
Homework 3 Part 1 (25 pts)

Due date: 3/25/25

1. Purpose
Your job is to write a C/C++ transport-layer service over UDP that can sustain non-trivial trans-
fer rates (hundreds of megabits/sec) under low packet loss and avoid getting bogged down under
heavy loss.

2. Description
This part implements only the connection handshake (SYN) and termination (FIN).

To allow you control over network loss/delay, the receiving server emulates two queues at its
nearest router (in forward/reverse directions) to the specifications requested by the client. This
includes the RTT, link speed, and average packet-loss rate. These parameters must be specified
in the SYN in order to complete the connection setup (see below).

2.1. Code (25 pts)

The homework must accept as input seven command-line parameters of the transfer – destination
server (hostname or IP), a power-of-2 buffer size to be transmitted (in DWORDs), sender win-
dow (in packets), the round-trip propagation delay (in seconds), the probability of loss in each
direction, and the speed of the bottleneck link (in Mbps). For example:

C:\> rdt.exe s3.irl.cs.tamu.edu 24 50000 0.2 0.00001 0.0001 100

requests communication with s3.irl.cs.tamu.edu, an input buffer of size 224 DWORDs (i.e., 226
bytes), W = 50K packets in the sender window, 200-ms RTT, 10-5 loss rate in the forward direc-
tion, 10-4 loss in the return path, and 100-Mbps bottleneck-link speed. If the parameters are in-
correct, the program should print usage information and quit. Note that the receiver running on
s3.irl.cs.tamu.edu never intentionally reorders or corrupts packets. You thus do not need to
deal with packet checksums and superfluous retransmissions arising from reordering.

To make sure the receiver detects packet loss and incorrect retransmission, it is important to ini-
tialize the buffer to values that cannot be easily interchanged without being detected. For this
purpose, you have to allocate an array of DWORDs and then set each element to a unique value
given below.

Your transport layer must consist of a class called SenderSocket that provides OS-like APIs
Open, Send, and Close (highlighted in bold below):

// SenderSocket.h
#define MAGIC_PORT 22345 // receiver listens on this port
#define MAX_PKT_SIZE (1500-28) // maximum UDP packet size accepted by receiver

class SenderSocket {

...

 1

};

// main.cpp
#include "SenderSocket.h"

void main (int argc, char **argv)
{

// parse command-line parameters
 char *targetHost = ...
 int power = atoi (...); // command-line specified integer
 int senderWindow = atoi (...); // command-line specified integer

 UINT64 dwordBufSize = (UINT64) 1 << power;

DWORD *dwordBuf = new DWORD [dwordBufSize]; // user-requested buffer
for (UINT64 i = 0; i < dwordBufSize; i++) // required initialization

 dwordBuf [i] = i;

SenderSocket ss; // instance of your class
if ((status = ss.Open (targetHost, MAGIC_PORT, senderWindow, ...)) != STATUS_OK)

 // error handling: print status and quit

char *charBuf = (char*) dwordBuf; // this buffer goes into socket
UINT64 byteBufferSize = dwordBufSize << 2; // convert to bytes

UINT64 off = 0; // current position in buffer
while (off < byteBufferSize)
{
 // decide the size of next chunk

int bytes = min (byteBufferSize - off, MAX_PKT_SIZE - sizeof(SenderDataHeader));
// send chunk into socket

 if ((status = ss.Send (charBuf + off, bytes)) != STATUS_OK)
 // error handing: print status and quit
 off += bytes;

}

if ((status = ss.Close ()) != STATUS_OK)
 // error handing: print status and quit
}

Successful operation follows this example:

Main: sender W = 10, RTT 0.200 sec, loss 1e-05 / 0.0001, link 100 Mbps
Main: initializing DWORD array with 2^20 elements... done in 0 ms
[0.002] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.82
[0.223] <-- SYN-ACK 0 window 1; setting initial RTO to 0.663
Main: connected to s3.irl.cs.tamu.edu in 0.221 sec, pkt size 1472 bytes
[0.233] --> FIN 0 (attempt 1 of 5, RTO 0.663)
[0.457] <-- FIN-ACK 0 window 0
Main: transfer finished in 0.010 sec

The first two lines, printed by main(), reiterate input parameters1. The next two come from
ss.Open() as it sends a SYN and receives a SYN-ACK. Both rows start with the current time in
seconds since the constructor of the SenderSocket class was called. This is followed by a tab
and an arrow specifying the direction of the packet (i.e.,  outgoing and  incoming). Each
printout carries the corresponding sequence number (i.e., 0 in this case), with SYNs additionally
reporting the attempt number, the retransmission timeout (RTO) before the packet was sent, and
the destination IP. SYN-ACKs display the window size in the response and the new RTO based
on the handshake round-trip time. This value is set to three times the RTT of the connection
phase (i.e., 221 * 3 = 663 ms in the above trace).

1 To print fractional numbers in compact notation as in this example use %g in printf. This will automatically switch
the number between scientific (1e-05) and dotted (0.0001) formats depending on whichever is shorter.

 2

Main() performs its own timing of ss.Open() and reports that to the screen, together with
MAX_PKT_SIZE it plans to use. The next two lines come from ss.Close() as it sends a FIN and
receives a FIN-ACK. Finally, main() confirms a successful transfer and prints its duration. This
is the time between returning from ss.Open()and calling ss.Close(). Using the trace above,
the delay is 233 – 223 = 10 ms.

For higher packet loss, the SYN/SYN-ACK or FIN/FIN-ACK pairs may get lost. Here is an ex-
ample that requests 40% loss in the forward direction and requires multiple retransmissions:

Main: sender W = 10, RTT 0.200 sec, loss 0.4 / 0.0001, link 100 Mbps
Main: initializing DWORD array with 2^20 elements... done in 0 ms
[0.002] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.82
[1.014] --> SYN 0 (attempt 2 of 3, RTO 1.000) to 128.194.135.82
[2.028] --> SYN 0 (attempt 3 of 3, RTO 1.000) to 128.194.135.82
[2.239] <-- SYN-ACK 0 window 1; setting initial RTO to 0.631
Main: connected to s3.irl.cs.tamu.edu in 2.237 sec, pkt size 1472 bytes
[2.247] --> FIN 0 (attempt 1 of 5, RTO 0.631)
[2.886] --> FIN 0 (attempt 2 of 5, RTO 0.631)
[3.097] <-- FIN-ACK 0 window 0
Main: transfer finished in 0.007 sec

Before the first RTT is measured, the RTO starts at its default value of 1 second. The FIN phase
is similar, except it starts with the last known RTO. Set the maximum number of attempts to 3
for SYN packets and 5 for all others. After exceeding these thresholds, you should abort the con-
nection.

The full list of errors that SocketSender functions should be able to produce is given by:

// possible status codes from ss.Open, ss.Send, ss.Close
#define STATUS_OK 0 // no error
#define ALREADY_CONNECTED 1 // second call to ss.Open() without closing connection
#define NOT_CONNECTED 2 // call to ss.Send()/Close() without ss.Open()
#define INVALID_NAME 3 // ss.Open() with targetHost that has no DNS entry
#define FAILED_SEND 4 // sendto() failed in kernel
#define TIMEOUT 5 // timeout after all retx attempts are exhausted
#define FAILED_RECV 6 // recvfrom() failed in kernel

Examples (100xx errors come from WSAGetLastError):

Main: sender W = 1, RTT 0.200 sec, loss 0.9 / 0.0001, link 100 Mbps
Main: initializing DWORD array with 2^24 elements... done in 31 ms
[0.006] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.82
[1.020] --> SYN 0 (attempt 2 of 3, RTO 1.000) to 128.194.135.82
[2.032] --> SYN 0 (attempt 3 of 3, RTO 1.000) to 128.194.135.82
Main: connect failed with status 5

Main: sender W = 1, RTT 0.200 sec, loss 0.1 / 0.0001, link 100 Mbps
Main: initializing DWORD array with 2^24 elements... done in 78 ms
[0.001] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 0.0.0.0
[0.001] --> failed sendto with 10049
Main: connect failed with status 4

Main: sender W = 1, RTT 0.200 sec, loss 0.9 / 0.0001, link 100 Mbps
Main: initializing DWORD array with 2^24 elements... done in 31 ms
[0.001] --> SYN 0 (attempt 1 of 3, RTO 1.000) to 128.194.135.1
[0.003] <-- failed recvfrom with 10054
Main: connect failed with status 6

Main: sender W = 8000, RTT 0.010 sec, loss 0 / 0, link 1000 Mbps
Main: initializing DWORD array with 2^30 elements... done in 1076 ms
[0.002] --> target s38.irl.cs.tamu.edu is invalid

 3

Main: connect failed with status 3

2.2. Packet Headers

Make sure to #pragma pack all network structs to 1 byte. Connection setup is performed by ex-
changing a pair of packets – SYN from the sender and SYN-ACK from the receiver. The format
of SYN packets is given by class SenderSynHeader:

#define FORWARD_PATH 0
#define RETURN_PATH 1

class LinkProperties {
public:
 // transfer parameters
 float RTT; // propagation RTT (in sec)
 float speed; // bottleneck bandwidth (in bits/sec)
 float pLoss [2]; // probability of loss in each direction
 DWORD bufferSize; // buffer size of emulated routers (in packets)

 LinkProperties () { memset(this, 0, sizeof(*this)); }
};

class SenderSynHeader {
public:
 SenderDataHeader sdh;
 LinkProperties lp;
};

The header for outgoing data packets and FINs consists of the flags and the packet sequence
number:

class SenderDataHeader {
public:
 Flags flags;
 DWORD seq; // must begin from 0
};

The Flags header contains five fields:

#define MAGIC_PROTOCOL 0x8311AA

class Flags {
public:
 DWORD reserved:5; // must be zero
 DWORD SYN:1;
 DWORD ACK:1;
 DWORD FIN:1;
 DWORD magic:24;

 Flags () { memset(this, 0, sizeof(*this)); magic = MAGIC_PROTOCOL; }
};

The reserved field must be zero, SYN/ACK/FIN are the same as in TCP, and the magic protocol
number must be 0x8311AA as set in the constructor. The receiver runs on Windows and thus re-
quires no conversion of fields to network byte order.

All response packets have the same structure and just consist of the header:

class ReceiverHeader {
public:
 Flags flags;
 DWORD recvWnd; // receiver window for flow control (in pkts)

 4

 DWORD ackSeq; // ack value = next expected sequence
};

Since your SenderSocket class needs the RTT, speed, and loss from main(), it makes sense to
just pass a pointer to a LinkProperties structure to ss.Open:

LinkProperties lp;
lp.RTT = atof (...);
lp.speed = 1e6 * atof (...); // convert to megabits
lp.pLoss [FORWARD_PATH] = atof (...);
lp.pLoss [RETURN_PATH] = atof (...);
if ((status = ss.Open (targetHost, MAGIC_PORT, senderWindow, &lp)) != STATUS_OK)

Note that lp.bufferSize is not specified by the user and is the only parameter that ss.Open()
needs to determine automatically based on the other variables of the system. The goal is to size
the router buffer to never lose packets. If the window is W and the maximum number of retrans-
missions is R, you should never have more than W+R packets in flight. Thus, you can safely set
lp.bufferSize to this value.

2.3. Invalid Conditions

Note that incorrect flags and/or combinations of parameters will be rejected by the server si-
lently. The following checks are performed by the receiver: a) link speed must be larger than
zero and no more than 10 Gbps; b) the RTT must be non-negative and smaller than 30 seconds;
c) both probabilities of loss must be in [0, 1); and d) router buffer size must be between 1 and
1M packets. Additional reasons that cause packets to be discarded – FIN or data packets are re-
ceived before a connection has been set up; incorrect magic protocol in the flags header or the
reserved field is not zero; packet size is smaller than sizeof(SenderDataHeader); FIN packets
arriving before completion of the transfer (i.e., the receiver window has gaps); SYN packets with
size smaller than sizeof(SenderSynHeader); data packets with invalid sequence numbers; and
bogus flag combinations (such as SYN + FIN).

2.4. UDP

Socket operation is identical to that in Homework 2 – you should open a UDP socket, bind it to
port 0, and then utilize sendto/recvfrom. The receiver dispatches only compliant packets,
which allows you to receive them directly into the corresponding struct:

ReceiverHeader rh;
if ((bytes = recvfrom(sock, &rh, sizeof(ReceiverHeader), ...)) == SOCKET_ERROR)
 // report GetLastError() and return control to main()

2.5. Standalone Receiver

You can download the receiver from the course website and run it locally for debugging pur-
poses (make sure to set your destination to 127.0.0.1 instead of s3.irl.cs.tamu.edu). In Part 3, de-
pending on your CPU, you may be able to achieve rates in excess of 2.5 Gbps on localhost.
There is also a dummy receiver that omits checksums, bypasses router emulation, and allows
(9000-28)-byte packets. You could get over 10 Gbps with this version.

 5

 6

463/612 Homework 3 Grade Sheet (Part 1)

Name: ______________________________

Function Points Break

down
Item Deduction

1 Incorrect summary (W, RTT, loss, speed)
1 Incorrect array initialization and delay
5 Bad SYN (timer, seq, attempt, RTO, IP)
3 Bad SYN-ACK (seq, window, RTO)
1 Wrong main connect (host, delay, pkt size)
3 Bad FIN (seq, attempt, RTO)
2 Bad FIN-ACK (seq, window)
1 Incorrect final transfer delay
1 Fails to retx on SYN timeout
1 Fails to retx on FIN timeout
1 Fails to print WSAGetLastError() on sendto
1 Fails to print WSAGetLastError() on recvfrom
1 Main does not report status 3
1 Main does not report status 4
1 Main does not report status 5

Printouts 25

1 Main does not report status 6

Total points: ________________

	1. Purpose
	2. Description
	2.1. Code (25 pts)
	2.2. Packet Headers
	2.3. Invalid Conditions
	2.4. UDP
	2.5. Standalone Receiver

