CSCE 463/612
Networks and Distributed Processing
Fall 2023

Introduction II
Dmitri Loguinov
Texas A&M University

August 31, 2023
Chapter 1: Roadmap

1.1 What is the Internet?
1.2 Network edge
1.3 Network core
1.4 Network access and physical media
1.5 Internet structure and ISPs
1.6 Delay & loss in packet-switched networks
1.7 Protocol layers, service models
1.8 History
Internet: Network of Networks

- Roughly hierarchical
 - In the center: “tier-1” ISPs (e.g., Sprint, AT&T, Verizon), national/international coverage
 - Treat each other as equals, do not pay for upstream bandwidth
 - Form the backbone of the Internet
Internet: Network of Networks

- “Tier-2” ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet

Tier-2 ISP is customer of tier-1 provider

Tier-2 ISPs also peer privately with each other, or interconnect at NAPs
Internet Structure: Network of Networks

- “Tier-3” ISPs and local ISPs
 - Last hop ("access") network (closest to end systems)

Local and tier-3 ISPs are customers of higher tier ISPs connecting them to rest of Internet
Internet Structure: Network of Networks

- A packet passes through many networks!
Chapter 1: Roadmap

1.1 What *is* the Internet?
1.2 Network edge
1.3 Network core
1.4 Network access and physical media
1.5 Internet structure and ISPs
1.6 Delay & loss in packet-switched networks
1.7 Protocol layers, service models
1.8 History
How Do Loss and Delay Occur?

Packets queue in router buffers (typically FIFO queues)

- If packet arrival rate exceeds output link capacity:
 - Packets queue, wait for their turn
 - Analogy: 5 lanes of traffic merge into 1

packet being transmitted (delay)

packets queued (delay)

arriving packets dropped if no free buffers
(packet loss)
Four Sources of Packet Delay

1. Router processing delay:
 - Check bit errors
 - Determine output link
 - Place packet in buffer

2. Queueing delay
 - Time waiting at output link for transmission
 - Depends on congestion level of router
Delay in Packet-Switched Networks

3. Transmission delay:
 - \(R \) = link rate (bps)
 - \(L \) = packet length (bits)
 - Time to send bits into link = \(L/R \)

4. Propagation delay:
 - \(d \) = length of link (m)
 - \(s \) = propagation speed in medium (\(\approx 2 \times 10^8 \) m/sec)
 - Propagation delay = \(d/s \)

Note: \(s \) and \(R \) are very different quantities!
Caravan Analogy

- Car ~ bit; caravan ~ packet
- Cars “propagate” at 100 mph
- Toll booth takes 12 sec to service a car (transmission time of a bit)
- Q: How long until caravan is lined up before the 2nd toll booth?

- Time to “push” entire caravan through toll booth onto highway = 12*10 = 120 sec
- Time for last car to propagate from 1st to 2nd toll both: 100 miles / (100 mph) = 1 hr
- A: 62 minutes
Caravan Analogy (more)

- Toll booth now takes 1 min to service a car
- Q: Will cars arrive to 2nd booth before all cars are serviced at 1st booth?
- Yes! After 7 min, 1st car at 2nd booth and 3 cars still at 1st booth
- 1st bit of packet can arrive at 2nd router before packet is fully transmitted from 1st router!
- Can a packet be at 3 routers simultaneously?
Nodal (Per-Router) Delay

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

- \(d_{\text{proc}} \) = processing delay
 - A few microsecs or less, usually fixed for all packets
- \(d_{\text{queue}} \) = queuing delay
 - Depends on congestion, randomly varies between packets
- \(d_{\text{trans}} \) = transmission delay
 - Equals \(L/R \), high for low-speed links, depends on packet size
- \(d_{\text{prop}} \) = propagation delay
 - A few microsecs to hundreds of msecs, depends on physical length of the link
Queueing Delay (Revisited)

- $R =$ link bandwidth (bps)
- $L =$ packet length (bits)
- $a =$ average packet arrival rate (pkts/sec)
- Infinite buffer space

Traffic intensity $\rho = \frac{La}{R}$

- $\rho \approx 0$: average queueing delay is small
- $\rho \geq 1$: more “work” arriving than can be serviced, average delay is infinite
- $\rho \rightarrow 1$: delay quickly shoots up
“Real” Internet Delays and Routes

• What do “real” Internet delay & loss look like?
• **Traceroute (tracert in Windows):** provides delay measurement from source to all routers along end-end Internet path towards destination. For all i:
 - Sends three packets that reach router i on path towards destination
 - Router i returns a response to sender
 - Sender times interval between transmission and reply
"Real" Internet Delays and Routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

Three delay measurements at first hop

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
17 * * * * means no reponse (probe lost, router not replying)
18 * * * *
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
Packet Loss

• Queues have finite capacity
• When packets arrive to a full buffer, they are dropped (aka lost) – drop-tail queuing
• Lost packet may be retransmitted by previous router, by the source (end system), or not at all
• Loss rate: average fraction of data lost over a long period of time
• Example: link capacity $R = 10$ Mbps and total arrival rate of traffic is 11 Mbps
 - Q: What’s the average loss rate on the link?
 - A: About 9%
Chapter 1: Roadmap

1.1 What is the Internet?
1.2 Network edge
1.3 Network core
1.4 Network access and physical media
1.5 Internet structure and ISPs
1.6 Delay & loss in packet-switched networks
1.7 Protocol layers, service models
1.8 History
Protocol “Layers”

Networks are complex!
- Many “pieces”
 - Hosts
 - Routers
 - Links of various media
 - Applications
 - Protocols
- Some type of modular organization is desirable

Solution: Layered structure
- Same host: each layer interacts only with adjacent (upper/lower) layers
- Remote host: each layer talks to identical layer on the other end-host
Layering

- Information travels **down** the protocol stack on the sender side and **up** on the receiver side.
Layering

Layers: each layer implements a service
- Via its own internal-layer actions
- Relying on services provided by the layer below
- Talks to same layer on the other host
Why Layering?

Benefits of layered organization:

• Sufficient to specify only the relationship between the system’s pieces
 – Instead of defining one big protocol that does everything
 – Complexity reduced by separately standardizing individual components

• Modularization eases maintenance and upgrade
 – Change of implementation of layer’s service transparent to the rest of system
 – For example, change in FedEx truck routing doesn’t affect other layers
Internet Protocol Stack

- **Application**: interacts with user and supports network applications
 - FTP, SMTP, HTTP (ch 2)
- **Transport**: inter-process data transfer
 - TCP, UDP (ch 3)
- **Network**: routing of datagrams from source to destination host
 - IP, routing protocols (ch 4)
- **Link**: data transfer between neighboring network elements
 - 802.11b, Ethernet (ch 5)
- **Physical**: bits “on the wire”
 - Not covered in this class