Network Layer II

Dmitri Loguinov
Texas A&M University

April 6, 2021
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Router Architecture Overview

Two key router functions:
- Run routing algorithms/protocol (RIP, OSPF, BGP)
- Forward datagrams from incoming to outgoing link
 - Terminology: port = interface capable of sending/receiving

![Diagram showing router architecture with labels port 1, ..., port M, switch fabric hardware, and data flow from in to out.](image-url)
Decentralized switching:
- Given datagram destination, look up output port using forwarding table in input port memory
- **Goal**: complete input port processing at “line speed”
- **Queuing**: if datagrams arrive faster than forwarding rate into switch fabric
Switching Via Memory

First generation routers (1960s-mid 1980s):

- Traditional computers with switching under direct control of CPU
- Packet copied to system memory
- Speed limited by CPU, memory latency/bandwidth, and bus bandwidth (two bus crossings per datagram)
- Honeywell 316 (1969) →
Switching Via a Bus

- Datagram from input port memory to output port memory via a shared bus
- **Bus contention**: switching speed limited by bus bandwidth
- 1 Gbps bus in Cisco 1900: sufficient speed for access and small enterprise networks (not ISPs)
Switching Via An Interconnection Network

- Overcomes bus bandwidth limitations
 - Crossbar: packets transmitted in parallel as long as they do not occupy the same horizontal or vertical bus
- Cisco 12000 (1996): uses an interconnection network
 - CRS-X (2013): 1600 lbs, 84” rack, 7.6 KWatt, 800 Gbps/slot
 - 16 slots/rack = 12.8 Tbps
 - Up to 72 racks (922 Tbps)
Output Ports

- **Buffering/queuing** required when datagrams arrive from fabric faster than the transmission rate
- **Scheduling discipline** chooses among queued datagrams for transmission
 - Customer traffic: single FIFO drop-tail queue
 - ISP traffic: multiple queues with WRR or priority queuing
Output Port Queuing

- Buffering when arrival rate via switch fabric exceeds output line speed
 - Queuing delay and loss due to output buffer overflow
- Switch fabric is M times faster than individual ports
 - Produces large bursts of arrivals into output queues
Input Port Queuing

- Reasons for input-port queuing:
 - **Head-of-Line (HOL) blocking**: queued datagram at front of queue prevents others in queue from moving forward

- Queuing delay and loss due to input buffer overflow!
 - How likely is this compared to output port queuing/loss?

![Diagram showing input port contention and HOL blocking]

- Time t
- Time $t+1$
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
The Internet Network Layer

Host and router network layer functions:

- **Routing protocols**
 - Path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - Datagram format
 - Addressing conventions

- **IGMP protocol**
 - Multicast

- **ICMP protocol**
 - Error reporting
 - Ping, traceroute

Transport layer: TCP, UDP
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
IPv4 Datagram Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP protocol version number</td>
<td>32 bits</td>
</tr>
<tr>
<td>Header length (in 4-byte</td>
<td>32 bits</td>
</tr>
<tr>
<td>words)</td>
<td></td>
</tr>
<tr>
<td>QoS requested</td>
<td></td>
</tr>
<tr>
<td>Max number remaining hops</td>
<td></td>
</tr>
<tr>
<td>(decremented at each router)</td>
<td></td>
</tr>
<tr>
<td>Upper layer protocol</td>
<td></td>
</tr>
<tr>
<td>to deliver payload to</td>
<td></td>
</tr>
<tr>
<td>How much overhead</td>
<td></td>
</tr>
<tr>
<td>with TCP?</td>
<td></td>
</tr>
<tr>
<td>• 20 bytes of TCP</td>
<td></td>
</tr>
<tr>
<td>• 20 bytes of IP</td>
<td></td>
</tr>
<tr>
<td>• = 40 bytes</td>
<td></td>
</tr>
<tr>
<td>Total datagram length (bytes)</td>
<td>For fragmentation/reassembly</td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>(variable length,</td>
<td></td>
</tr>
<tr>
<td>typically a TCP or UDP</td>
<td></td>
</tr>
<tr>
<td>segment)</td>
<td></td>
</tr>
</tbody>
</table>

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes

- IPv4 Datagram Format
- IP protocol version number
- Header length (in 4-byte words)
- QoS requested
- Max number remaining hops (decremented at each router)
- Upper layer protocol to deliver payload to
- How much overhead with TCP?
 - 20 bytes of TCP
 - 20 bytes of IP
 - = 40 bytes

- Total datagram length (bytes)
- For fragmentation/reassembly
- Options (if any) E.g. timestamp, record route taken, specify list of routers to visit
- Data (variable length, typically a TCP or UDP segment)
IP Fragmentation & Reassembly

- Network links have varying MTUs (maximum transmission units) – largest possible link-level frames
 - Different link types, different MTUs (most common 1500)
- Large IP datagram divided (“fragmented”) within network
 - One datagram becomes several datagrams
 - “Reassembled” only at final destination
 - IP header bits used to identify, order related fragments
IP Fragmentation and Reassembly

Example
- 4000 byte datagram (including IP header)
- MTU = 1500 bytes

One large datagram becomes several smaller datagrams

<table>
<thead>
<tr>
<th>ID</th>
<th>offset</th>
<th>fragflag</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>4000</td>
</tr>
</tbody>
</table>

1480 bytes in payload

offset is in 8-byte words: 185 = 1480/8

<table>
<thead>
<tr>
<th>ID</th>
<th>offset</th>
<th>fragflag</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>185</td>
<td>1</td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>offset</th>
<th>fragflag</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>370</td>
<td>0</td>
<td>1040</td>
</tr>
</tbody>
</table>
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
IP Addressing: Introduction

- **IP address**: 32-bit identifier for host or router *interface*
- **Interface**: connection between host/router and physical link
 - Also called a *port*
 - Routers have many interfaces
- Can hosts have multiple interfaces?
 - Yes, it’s called *multi-homing*
Subnets

- IP address:
 - Subnet prefix: k bits
 - Host suffix: $32-k$ remaining bits

- What’s a subnet (LAN)?
 - Network composed of devices with the same subnet prefix of IP address
 - Can physically reach each other without intervening router

Network consisting of 3 subnets

223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4
223.1.2.1
223.1.2.9
223.1.2.2
223.1.3.1
223.1.3.2
223.1.3.27
223.1.3.200
223.8.3.2
Subnets

Recipe

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks.
- Each isolated network is a subnet.

Subnet mask:
- 255.255.255.0
- or /24
Subnets

How many?
IP Addressing: CIDR

- In the early Internet, only subnets with 8, 16, or 24 bit prefixes were allowed ("class A, B, C" networks)
- This was inflexible and wasteful as well

CIDR: Classless InterDomain Routing
- Subnet portion of address of arbitrary length
- Address format: `a.b.c.d/x`, where `x` is # bits in the subnet portion of address

```
11001000  00010111  00010000  00000000
   subnet part       host part
200.23.16.0/23
```
IP Addresses: How to Get One?

Q: How does a host get an IP address?

• Either hard-coded by system admin in a file
 - Windows: Control-panel → network → configuration → tcp/ip → properties
 - Linux: /etc/rc.config
• Or dynamically assigned by DHCP (Dynamic Host Configuration Protocol)
 - “Plug-and-play” (more in Chapter 5)
Q: How does a network get subnet part of IP addr?

A: Gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>

- Task: split this ISP into one /21, three /23, and eight /26
Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

ISP-A

Organization 0: 200.23.16.0/23
Organization 1: 200.23.18.0/23
Organization 2: 200.23.20.0/23
Organization 7: 200.23.30.0/23

ISP-B

“Send me anything with addresses beginning with 200.23.16.0/20”

“Send me anything with addresses beginning with 199.31.0.0/16”

Internet
Hierarchical Addressing: More Specific Routes

ISP-B has a more specific route to Organization 1

Organization 0
- 200.23.16.0/23

Organization 2
- 200.23.20.0/23

Organization 7
- 200.23.30.0/23

Organization 1
- 200.23.18.0/23

ISP-A

ISP-B

“Send me anything in 200.23.16.0/20”

“Send me anything in 199.31.0.0/16 or 200.23.18.0/23”

Internet
IP Addressing: Last Word...

Q: How does an ISP get a block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers assigns IPs to regional registries

- These are ARIN (North/South America), RIPE (Europe), APNIC (Asia-Pacific), and AfriNIC (Africa)

- These registries process ISP and user requests for subnet space
 - Also manage DNS and resolve disputes

- Quiz #3 covers
 - Chapter 3: P7-9, 22-24, 26-28, 31-37, 40-41, 43-49
 - Chapter 4: P1-17 (including today’s lecture)