Data-link Layer I

Dmitri Loguinov
Texas A&M University

April 21, 2016
Homework #4

• ICMP header:

```cpp
class ICMPHeader{
public:
    u_char type; /* ICMP packet type */
    u_char code; /* ICMP type subcode */
    u_short checksum; /* checksum */
    u_short ID; /* usually process ID */
    u_short seq; /* sequence */
};
```

• Received ICMP pkts are delivered to all open ICMP sockets (since ICMP has no port numbers)
 - Routers will echo your entire IP packet in their TTL expired messages
 - Use the ID field to distinguish your pkts from junk
Homework #4

- Returned pkt structure:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP header</td>
<td>20 bytes</td>
</tr>
<tr>
<td>ICMP reply header</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Original IP header</td>
<td>20 bytes</td>
</tr>
<tr>
<td>Original ICMP header</td>
<td>8 bytes</td>
</tr>
</tbody>
</table>

- Find out whether the ID field in the 4-th header matches your ID
Homework #4

- Other things to consider:
 - If your checksums are incorrect, the packet will be dropped and you won’t get any reply
 - If your firewall is enabled to block all incoming traffic, the kernel will not deliver ICMP packets
- In some Windows configurations, you must be a member of the administrator group
- Mores caveats – read the handout!
 - UAC needs to be disabled or VS run as administrator
 - Custom in-bound firewall rules
 - Batch mode requires pinging the target before tracing
 - Hard limits on trace delay in batch mode
Link Layer

5.1 Introduction and services
5.2 Error detection and correction
5.3 Multiple access protocols
5.4 Link-Layer Addressing
5.5 Ethernet
5.6 Hubs and switches
Summary
Link Layer: Introduction

Terminology:
- Hosts and routers are nodes
- Communication channels that connect adjacent nodes are layer-3 links
 - Wired or wireless
- Each link may contain multiple layer-2 devices (e.g., switches)

Data-link layer has responsibility of transferring IP datagram from one node to adjacent node over a single link.
Link Layer: Context

• End-to-end IP datagrams transferred by different link protocols over different links
 – e.g., Ethernet on first link, ATM on intermediate links, 802.11 on last link
• Each link protocol provides different services
 – e.g., may or may not use reliable transport algorithms
• Layer-2 packet is a frame, encapsulates IP datagram

Transportation analogy

• Trip from Princeton to Paris
 – Limo: Princeton to JFK
 – Plane: JFK to Geneva
 – Train: Geneva to Paris
• Professor = IP datagram
• Transportation leg = communication link
• Transportation mode = link layer protocol
• Travel agent = routing algorithm (IP layer)
Link Layer Services

- **Framing:**
 - Add header, trailer to IP packet
 - Data-link addresses (completely independent of IP addresses) used in frame headers to identify source, dest

- **Link access:**
 - Channel access if shared medium

- **Flow control:**
 - Pacing between adjacent sending and receiving nodes

- **Error detection:**
 - Errors caused by signal attenuation, noise
 - Receiver detects presence of errors and signals data-link layer of adjacent node for retransmission or drops frame
Link Layer Services

- **Forward Error Correction (FEC):**
 - Receiver identifies *and corrects* bit error(s) without resorting to retransmission

- **Reliable delivery (rdt) between adjacent nodes**
 - Rdt 3.0 is a common technique (chapter 3)
 - Seldom used on low bit error links (fiber, twisted pair), but may be implemented in wireless networks

- **More terminology**
 - In *half-duplex* mode, nodes at both ends of link can transmit, but not at the same time
 - In *full-duplex*, bidirectional transfer happens concurrently
Adaptors Communicating

- Link layer implemented in driver and network adaptor (aka NIC)
 - E.g., Ethernet PCI-E or USB 802.11 card
- Sending side:
 - Adds error checking bits, rdt, flow control, etc.
- Receiving side
 - Looks for errors, rdt, flow control, etc.
 - Extracts datagram, passes to IP layer on receiving node
- New adapters support TCP/IP offload (checksum, fragmentation)
Link Layer

5.1 Introduction and services
5.2 Error detection and correction
5.3 Multiple access protocols
5.4 Link-Layer Addressing
5.5 Ethernet
5.6 Hubs and switches
Summary
Parity Checking

Single Bit Parity:

Detects any odd number of bit errors

Two Dimensional Bit Parity:

Corrects single bit errors, detects up to 3-bit errors
Checksumming: Cyclic Redundancy Check

- View data bits D as a binary number
- Choose $r + 1$ bit pattern (generator), G
- Goal: choose r CRC bits R such that
 - D appended with R is exactly divisible by G (modulo 2)
 - Receiver knows G, divides $<D,R>$ by G. If non-zero remainder: error detected!
 - Can detect all burst errors less than $r+1$ bits
- Widely used in practice (e.g., Ethernet, hard drives)
CRC Example

Want:

\[D \cdot 2^r \text{ XOR } R = nG \]

Equivalently in mod 2:

\[D \cdot 2^r = nG \text{ XOR } R \]

\[D \cdot 2^r = nG + R \]

Equivalently:

If we divide \(D \cdot 2^r \) by \(G \), want remainder \(R \)

\[R = \text{remainder}[\frac{D \cdot 2^r}{G}] \]

Given: \(G = 9 \), \(D = 46 \), \(r = 3 \)

Result: \(R = 3 \), packet transmitted = 371
Link Layer

5.1 Introduction and services
5.2 Error detection and correction
5.3 Multiple access protocols
5.4 Link-Layer Addressing
5.5 Ethernet
5.6 Hubs and switches
Summary
Multiple Access Links and Protocols

Two types of links:

- **Point-to-point, e.g.:**
 - PPP for dial-up and DSL access
 - Dedicated cable between Ethernet switch and host
- **Broadcast (shared wire or medium)**
 - Traditional Ethernet
 - Upstream HFC
 - 802.11 wireless LAN, satellite
Multiple Access Protocols

- Assume a single shared broadcast channel
- Two or more simultaneous transmissions by nodes is called interference or collision
 - Receiver cannot discern packets when multiple signals are jammed together

Link access protocol
- Distributed algorithm that determines how nodes share channel
- Communication about channel sharing must use the channel itself!
 - No out-of-band channel for coordination
- MAC (Media Access Control) layer = data-link layer = layer 2
Ideal Multiple Access Protocol

Desired properties

1. Single node can achieve full channel rate R (high utilization without competition)
2. When M nodes want to transmit, each can send at average rate R/M (fairness and high utilization during competition)
3. Fully decentralized:
 - No special node to coordinate transmissions
 - No synchronization of clocks
4. Simple
MAC Protocols: Taxonomy

Three broad classes:

• Channel Partitioning
 – Divide channel into smaller “pieces” (time slots, frequency, wavelengths)
 – Allocate piece to node for exclusive use

• Random Access
 – Channel not divided, allow collisions
 – Recover from collisions

• “Taking turns”
 – Nodes take turns, but nodes with more to send can take longer turns
Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- Access to channel in “rounds” (time frames)
 - Each station gets fixed length slot in each round (1/N of frame time to each node), unused slots go idle
- Example: 6-station LAN

- Maximum throughput for a single user is R / N, which is far from ideal!
FDMA: frequency division multiple access

- Channel spectrum divided into frequency bands
 - Each station assigned fixed frequency band
 - Unused transmission time in frequency bands go idle

- Example: 6-station LAN
Random Access Protocols

• When node has packet to send
 – Transmit at full channel data rate R
 – No a-priori coordination among nodes

• Two or more transmitting nodes cause collision

• Random access MAC protocol specifies:
 – How to detect collisions
 – How to recover from collisions (e.g., via delayed retransmissions)

• Examples of random access MAC protocols:
 – ALOHA
 – Slotted ALOHA
 – CSMA, CSMA/CD
Slotted ALOHA (1975)

Assumptions
- All frames same size
 - Time is divided into equal size slots, time to transmit 1 frame
- Nodes start transmission only at beginning of slots
 - Clocks are synchronized
- If 2 or more nodes transmit in slot, all nodes detect collision

Operation
- When node obtains fresh frame from IP, it transmits in the next time slot
- No collision, node can send new frame in next slot
- If collision, node retransmits frame in each subsequent slot with probability p until success
Slotted ALOHA

Pros
- Single active node can continuously transmit at full rate of channel
- Reasonably decentralized: only slots need to be in sync
- Simple

Cons
- Collisions
- Idle/empty slots
- Full slot wasted on collision
- Accurate clock synchronization is still a headache
Slotted Aloha Efficiency

Efficiency is the long-term fraction of successful slots when there are many nodes, each with many frames to send.

- Assume N nodes with infinite data to send, each transmits in every slot with probability p.
- Probability that k nodes transmit in slot = \(\binom{N}{k} p^k (1 - p)^{N-k} \).
- Prob that exactly one node transmits in a given slot (i.e., success) is $Np(1-p)^{N-1}$.

For max efficiency with N nodes, find p that maximizes $Np(1-p)^{N-1}$.

Optimal $p_0 = \frac{1}{N}$.

For many nodes, take limit of $Np_0(1-p_0)^{N-1}$ as N goes to infinity, which gives optimal efficiency $1/e = 0.37$.

Slotted Aloha with many users: channel utilization only 37%!
CSMA (Carrier Sense Multiple Access)

• Remove slots and allow transmission at any time

 CSMA: listen before transmit

• If channel sensed idle, transmit entire frame

• If channel sensed busy, defer transmission
 – Human analogy: don’t interrupt others!

• If collision is detected at the end of transfer, wait a random period of time, then retransmit
 – Human analogy: talk until you’re done, pause, then repeat if someone else happened to start at the same time
CSMA Collisions

Collisions *can* still occur: propagation delay means two nodes may not hear each other’s transmission.

Collision:
entire packet transmission time wasted

Note:
role of distance & propagation delay in determining collision probability
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
- But now collisions are detected immediately
- Colliding transmissions aborted, reducing channel waste

• Human analogy: the polite conversationalist
• Collision detection:
 - Easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - Difficult in wireless LANs: receiver shut off while transmitting
CSMA/CD Collision Detection
Features

TDMA/FDMA:
- Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, $1/N$
bandwidth allocated even if only 1 active node!

Random access:
- Efficient at low load: single node can fully utilize channel
- High load: potentially huge collision overhead

“Taking turns” protocols:
- Look for best of both worlds!
“Taking Turns” MAC Protocols

A) Polling:
- Master node “invites” slave nodes to transmit in turn
- Concerns:
 - Polling overhead
 - Latency
 - Single point of failure (master)

B) Token passing:
- Control token passed from one node to next sequentially
- Token message
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)