Network Layer II

Dmitri Loguinov
Texas A&M University

April 2, 2019
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Router Architecture Overview

Two key router functions:
• Run routing algorithms/protocol (RIP, OSPF, BGP)
• Forward datagrams from incoming to outgoing link
 – Terminology: port = interface capable of sending/receiving

```
port 1

... Switch fabric hardware

port M
```
Input Port (Queue) Functions

Decentralized switching:
- Given datagram destination, look up output port using forwarding table in input port memory
- **Goal**: complete input port processing at “line speed”
- **Queueing**: if datagrams arrive faster than forwarding rate into switch fabric

Physical layer:
bit-level reception

Data link layer
(e.g., Ethernet, ATM, Token Ring, 802.11b): see ch. 5
Switching Via Memory

First generation routers (1960s-mid 1980s):

- Traditional computers with switching under direct control of CPU
- Packet copied to system memory
- Speed limited by CPU, memory latency/bandwidth, and bus bandwidth (two bus crossings per datagram)
- Honeywell 316 (1969) →
Switching Via a Bus

- Datagram from input port memory to output port memory via a shared bus
- **Bus contention**: switching speed limited by bus bandwidth
- 1 Gbps bus in Cisco 1900: sufficient speed for access and small enterprise networks (not ISPs)
Switching Via An Interconnection Network

- Overcomes bus bandwidth limitations
 - Crossbar: packets transmitted in parallel as long as they do not occupy the same horizontal or vertical bus
- Cisco 12000 (1996): uses an interconnection network
 - CSR-X (2013): 1600 lbs, 84” rack, 7.6 KWatt, 800 Gbps/slot
 - 16 slots/rack = 12.8 Tbps
 - Up to 72 racks (922 Tbps)
Output Ports

- **Buffering/queuing** required when datagrams arrive from fabric faster than the transmission rate
- **Scheduling discipline** chooses among queued datagrams for transmission
 - Customer traffic: single FIFO drop-tail queue
 - ISP traffic: multiple queues with WRR or priority queuing
Output Port Queuing

- Buffering when arrival rate via switch fabric exceeds output line speed
 - Queuing delay and loss due to output buffer overflow
- Switch fabric is M times faster than individual ports
 - Produces large bursts of arrivals into output queues
Input Port Queuing

• Reasons for input-port queuing:
 - Head-of-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
 - Queuing delay and loss due to input buffer overflow!
 - How likely is this compared to output port queuing/loss?

```
<table>
<thead>
<tr>
<th>time t</th>
<th>time t+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch fabric</td>
<td>switch fabric</td>
</tr>
<tr>
<td>output port contention at time t - only one red packet can be transferred</td>
<td>green packet experiences HOL blocking</td>
</tr>
</tbody>
</table>
```
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
The Internet Network Layer

Host and router network layer functions:

- **Routing protocols**
 - Path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - Datagram format
 - Addressing conventions

- **IGMP protocol**
 - Multicast

- **ICMP protocol**
 - Error reporting
 - Ping, traceroute

Transport layer: TCP, UDP

Link layer

physical layer

Network layer
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
IP Datagram Format

- **IP protocol version number**
- **Header length** (in 4-byte words)
- **QoS requested**
- **Max number remaining hops** (decremented at each router)
- **Upper layer protocol to deliver payload to**
- **How much overhead with TCP?**
 - 20 bytes of TCP
 - 20 bytes of IP
 - = 40 bytes

IP Datagram Format Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>IP protocol version number</td>
</tr>
<tr>
<td>hdr len</td>
<td>Header length (in 4-byte words)</td>
</tr>
<tr>
<td>type of service</td>
<td>16-bit identifier</td>
</tr>
<tr>
<td>length</td>
<td>Internet checksum</td>
</tr>
<tr>
<td>fragment offset</td>
<td>Time to live</td>
</tr>
<tr>
<td>upper layer</td>
<td>Upper layer protocol to deliver payload to</td>
</tr>
<tr>
<td>flgs</td>
<td>Options (if any)</td>
</tr>
<tr>
<td>frag offset</td>
<td>Data</td>
</tr>
<tr>
<td>options</td>
<td>(variable length, typically a TCP or UDP segment)</td>
</tr>
</tbody>
</table>

For fragmentation/reassembly:
- Total datagram length (bytes)
- E.g. timestamp, record route taken, specify list of routers to visit
IP Fragmentation & Reassembly

• Network links have varying MTUs (maximum transmission units) – largest possible link-level frames
 - Different link types, different MTUs (most common 1500)
• Large IP datagram divided (“fragmented”) within network
 - One datagram becomes several datagrams
 - “Reassembled” only at final destination
 - IP header bits used to identify, order related fragments
IP Fragmentation and Reassembly

Example
- 4000 byte datagram (including IP header)
- MTU = 1500 bytes

1480 bytes in payload

offset is in 8-byte words: $185 = 1480 / 8$
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
IP Addressing: Introduction

- **IP address:** 32-bit identifier for host or router *interface*
- **Interface:** connection between host/router and physical link
 - Also called a *port*
 - Routers typically have multiple interfaces
- Can hosts have multiple interfaces?
 - Yes, it’s called *multi-homing*
Subnets

- **IP address:**
 - Subnet prefix: \(k \) bits
 - Host suffix: \(32-k \) remaining bits

- **What’s a subnet (LAN)?**
 - Network composed of devices with the same subnet prefix of IP address
 - Can physically reach each other without intervening router
Subnets

Recipe

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- Each isolated network is a subnet

Subnet mask:
- 255.255.255.0
- or /24
Subnets

How many?
In the early Internet, only subnets with 8, 16, or 24 bit prefixes were allowed ("class A, B, C" networks)

This was inflexible and wasteful as well

CIDR: Classless InterDomain Routing
- Subnet portion of address of arbitrary length
- Address format: a.b.c.d/x, where x is # bits in the subnet portion of address

```
11001000  00010111 00010000  00000000
200.23.16.0/23
```
Q: How does a host get an IP address?

- Either hard-coded by system admin in a file
 - Windows: Control-panel → network → configuration → tcp/ip → properties
 - Linux: /etc/rc.config
- Or dynamically assigned by DHCP (Dynamic Host Configuration Protocol)
 - “Plug-and-play” (more in Chapter 5)
Q: How does a network get subnet part of IP addr?
A: Gets allocated portion of its provider ISP’s address space

ISP's block: 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0: 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1: 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2: 11001000 00010111 00010100 00000000 200.23.20.0/23
... ...
Organization 7: 11001000 00010111 00011110 00000000 200.23.30.0/23

- Task: split this ISP into one /21, three /23, and eight /26
Hierarchical addressing allows efficient advertisement of routing information:

```
Organization 0
  200.23.16.0/23

Organization 1
  200.23.18.0/23

Organization 2
  200.23.20.0/23

Organization 7
  200.23.30.0/23
```

```
ISP-A

ISP-B
```

```
Send me anything with addresses beginning with 200.23.16.0/20

Send me anything with addresses beginning with 199.31.0.0/16
```

Internet
Hierarchical Addressing: More Specific Routes

ISP-B has a more specific route to Organization 1

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Organization 1
200.23.18.0/23

ISP-A

“Send me anything in 200.23.16.0/20”

ISP-B

“Send me anything in 199.31.0.0/16 or 200.23.18.0/23”

Internet
IP Addressing: Last Word...

Q: How does an ISP get a block of addresses?
A: ICANN: Internet Corporation for Assigned Names and Numbers assigns IPs to regional registries
 - These are ARIN (North/South America), RIPE (Europe), APNIC (Asia-Pacific), and AfriNIC (Africa)
 • These registries process ISP and user requests for subnet space
 - Also manage DNS and resolve disputes
 • Quiz #3 covers
 - Chapter 3: P7-9, 22-24, 26-28, 31-37, 40-41, 43-49
 - Chapter 4: P1-17 (including today’s lecture)