Network Layer VI

Dmitri Loguinov
Texas A&M University

April 19, 2024
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Hierarchical Routing

Problems in practice:

- **Memory**: can’t store entire Internet graph in router memory
- **CPU time**: can’t overload routers with huge computational expense
- **Message overhead**: routing table exchanges would overload network

- **Competitiveness**: ISPs not willing to share their topology with others

Solution: administrative autonomy

- Internet = network of networks
- Network admins control routing in their own networks, export reachable subnets to outside world
Hierarchical Routing

- Aggregate routers into regions called **AS (Autonomous Systems)**
- Routers in the same AS run the same algorithm
 - Accomlished via *intra-AS* routing protocols
- ISPs gain flexibility
 - Routers in different ASes can run different *intra-AS* protocols that cannot directly speak to each other, which is OK

Gateway (border) routers

- Direct links to routers in other ASes
- Exchange routing view of each AS using an *inter-AS* protocol
 - Summary of subnets to which this AS is willing to route

Texas A&M owns AS3794 with two subnets: 128.194/16 and 165.91/16
Interconnected ASes

- Intra-AS sets entries for all internal dests
 - E.g., 1a plots shortest path to 1b using link-state alg
- Inter-AS accepts external dests from neighbor ASes
 - E.g., 1b learns 128.194/16 is reachable via AS2
- Inter-AS broadcasts pairs (subnet, exit router)
 - E.g., 1b notifies all routers in AS1 that it can reach 128.194/16
Example: Choosing Among Multiple ASes

• Now suppose AS1 learns from the inter-AS protocol that 128.194/16 is reachable from AS3 and from AS2
 – To configure forwarding table, routers in AS1 must determine towards which exit (1c or 1b) they must forward packets
• This is also the job of inter-AS routing protocol!
 – Usually based on ISP policy, SLAs, prior traffic engineering
• Common strategies
 – **Hot potato routing**: send packet towards closest of the alternative exit points
 – **Shortest AS path**: fewest ISPs on the way to the target network
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Routing Protocols

- Common intra-AS routing protocols:
 - RIP: Routing Information Protocol (DV)
 - OSPF: Open Shortest Path First (LS)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary, DV, now obsolete); EIGRP (Extended IGRP, still DV, open sourced in 2013)
 - IS-IS (Intermediate System to Intermediate System, LS)

- For Inter-AS, there is now just one option
 - BGP (Border Gateway Protocol)
 - All ISPs must support it
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
RIP (Routing Information Protocol)

- Included in BSD-UNIX distribution in 1982
 - Distance vector (DV) algorithm
- Distance metric: # of hops (max = 15)
 - Distance vectors: exchanged among neighbors every 30 sec using advertisement messages
 - Each message: lists of up to 25 destination nets within AS

<table>
<thead>
<tr>
<th>destination subnet</th>
<th>hops from A</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
OSPF (Open Shortest Path First)

- “Open”: protocol specifications publicly available
- Uses Link State (LS) algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra’s algorithm
- Advertisements disseminated to entire AS (via flooding)
 - Carried in OSPF messages directly over IP (rather than TCP or UDP) using protocol number 89
 - Layer 3.5 similar to ICMP
 - Handles own error detection/correction
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Inter-AS Routing: BGP

- BGP (Border Gateway Protocol): de facto standard for inter-AS (exterior) routing
- BGP provides each AS a means to:
 - Obtain subnet reachability information from neighboring ASes
 - Propagate the reachability information to all routers internal to the AS
 - Determine “good” routes to subnets based on reachability information and policy
- Allows a subnet to advertise its existence to the rest of the Internet: “I am here”
Path Attributes & BGP Routes

• When advertising an IP prefix (i.e., subnet), message includes BGP attributes
 – Notation: combination (IP prefix, attributes) = route

• Two important attributes:
 – **AS-PATH**: contains ASes through which the advert for the prefix passed (latest AS first)
 – **NEXT-HOP**: indicates the router that should receive traffic (usually border router of the AS that advertised prefix; multiple values possible)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Multicast and Broadcast

- **Broadcast**: send a packet to all hosts in the network
- **Multicast**: send to a certain subset of nodes
- **Unicast**: one sender - one receiver

Example: video distribution to 1M receivers via unicast
- First link R1-R2 carries each packet 1M times
- 5 Mbps stream requires a 5-Tbps link!
Internet Multicast Routing: DVMRP

- **DVMRP**: Distance Vector Multicast Routing Protocol, RFC 1075 (1988)
- Builds a distribution tree rooted at source
 - Based on DVMRP’s own routing tables constructed by communicating DVMRP routers
 - No assumptions about underlying unicast
- IGMP broadcasts proceed between neighbor routers
- Multicast IP addresses are in 224.0.0.0/4
 - To join a particular group, use setsockopt with `IP_ADD_MEMBERSHIP`
• Wide-area multicast deployment has been traditionally slow, now practically dead
 − Mbone was one such endeavor, worked via tunnels
• One issue is scalability
 − Flooding all Internet receivers is dangerous/expensive
 − Opens loopholes for DoS attacks
• Another is ISP unwillingness to accept multicast traffic
 − Who pays for a single packet being replicated 1M times?
• Finally, multicast congestion control is hard
 − Mbone had 30-40% loss, which is much more than most applications can tolerate (typically below 1%)
 − How to recover lost packets?