CSCE 463/612

Networks and Distributed Processing
Spring 2024

Network Layer V

Dmitri Loguinov
Texas A&M University

April 17, 2024

Chapter 4. Roadmap

4.1 Introduction

4.2 Virtual circuit and datagram networks
4.3 What's inside a router

4.4 |P: Internet Protocol

4.5 Routing algorithms

- Link state
- Distance Vector
- Hierarchical routing

4.6 Routing in the Internet
4.7 Broadcast and multicast routing

Graph Abstraction

Graph: G = (V, E)

V = set of routers = {u, v, w, z, y, 2}

E = set of links = { (u,v), (u,x), (v,w), (v,z), (v,w), (z,w),
(@,9), (w,y), (w,2), (¥,2)}

Graph Abstraction: Costs

* c(x,y) = cost of link (z,y)
—E.g., c(w,z) =5

 Cost options:
— Could always be 1
— Could be inversely
related to bandwidth or be
proportional to congestion
— Physical distance/delay

Cost of path (z, z,, ®3,..., @) = c(2),Ty) + c(By,®3) + ... + c(z,4,2,)

Question: What's the least-cost path between uw and z?

Routing algorithms find least-cost paths

Routing Algorithm Classification

Global or local information?
 (Global:

- Routers have complete
topology, link cost info

- “Link state” algorithms

Static or dynamic?
« Static:

- Useful when routes
change slowly over time

 Local (decentralized): _ Manual or DHCP-based
— Router knows physically- route creation
connected neighbors, link _—
costs to neighbors * Dynamic:
- lterative process of = Routes change more
computation, exchange of quickly
info with neighbors - Periodic update in
B response to link cost
changes

algorithms

Chapter 4: Roadmap

4.1 Introduction

4.2 Virtual circuit and datagram networks
4.3 What's inside a router

4.4 |P: Internet Protocol

4.5 Routing algorithms

- Link state
- Distance Vector

- Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing

Simple Link-State Routing Algorithm

e |terative: after k iterations,

Dijkstra’s algorithm know least-cost path to &

* Entire network topology ¢|osest destinations
and link costs known

- Accomplished via “link
state broadcast”

- Eventually, all nodes _
have same info « D(v): current estimate of the

cost from source to destination v

* p(v): predecessor of v along the
least-cost path back to source

« [': set of closest nodes whose

nodes least-cost path has been

- Gives forwarding table finalized (i.e., known for a fact)
for that node -

Notation:

* c¢(z,y): link cost from z to y
- Cost is oo if not direct neighbors

« Computes least cost
paths from one node
(“source”) to all other

Dijsktra’s Algorithm

(\A

Initialization:
F={u}, D(u) =0
for all nodes v # u
If v is adjacent to u
D(v) = c(u,v)
else
D(v) = o0

do {
find node 7 notin F'such that D(7) is minimum
add ; to F
for all y adjacent to : and not in F':
D(j) = min(D(j), D(e) + €(4,7))
/* new cost to j is either old cost to 5 or known
shortest path cost to i plus cost from ¢ to 5 */
} while (not all nodes in F)

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm Discussion

Algorithm complexity: n nodes

* lteration k: need to find min of (n—k) costs, visit d, neighbors
« Naive implementation: O(|E|+|V|?) complexity
 Heap-based implementation: O(|E|+|V|-log|V|)

Oscillations possible, but only for traffic-dependent cost:

* e.g., Link cost = amount of carried traffic

1 SAD L L 0 SA2 ve eSAD ¢
D2 0 0 ‘@ 1+e; 0 g 5B 1+e 1 '
! oe I T O\C}O ! 1\C‘/1 +e TO\ e |

I 1 1 i
initially .. recompute ... recompute ... recompute

routing

Chapter 4. Roadmap

4.1 Introduction

4.2 Virtual circuit and datagram networks
4.3 What's inside a router

4.4 |P: Internet Protocol

4.5 Routing algorithms

- Link state
- Distance Vector
- Hierarchical routing

4.6 Routing in the Internet
4.7 Broadcast and multicast routing

11

Distance Vector (DV) Algorithm

* Two metrics known to each node x
- Estimate D _(y) of least cost from z to y
- Link cost ¢(x,v) to reach z’s immediate neighbors

« Each node maintains a distance vector:
Dz = {Dz(y) : y € V}

* Node z periodically receives from neighbors their
distance vectors
- Thus, z has access to the following for each neighbor v

ﬁu = {D‘b(y) LY € V}

12

Distance Vector (DV) Algorithm (cont'd

Basic idea (Bellman-Ford):

 When a node z receives new DV estimate from
neighbor v, it updates its own DV using the Bellman-
Ford equation:

D, (y) < min{D,(y), c(z,v) + D (y);, Vy eV

« Centralized Bellman Ford requires O(|V|-|E|) time
- Dijkstra’s algorithm was O(|V|-log|V])

- Convergence of decentralized version depends on topology,
link weights, update delays, and timing of events

« Bellman Ford advantage — no need for entire graph .,

Distance Vector (DV) Algorithm (cont'd

Iterative, asynchronous

Each iteration caused by:

« Local link cost change

DV update message from
neighbor

Distributed:
« Each node notifies neighbors
only when its DV changes

- Neighbors then notify their
neighbors if necessary

Each node:

_ +
walt for (change in local link

cost or msg from neighbor)

|

recompute estimates

if DV to any dest has
changed, notify neighbors

14

node x table
cost to
Xy z

02 7

from

X
Y] 0o oo
Z

0O 0 o0

e y table
cost to
Xy z

from
N

o0 o0
()

from
N < X

0O o0 o0

e z table
cost to

XYy z

<

cost to
Xy z

N <

02 7

20 1
710

cost to

o0 o0 o0

from
N < X

from

N <

from

cost to
Xy z
x/02 3
Y2 0 1
2131 0
cost to
Xy z
x/02 3
Y20 1
z!31 0
cost to
Xy z
x/02 3
y|2 0 1
21310

» time

o

15

Distance Vector: Link Cost Changes

Link cost changes: ’

* Node detects local link cost change 1
 Recalculates distance vector, updates <x

routing info if needed

50

« If DV changes, notifies neighbors

“good
news
travels
fast”

Node y detects link-cost change, updates its
distance to z, and informs its neighbors

Node z receives y's message and updates its table;
computes a new least-cost to x and sends its DV to

x and y
Finally, node y receives z's vector and updates its

distance table; y's least costs do not change and

hence y does not send any messages after that .

Distance Vector: Link Cost Changes

Link cost changes:

 Good news travels fast

« Bad news travels slow — “count to
infinity” problem!

* 40 iterations before algorithm
stabilizes

Poisoned reverse (“split horizon™):

* If z routes through y to get to x:

- ztells y that its (z's) distance to z is
infinite (so y won'’t route to x via z)

« Will this completely solve count to
infinity problem?

60

2

50

17

Comparison of LS and DV Algorithms

Message complexity
« LS: with n nodes & FE links,
nE msgs sent

« DV: exchange between
neighbors only
- Depends on convergence time

Time to Convergence
 LS: |V|log|V| CPU time +
delay to send nE msgs
- Oscillations (cost = congestion)
« DV: convergence time varies

- May have routing loops
—= Count-to-infinity problem

Robustness: what happens
If router malfunctions?

LS:

- Node can advertise
incorrect link cost

- Affects only a small portion
of the graph

- DV node can advertise
incorrect path cost

- Each node’s table used by
others

- Errors propagate thru
network

18

	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 4: Roadmap
	Graph Abstraction
	Graph Abstraction: Costs
	Routing Algorithm Classification
	Chapter 4: Roadmap
	Simple Link-State Routing Algorithm
	Dijsktra’s Algorithm
	Dijkstra’s Algorithm: Example
	Dijkstra’s Algorithm Discussion
	Chapter 4: Roadmap
	Distance Vector (DV) Algorithm
	Distance Vector (DV) Algorithm (cont’d)
	Distance Vector (DV) Algorithm (cont’d)
	Slide Number 15
	Distance Vector: Link Cost Changes
	Distance Vector: Link Cost Changes
	Comparison of LS and DV Algorithms

