Network Layer V

Dmitri Loguinov
Texas A&M University

April 17, 2024
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Graph Abstraction

Graph: $G = (V, E)$
$V =$ set of routers $= \{u, v, w, x, y, z\}$
$E =$ set of links $= \{(u,v), (u,x), (u,w), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z)\}$
Graph Abstraction: Costs

- \(c(x,y) = \text{cost of link } (x,y) \)
 - E.g., \(c(w,z) = 5 \)
- Cost options:
 - Could always be 1
 - Could be inversely related to bandwidth or be proportional to congestion
 - Physical distance/delay

Cost of path \((x_1, x_2, x_3, \ldots, x_p)\) = \(c(x_1, x_2) + c(x_2, x_3) + \ldots + c(x_{p-1}, x_p) \)

Question: What’s the least-cost path between \(u\) and \(z\)?

Routing algorithms find least-cost paths
Routing Algorithm Classification

Global or local information?

- **Global**: Routers have complete topology, link cost info
 - “Link state” algorithms
- **Local (decentralized)**: Router knows physically-connected neighbors, link costs to neighbors
 - Iterative process of computation, exchange of info with neighbors
 - “Distance vector” algorithms

Static or dynamic?

- **Static**: Useful when routes change slowly over time
 - Manual or DHCP-based route creation
- **Dynamic**: Routes change more quickly
 - Periodic update in response to link cost changes
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Simple Link-State Routing Algorithm

Dijkstra’s algorithm

- Entire network topology and link costs known
 - Accomplished via “link state broadcast”
 - Eventually, all nodes have same info
- Computes least cost paths from one node (“source”) to all other nodes
 - Gives forwarding table for that node

- **Iterative**: after k iterations, know least-cost path to k closest destinations

Notation:

- $c(x,y)$: link cost from x to y
 - Cost is ∞ if not direct neighbors
- $D(v)$: current estimate of the cost from source to destination v
- $p(v)$: predecessor of v along the least-cost path back to source
- F: set of closest nodes whose least-cost path has been finalized (i.e., known for a fact)
Dijkstra’s Algorithm

Initialization:
- \(F = \{u\}, \ D(u) = 0 \)
- for all nodes \(v \neq u \)
 - if \(v \) is adjacent to \(u \)
 - \(D(v) = c(u,v) \)
 - else
 - \(D(v) = \infty \)

\[
\text{do } \left\{ \begin{array}{l}
\text{find node } i \text{ not in } F \text{ such that } D(i) \text{ is minimum} \\
\text{add } i \text{ to } F \\
\text{for all } j \text{ adjacent to } i \text{ and not in } F : \\
D(j) = \min(D(j), D(i) + c(i,j)) \\
\text{/* new cost to } j \text{ is either old cost to } j \text{ or known shortest path cost to } i \text{ plus cost from } i \text{ to } j */
\end{array} \right. \\
\text{while (not all nodes in } F) \\
\]
Dijkstra’s Algorithm: Example

<table>
<thead>
<tr>
<th>Step</th>
<th>F</th>
<th>$D(v), p(v)$</th>
<th>$D(w), p(w)$</th>
<th>$D(x), p(x)$</th>
<th>$D(y), p(y)$</th>
<th>$D(z), p(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u</td>
<td>$2, u$</td>
<td>$5, u$</td>
<td>$1, u$</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>ux</td>
<td>$2, u$</td>
<td>$4, x$</td>
<td>∞</td>
<td>$2, x$</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>uxy</td>
<td>$2, u$</td>
<td>$3, y$</td>
<td>∞</td>
<td>$4, y$</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>$uxyw$</td>
<td>∞</td>
<td>$3, y$</td>
<td>∞</td>
<td>$4, y$</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>$uxywz$</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$4, y$</td>
<td>∞</td>
</tr>
</tbody>
</table>

![Graph Diagram](image_url)
Dijkstra’s Algorithm Discussion

Algorithm complexity: \(n \) nodes

- Iteration \(k \): need to find min of \((n-k)\) costs, visit \(d_i\) neighbors
- Naïve implementation: \(O(|E|+|V|^2)\) complexity
- Heap-based implementation: \(O(|E|+|V|\cdot\log|V|)\)

Oscillations possible, but only for traffic-dependent cost:
- e.g., Link cost = amount of carried traffic
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Distance Vector (DV) Algorithm

• Two metrics known to each node x
 - Estimate $D_x(y)$ of least cost from x to y
 - Link cost $c(x,v)$ to reach x’s immediate neighbors
• Each node maintains a distance vector:
 $$\vec{D}_x = \{D_x(y) : y \in V\}$$
• Node x periodically receives from neighbors their distance vectors
 - Thus, x has access to the following for each neighbor v
 $$\vec{D}_v = \{D_v(y) : y \in V\}$$
Distance Vector (DV) Algorithm (cont’d)

Basic idea (Bellman-Ford):

• When a node x receives new DV estimate from neighbor v, it updates its own DV using the Bellman-Ford equation:

$$D_x(y) \leftarrow \min \{D_x(y), c(x,v) + D_v(y)\}, \forall y \in V$$

• Centralized Bellman Ford requires $O(|V| \cdot |E|)$ time
 - Dijkstra’s algorithm was $O(|V| \cdot \log|V|)$
 - Convergence of decentralized version depends on topology, link weights, update delays, and timing of events

• Bellman Ford advantage – no need for entire graph
Distance Vector (DV) Algorithm (cont’d)

Iterative, asynchronous

Each iteration caused by:
- Local link cost change
- DV update message from neighbor

Distributed:
- Each node notifies neighbors only when its DV changes
 - Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor)

recompute estimates

if DV to any dest has changed, notify neighbors
Distance Vector: Link Cost Changes

Link cost changes:
- Node detects local link cost change
- Recalculates distance vector, updates routing info if needed
- If DV changes, notifies neighbors

“good news travels fast”

- Node y detects link-cost change, updates its distance to x, and informs its neighbors
- Node z receives y’s message and updates its table; computes a new least-cost to x and sends its DV to x and y
- Finally, node y receives z’s vector and updates its distance table; y’s least costs do not change and hence y does not send any messages after that
Distance Vector: Link Cost Changes

Link cost changes:
- Good news travels fast
- Bad news travels slow – “count to infinity” problem!
- 46 iterations before algorithm stabilizes

Poisoned reverse (“split horizon”):
- If \(z \) routes through \(y \) to get to \(x \):
 - \(z \) tells \(y \) that its (\(z \)’s) distance to \(x \) is infinite (so \(y \) won’t route to \(x \) via \(z \))
- Will this completely solve count to infinity problem?
Comparison of LS and DV Algorithms

Message complexity

- **LS**: with n nodes & E links, nE msgs sent
- **DV**: exchange between neighbors only
 - Depends on convergence time

Time to Convergence

- **LS**: $|V| \cdot \log|V|$ CPU time + delay to send nE msgs
 - Oscillations (cost = congestion)
- **DV**: convergence time varies
 - May have routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

- **LS**:
 - Node can advertise incorrect link cost
 - Affects only a small portion of the graph

- **DV**:
 - DV node can advertise incorrect path cost
 - Each node’s table used by others
 - Errors propagate thru network