
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2024
 

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2024Spring 2024

Network Layer VNetwork Layer V
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 17, 2024April 17, 2024



2

Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms

━

 

Link state
━

 

Distance Vector
━

 

Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing



3

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Graph: G
 

= (V, E)
V

 
=

 
set of routers =

 
{u, v, w, x, y, z }

E

 
=

 
set of links =

 
{ (u,v), (u,x), (u,w), (v,x), (v,w), (x,w), 

(x,y), (w,y), (w,z), (y,z)}

Graph AbstractionGraph AbstractionGraph Abstraction



4

Graph Abstraction: CostsGraph Abstraction: CostsGraph Abstraction: Costs

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5
• c(x,y) = cost of link (x,y)

– E.g.,
 

c(w,z) = 5 
• Cost options:

– Could always be 1
–

 
Could be inversely 

related to bandwidth or be 
proportional to congestion
– Physical distance/delay

Cost of path (x1

 

, x2

 

, x3

 

,…, xp

 

) =
 

c(x1

 

,x2

 

) + c(x2

 

,x3

 

) + …
 

+ c(xp-1

 

,xp

 

)

Question: What’s the least-cost path between u
 

and z?

Routing algorithms find least-cost paths



5

Routing Algorithm ClassificationRouting Algorithm ClassificationRouting Algorithm Classification

Global or local information?
•

 
Global:
━

 

Routers have complete 
topology, link cost info

━

 

“Link state”
 

algorithms
•

 
Local (decentralized):
━

 

Router knows physically-
 connected neighbors, link 

costs to neighbors
━

 

Iterative process of 
computation, exchange of 
info with neighbors

━

 

“Distance vector”
 algorithms

Static or dynamic?
•

 
Static:
━

 

Useful when routes 
change slowly over time

━

 

Manual or DHCP-based 
route creation

•
 

Dynamic:
━

 

Routes change more 
quickly

━

 

Periodic update in 
response to link cost 
changes



6

Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms

━

 

Link state
━

 

Distance Vector
━

 

Hierarchical routing

4.6 Routing in the Internet
4.7 Broadcast and multicast routing



7

Simple Link-State Routing AlgorithmSimple LinkSimple Link--State Routing AlgorithmState Routing Algorithm

Dijkstra’s algorithm
•

 
Entire network topology 
and link costs known
━

 

Accomplished via “link 
state broadcast”

━

 

Eventually, all nodes 
have same info

•
 

Computes least cost 
paths from one node 
(“source”) to all other 
nodes
━

 

Gives forwarding table
 for that node

•
 

Iterative: after k
 

iterations, 
know least-cost path to k

 closest destinations
Notation:
•

 
c(x,y):

 
link cost from x

 
to y

━

 

Cost is ∞ if not direct neighbors
•

 
D(v):

 
current estimate

 
of the 

cost from source to destination v
•

 
p(v):

 
predecessor of v

 
along the 

least-cost path back to source
•

 
F

 
:

 
set of closest nodes whose 

least-cost path has been 
finalized (i.e., known for a fact)



8

Dijsktra’s AlgorithmDijsktraDijsktra’’s Algorithms Algorithm

Initialization:
F

 
=

 
{u}, D(u) = 0

for all nodes v
 



 
u

if v
 

is adjacent to u
D(v) = c(u,v) 

else 
D(v) = ∞

do {
find node i

 
not in F

 
such that D(i)

 
is minimum 

add i
 

to F
for all j

 
adjacent to i

 
and not in F

 
: 

D(j) = min(D(j), D(i) + c(i,j)) 
/* new cost to j

 
is either old cost to j

 
or known 

shortest path cost to i
 

plus cost from i
 

to j
 

*/ 
} while (not all nodes in F)

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5



9

Dijkstra’s Algorithm: ExampleDijkstraDijkstra’’s Algorithm: Examples Algorithm: Example

Step
0
1
2
3
4
5

F
u

ux
uxy
uxyv

uxyvw
uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞
4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5



10

Dijkstra’s Algorithm DiscussionDijkstraDijkstra’’s Algorithm Discussions Algorithm Discussion

Algorithm complexity: n
 

nodes
•

 
Iteration k: need to find min of (n—k)

 
costs, visit di

 

neighbors
•

 
Naïve implementation: O(|E|+|V|2) complexity

•
 

Heap-based implementation: O(|E|+|V|·log|V|)

Oscillations possible, but only for traffic-dependent cost:
•

 
e.g., Link cost =

 
amount of carried traffic

A
D

C

B
1 1+e

e0

e
1 1

0 0

A
D

C

B
2+e 0

00
1+e;1

A
D

C

B
0 2+e

1+e1
0 0

A
D

C

B
2+e 0

e0
1+e 1

initially … recompute
routing

… recompute … recompute



11

Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms

━

 

Link state
━

 

Distance Vector
━

 

Hierarchical routing 
4.6 Routing in the Internet
4.7 Broadcast and multicast routing



12

Distance Vector (DV) AlgorithmDistance Vector (DV) AlgorithmDistance Vector (DV) Algorithm

•
 

Two metrics known to each node x
━

 

Estimate Dx

 

(y) of least cost from x
 

to y
━

 

Link cost c(x,v)

 
to reach x’s immediate neighbors

•
 

Each node maintains a distance vector:

•
 

Node x
 

periodically receives from neighbors their 
distance vectors
━

 

Thus, x
 

has access to the following for each neighbor v



13

Distance Vector (DV) Algorithm (cont’d)Distance Vector (DV) Algorithm (contDistance Vector (DV) Algorithm (cont’’d)d)

Basic idea (Bellman-Ford):
•

 
When a node x

 
receives new DV estimate from 

neighbor v, it updates its own DV using the Bellman-
 Ford equation:

Dx

 

(y) ←
 

min{Dx

 

(y), c(x,v) + Dv

 

(y)},
 

∀

 
y

 
∈

 
V

•
 

Centralized Bellman Ford requires O(|V|·|E|) time
━

 

Dijkstra’s algorithm was O(|V|·log|V|)
━

 

Convergence of decentralized version depends on topology, 
link weights, update delays, and timing of events

•
 

Bellman Ford advantage –
 

no need for entire graph



14

Distance Vector (DV) Algorithm (cont’d)Distance Vector (DV) Algorithm (contDistance Vector (DV) Algorithm (cont’’d)d)

Iterative, asynchronous
Each iteration caused by: 
•

 
Local link cost change 

•
 

DV update message from 
neighbor

Distributed:
•

 
Each node notifies neighbors 
only when its DV changes
━

 

Neighbors then notify their 
neighbors if necessary

wait for (change in local link 
cost or msg from neighbor)

recompute estimates

if DV to any dest has 
changed, notify neighbors 

Each node:



15

x z
12

7

y

x   y   z
x
y
z

0  2   7
∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro
m

x   y   z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x   y   z
x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2   0   1

∞ ∞ ∞

node x table

node y table

node z table

x   y   z
x
y
z

0  2   3

fro
m

cost to

x   y   z
x
y
z

0  2   7

fro
m

cost to

x   y   z
x
y
z

0  2   7

fro
m

cost to

2   0   1
7   1   0

2  0   1
7   1   0

2  0   1
3

 

1   0

x   y   z
x
y
z

0  2   3

fro
m

cost to

x   y   z
x
y
z

0  2   3

fro
m

cost to

x   y   z
x
y
z

0  2   3

fro
m

cost to

2   0   1
3  1   0

2  0   1

3  1   0
2  0   1

3  1   0

time



16

Distance Vector: Link Cost ChangesDistance Vector: Link Cost ChangesDistance Vector: Link Cost Changes

Link cost changes:
•

 
Node detects local link cost change 

•
 

Recalculates distance vector, updates 
routing info if needed

•
 

If DV changes, notifies neighbors

“good
news 
travels
fast”

x z
14

50

y
1

•
 

Node y
 

detects link-cost change, updates its 
distance to x, and informs its neighbors

•
 

Node z
 

receives y’s message and updates its table; 
computes a new least-cost to x

 
and sends its DV to 

x

 
and y

•
 

Finally, node y
 

receives z’s vector and updates its 
distance table; y’s least costs do not change and 
hence y

 
does not send any messages after that



17

Distance Vector: Link Cost ChangesDistance Vector: Link Cost ChangesDistance Vector: Link Cost Changes

Link cost changes:
•

 
Good news travels fast 

•
 

Bad news travels slow –
 

“count to 
infinity”

 
problem!

•
 

46 iterations before algorithm 
stabilizes

Poisoned reverse (“split horizon”):
•

 
If z

 
routes through y

 
to get to x:

━

 

z

 
tells y

 
that its (z’s) distance to x

 
is 

infinite (so y
 

won’t route to x
 

via z)
•

 
Will this completely solve count to 
infinity problem? 

x z
14

50

y
60



18

Comparison of LS and DV AlgorithmsComparison of LS and DV AlgorithmsComparison of LS and DV Algorithms

Message complexity
•

 
LS:

 
with n

 
nodes & E

 
links, 

nE

 
msgs sent

•
 

DV:
 

exchange between 
neighbors only
━

 

Depends on convergence time

Time to Convergence
•

 
LS:

 
|V|·log|V|

 
CPU time + 

delay to send nE
 

msgs
━

 

Oscillations (cost = congestion)
•

 
DV: convergence time varies
━

 

May have routing loops
━

 

Count-to-infinity problem

Robustness:
 

what happens 
if router malfunctions?

LS:
━

 

Node can advertise 
incorrect link cost

━

 

Affects only a small portion 
of the graph

DV:
━

 

DV node can advertise 
incorrect path cost

━

 

Each node’s table used by 
others 

━

 

Errors propagate thru 
network


	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 4: Roadmap
	Graph Abstraction
	Graph Abstraction: Costs
	Routing Algorithm Classification
	Chapter 4: Roadmap
	Simple Link-State Routing Algorithm
	Dijsktra’s Algorithm
	Dijkstra’s Algorithm: Example
	Dijkstra’s Algorithm Discussion
	Chapter 4: Roadmap
	Distance Vector (DV) Algorithm
	Distance Vector (DV) Algorithm (cont’d)
	Distance Vector (DV) Algorithm (cont’d)
	Slide Number 15
	Distance Vector: Link Cost Changes
	Distance Vector: Link Cost Changes
	Comparison of LS and DV Algorithms

