Network Layer IV

Dmitri Loguinov
Texas A&M University

April 13, 2017
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Distance Vector Algorithm

- Two metrics known to each node x
 - Estimate $D_x(y)$ of least cost from x to y
 - Link cost $c(x,v)$ to reach x’s immediate neighbors
- Each node maintains a distance vector:
 $$\tilde{D}_x = \{D_x(y) : y \in V\}$$
- Node x periodically asks its neighbors for their distance vectors
 - Thus, x has access to the following for each neighbor v
 $$\tilde{D}_v = \{D_v(y) : y \in V\}$$
Distance Vector Algorithm (cont’d)

Basic idea (Bellman-Ford):

• When a node x receives new DV estimate from neighbor v, it updates its own DV using the Bellman-Ford equation:

$$D_x(y) \leftarrow \min\{D_x(y), c(x,v) + D_v(y)\}, \forall y \in V$$

• Centralized Bellman Ford requires $O(|V|\cdot|E|)$ time
 - Dijkstra’s algorithm was $O(|V|\cdot\log|V|)$
 - Convergence of decentralized version depends on topology, link weights, update delays, and timing of events

• Bellman Ford allows negative weights
Distance Vector Algorithm (cont’d)

Iterative, asynchronous

Each iteration caused by:
• Local link cost change
• DV update message from neighbor

Distributed:
• Each node notifies neighbors only when its DV changes
 – Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor)

recompute estimates

if DV to any dest has changed, notify neighbors
Distance Vector: Link Cost Changes

Link cost changes:
- Node detects local link cost change
- Recalculates distance vector, updates routing info if needed
- If DV changes, notifies neighbors

“good news travels fast”
- Node y detects link-cost change, updates its distance to x, and informs its neighbors
- Node z receives y’s message and updates its table; computes a new least-cost to x and sends its DV to x and y
- Finally, node y receives z’s vector and updates its distance table; y’s least costs do not change and hence y does not send any messages after that
Distance Vector: Link Cost Changes

Link cost changes:
- Good news travels fast
- Bad news travels slow – “count to infinity” problem!
- 46 iterations before algorithm stabilizes

Poisoned reverse (“split horizon”):
- If z routes through y to get to x:
 - z tells y that its (z’s) distance to x is infinite (so y won’t route to x via z)
- Will this completely solve count to infinity problem?
Comparison of LS and DV Algorithms

Message complexity

- **LS:** with n nodes, E links, $O(nE)$ msgs sent
- **DV:** exchange between neighbors only
 - Depends on convergence time

Time to Convergence

- **LS:** $O(n \log n)$ algorithm + delay to send $O(nE)$ msgs
 - Oscillations (cost = congestion)
- **DV:** convergence time varies
 - May have routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:
- Node can advertise incorrect link cost
- Affects only a small portion of the graph

DV:
- DV node can advertise incorrect path cost
- Each node’s table used by others
- Errors propagate thru network
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Hierarchical Routing

Problems in practice:

• **Memory**: can’t store paths to all destinations in a routing table (several billion links)
• **CPU time**: can’t overload routers with such huge computational expense
• **Message overhead**: routing table exchanges would overload links

• **Competitiveness**: ISPs not willing to share their topology with others

Solution: administrative autonomy

• Internet = network of networks
• Internet admins control routing in their own networks, export reachable subnets to outside world
Hierarchical Routing

- Aggregate routers into regions called **AS (Autonomous Systems)**
- Routers in the same AS run the same algorithm
 - Accomplished via **intra-AS routing protocols**
- ISPs gain flexibility
 - Routers in different ASes can run different intra-AS protocols that cannot directly speak to each other, which is OK

Gateway routers

- Direct links to routers in other ASes
- Exchange routing view of each AS using an **inter-AS protocol**
 - Summary of subnets to which this AS is willing to route

Texas A&M owns AS3794 with two subnets: 128.194/16 and 165.91/16
Intra-AS sets entries for all internal dests
- E.g., 1a plots shortest path to 1b using link-state alg

Inter-AS accepts external dests from neighbor ASes
- E.g., 1b learns 128.194/16 is reachable via AS2

Inter-AS broadcasts pairs (subnet, exit router)
- E.g., 1b notifies all routers in AS1 that it can reach 128.194/16
Example: Choosing Among Multiple ASes

- Now suppose AS1 learns from the inter-AS protocol that 128.194/16 is reachable from AS3 and from AS2
 - To configure forwarding table, routers in AS1 must determine towards which exit (1c or 1b) they must forward packets
- This is also the job of inter-AS routing protocol!
 - Usually based on ISP policy, SLAs, prior traffic engineering
- Hot potato routing: send packet towards closest of two exit points (other options discussed later)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
Intra-AS Routing

- Also known as Interior Gateway Protocols (IGP)
- Common Intra-AS routing protocols:
 - RIP: Routing Information Protocol (DV)
 - OSPF: Open Shortest Path First (LS)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary, DV, now obsolete); EIGRP (Extended IGRP)
 - IS-IS (Intermediate System to Intermediate System, LS, independent of the network layer)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
RIP (Routing Information Protocol)

• Included in BSD-UNIX distribution in 1982
 – Distance vector algorithm
• Distance metric: # of hops (max = 15)
 – Distance vectors: exchanged among neighbors every 30 sec using advertisement messages
 – Each message: lists of up to 25 destination nets within AS
RIP: Example

Routing table in \(D \)

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Router</th>
<th>Number of hops to dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w)</td>
<td>(A)</td>
<td>2</td>
</tr>
<tr>
<td>(y)</td>
<td>(B)</td>
<td>2</td>
</tr>
<tr>
<td>(z)</td>
<td>(B)</td>
<td>7</td>
</tr>
<tr>
<td>(x)</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
RIP: Example

```
<table>
<thead>
<tr>
<th>Dest</th>
<th>Next hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>-</td>
</tr>
<tr>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>z</td>
<td>C 4</td>
</tr>
<tr>
<td></td>
<td>....</td>
</tr>
</tbody>
</table>
```

Advertisement from A to D

Routing table in D

```
<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Router</th>
<th>Number of hops to dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>X A</td>
<td>7 5</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
```
RIP: Link Failure and Recovery

- If no advertisement heard after 180 sec → neighbor/link declared dead
 - Routes via neighbor invalidated
 - New advertisements sent to neighbors
 - Neighbors in turn send out new advertisements (if tables changed)
 - Link-failure info propagates to entire network

- That’s why it is important to assign high priority to packets from routing protocols at ISP routers
 - QoS only applies to specialized packets generated by ISP

- RIP uses poisoned reverse to prevent loops (infinite distance = 16 hops)
RIP Table Processing

- RIP routing tables managed by an application-level process called *routed* (daemon)
- Advertisements sent in UDP packets (port 520)

Note: *named*, *smtpd*, etc. are Unix daemons (services)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
4.7 Broadcast and multicast routing
OSPF (Open Shortest Path First)

• “Open”: protocol specifications publicly available

• Uses Link State (LS) algorithm
 – LS packet dissemination
 – Topology map at each node
 – Route computation using Dijkstra’s algorithm

• Advertisements disseminated to entire AS (via flooding)
 – Carried in OSPF messages directly over IP (rather than TCP or UDP) using protocol number 89
 – Layer 3.5 similar to ICMP
 – Handles own error detection/correction
OSPF “Advanced” Features (Not in RIP)

- **Security**: all OSPF messages authenticated to prevent malicious intrusion
- **Multiple same-cost paths** allowed (only one path in RIP)
- **Integrated uni- and multicast** support:
 - Multicast OSPF (MOSPF) uses same topology database as OSPF
- **Hierarchical** OSPF in large domains
Hierarchical OSPF
Hierarchical OSPF

- Two-level hierarchy: local area, backbone
 - Link-state advertisements only in area
 - Each node has a detailed topology for the area it belongs to and shortest paths to all destinations therein

- Area border routers: “summarize” distances to networks in their own area, advertise to other area border routers

- Backbone routers: run OSPF routing limited to the backbone

- Boundary routers: connect to other AS’s