
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2025

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2025Spring 2025

Transport Layer IVTransport Layer IV
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 6, 2025March 6, 2025

2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

3

TCP: Overview

[RFCs: 793, 1122,
1323, 2001, 2018, 2581, 3390, 5681]

TCP: OverviewTCP: Overview

[RFCs: 793, 1122, [RFCs: 793, 1122,
1323, 2001, 2018, 2581, 3390, 5681]1323, 2001, 2018, 2581, 3390, 5681]

•

Full duplex data:
━

Bi-directional data flow in
same connection

•

MSS: maximum segment
size (excluding headers)

•

Connection-oriented:
━

Handshaking (exchange
of control msgs)
initializes sender/receiver
state before sending data

•

Flow controlled:
━

Sender will not
overwhelm receiver

•

Point-to-point (unicast):
━

One sender, one receiver
•

Reliable, in-order byte stream:
━

Packet boundaries are not
visible to the application

•

Pipelined:
━

TCP congestion and flow
control set window size

•

Send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

4

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

TCP Segment StructureTCP Segment StructureTCP Segment Structure

•

Sequence/ACK numbers
━

Count bytes, not segments
━

ACKs piggybacked on
data packets

•

Flags (U-A-P-R-S-F)
━

Urgent data (not used)
━

ACK field is valid
━

PUSH (reduce latency)
━

RST (reset connection)
━

SYN (connection request)
━

FIN (connection close)
•

Hdr length in DWORDs (4-bit field)
━

Normally 20 bytes, but longer if options are present

source port # dest port #

32 bits

sequence number
acknowledgement number

receiver window
Urg data pointerchecksum

FSRPAUhdr
len

not
used

application data
(variable length)
application data
(variable length)

Options (variable length)

6

TCP Seq. #’S and ACKsTCP Seq. #TCP Seq. #’’S and ACKsS and ACKs
Seq. #’s:
•

Sequence number of
the first byte

in

segment’s data
ACKs:
•

Seq # of next byte

 expected from sender
•

Cumulative ACK

Q:

how receiver
handles out-of-

 order segments?
A: TCP spec doesn’t say,

up to implementor

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
Simple telnet scenario

Seq=43, ACK=80

Seq=79, ACK=43, data = ‘C’

Seq=42, ACK=79, data = ‘C’

7

TCP Round Trip Time and TimeoutTCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

Q:

how to set TCP
timeout value (RTO)?

•

Want it slightly larger
than the next RTT
━

But the RTT varies
•

Too short: premature
timeout
━

Unnecessary
retransmissions

•

Too long: slow reaction
to segment loss
━

Protocol may stall,
exhibit low performance

•

Idea: dynamically measure
RTT, average these samples,
then add safety margin

• SampleRTT:

measured time
from segment transmission
until ACK receipt
━

Ignore retransmissions, why?
• SampleRTT will vary, want

estimated RTT “smoother”
━

Average several recent
measurements, not just current
SampleRTT

8

TCP Round Trip Time and TimeoutTCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

EstimatedRTT(n)

= (1-α)*EstimatedRTT(n-1)

+ α*SampleRTT(n)EstimatedRTT(n)

= (1-α)*EstimatedRTT(n-1)

+ α*SampleRTT(n)

•

Exponentially weighted moving average

(EWMA)
━

Influence of past sample decreases exponentially fast
━

Typical value: α

=

1/8

•

Task: derive a non-recursive formula for
EstimatedRTT(n)

━

Assume EstimatedRTT(0) = SampleRTT(0)
━

Let Y(n) = EstimatedRTT(n)

and y(n) = SampleRTT(n)

9

Example RTT Estimation:Example RTT Estimation:Example RTT Estimation:

100

150

200

250

300

0 10 20 30 40 50 60

sample number

RT
T

(m
s)

sampled RTT
estimated RTT

10

TCP Round Trip Time and TimeoutTCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

•

Setting the timeout:

• EstimatedRTT plus a “safety margin”
━

Larger variation in EstimatedRTT larger safety margin

•

First estimate how much SampleRTT deviates from
EstimatedRTT (typically, β

= 1/4):

RTO(n) = EstimatedRTT(n) + 4*DevRTT(n)RTO(n) = EstimatedRTT(n) + 4*DevRTT(n)

DevRTT(n) = (1-β)*DevRTT(n-1) + β

*|SampleRTT(n)-EstimatedRTT(n)|DevRTT(n) = (1-β)*DevRTT(n-1) + β

*|SampleRTT(n)-EstimatedRTT(n)|

Then set retransmission timeout (RTO):

11

Example Timeout Estimation:Example Timeout Estimation:Example Timeout Estimation:

100

150

200

250

300

350

400

0 10 20 30 40 50 60

sample number

RT
T

(m
s)

sampled RTT
estimated RTT
timeout

12

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

13

TCP Reliable Data TransferTCP Reliable Data TransferTCP Reliable Data Transfer

•

TCP creates rdt
service on top of IP’s
unreliable service
━

Hybrid of Go-back-N
and Selective Repeat

•

Pipelined segments
•

Cumulative acks

•

TCP uses single
retransmission timer
━

For the oldest
 unACK’ed packet

━

Retx only the base

•

Retransmissions are
triggered by:
━

Timeout events
━

Duplicate acks
•

Initially consider simplified
TCP sender:
━

Ignore duplicate acks
━

Ignore flow control,
congestion control

NextSeqNum = InitialSeqNum // random for each transfer
SendBase = InitialSeqNum
loop (forever) {
switch(event) {
(a) data received from application above (assuming it fits

into window):
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

(b) timeout:
retransmit pending segment with smallest sequence
number (i.e., SendBase); restart timer

(c) ACK received, with ACK field value of y
if (y > SendBase) {
SendBase = y
if (there are currently not-yet-acknowledged segments)

restart timer with latest RTO

 else cancel timer }
}

} /* end of loop forever */

TCP Sender
 (Simplified)

TCP SenderTCP Sender
 (Simplified)(Simplified)

15

TCP Seq. #’S and ACKsTCP Seq. #TCP Seq. #’’S and ACKsS and ACKs
FTP Example:
•

Suppose MSS = 1,000 bytes and the sender has a
large file to transmit (we ignore seq field in ACKs and
ACK field in data pkts)

Host A Host B
seq = 0

seq = 1000
seq = 2000

ACK = 1000

ACK = 2000

seq = 3000seq = 4000

What is the
sender
window size?

seq = 2000

RTO ACK = 2000
ACK = 2000

ACK = 5000

16

TCP ACK Generation

[RFC 1122, RFC
2581]

TCP ACK GenerationTCP ACK Generation

[RFC 1122, RFC [RFC 1122, RFC
2581]2581]
•

Receiver immediately ACKs the base of its window
in all cases except Nagle’s algorithm:
━

For in-order arrival of packets, send ACKs for every pair of
 segments; if second segment of a pair not received in

500ms, ACK the first one alone

seq = 0
seq = 1000
seq = 2000 ACK = 2000

seq = 3000seq = 4000
seq = 2000

ACK = 2000
ACK = 2000

ACK = 5000

seq = 0

seq = 2000

ACK = 1000

seq = 1000

500 ms

delayed delayed

RTO

17

Fast RetransmitFast RetransmitFast Retransmit

•

Time-out period often
relatively long
━

Especially in the
beginning of transfer (3
seconds in RFC 1122)

•

Idea: infer

loss via
duplicate ACKs
━

Sender often sends
many segments back-

 to-back
━

If a segment is lost,
there will be many
duplicate ACKs

•

If sender receives 3
duplicate

ACKs for its base,

it assumes this packet was
lost
━

Fast Retransmit:

resend the
base segment immediately
(i.e., without waiting for RTO)

•

Note that reordering may
trigger unnecessary retx
━

To combat this problem,
modern routers avoid load-

 balancing packets of same
flow along multiple paths

18

(c) event:

ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y; dupACK = 0;
if (SendBase != NextSeqNum)

restart timer with latest RTO;
else

cancel timer; // last pkt in window
}
else if (y == SendBase) {

dupACK++;
if (dupACK == 3)

{ resend segment with sequence y; restart timer}
}

Fast Retransmit Algorithm:Fast Retransmit Algorithm:Fast Retransmit Algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

19

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

20

TCP Flow ControlTCP Flow ControlTCP Flow Control

•

Assume packets
received without loss,
but the application
does not call recv()
━

How to prevent sender
from overflowing TCP
buffer?

•

Speed-matching service:
sender rate to suit the
receiving app’s ability to
process incoming data

Sender won’t overflow receiver
buffer by transmitting too
much, too fast

Flow control

21

TCP Flow Control: How It WorksTCP Flow Control: How It WorksTCP Flow Control: How It Works

•

Spare room in buffer
RcvWin = RcvBuffer –
[LastByteReceivedInOrder - LastByteDelivered]

•

Receiver advertises
spare room by
including value of
RcvWin in segments

•

Sender enforces
seq < ACK + RcvWin
━

Guarantees receiver
buffer doesn’t overflow

went to application
last ACK-1

•

Combining both constraints (sender, receiver):
seq < min(sndBase+sndWin, ACK+RcvWin)

22

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

23

TCP Connection ManagementTCP Connection ManagementTCP Connection Management

•

Purpose of connection
establishment:
━

Exchange initial seq #s
━

Exchange flow control
info (i.e., RcvWin)

━

Negotiate options (SACK,
large windows, etc.)

Three way handshake:

•

Step 1:

client sends
TCP SYN to server
━

Specifies initial seq # X
and buffer size RcvWin

━

No data, ACK bit = 0

•

Step 2:

server gets SYN,
replies with SYN+ACK
━

Sends server initial seq # Y
and buffer size RcvWin

━

No data, ACK val = X+1
•

Step 3:

client receives

SYN+ACK, replies with
ACK segment
━

Seq = X+1, ACK val = Y+1
━

May contain regular data,
but many servers will break

•

Step 4:

regular packets
━

Seq = X+1, ACK = Y+1

24

TCP Connection Management (Cont.)TCP Connection Management (Cont.)TCP Connection Management (Cont.)

Closing a connection:

•

Closing a socket:
 closesocket(sock);

Step 1:

originator

end
system sends TCP
FIN control segment
to server

Step 2:

other side
 receives FIN, replies

with ACK. Connection
in “closing”

state,

sends FIN

originator

FIN

ACK

closing

closing

other side

TCP initiates a close
when it has all ACKs

for the transmitted data

25

TCP Connection Management (Cont.)TCP Connection Management (Cont.)TCP Connection Management (Cont.)

Step 3:

originator

receives
FIN, replies with ACK
━

Enters “timed wait”

-

will
respond with ACK to
received FINs

Step 4:

other side

receives
ACK; its connection
considered closed

Step 5: after a timeout
(TIME_WAIT state
lasts 240 seconds),
originator’s

connection

 is closed as well

FIN

other side

ACK

ACK

FIN
closing

originator

closing

closed
tim

ed
 w

ai
t

closed

birectional transfer means both
sides must agree to close

	CSCE 463/612�Networks and Distributed Processing�Spring 2025
	Chapter 3: Roadmap
	TCP: Overview [RFCs: 793, 1122, 1323, 2001, 2018, 2581, 3390, 5681]
	Chapter 3: Roadmap
	TCP Segment Structure
	TCP Seq. #’S and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT Estimation:
	TCP Round Trip Time and Timeout
	Example Timeout Estimation:
	Chapter 3: Roadmap
	TCP Reliable Data Transfer
	TCP Sender�(Simplified)
	TCP Seq. #’S and ACKs
	TCP ACK Generation [RFC 1122, RFC 2581]
	Fast Retransmit
	Fast Retransmit Algorithm:
	Chapter 3: Roadmap
	TCP Flow Control
	TCP Flow Control: How It Works
	Chapter 3: Roadmap
	TCP Connection Management
	TCP Connection Management (Cont.)
	TCP Connection Management (Cont.)

