Network Layer

Dmitri Loguinov
Texas A&M University

March 29, 2018
Homework #3

- Reliable data transfer between two processes
 - `ss.Send()` is the producer into a bounded buffer of W packets ($W = $ sender window)
 - Worker thread is the consumer from this buffer (ACK arrival that moves sndBase by X pkts releases X slots in buffer)
 - Requires two semaphores

```
Main thread

ss.Send()          worker thread

producer           consumer

shared buffer of pending packets
```

application layer

transport layer
• Interesting aspect is how to release semaphore to accommodate flow control
 - Assume sndBase, nextSeq, W are known
 - Receive ACK with sequence $y > $sndBase, recvWnd = R
 - By how much to release semaphore?

```c
lastReleased = 0;
sndBase = -1; // SYN-ACK 0 will move this to 0
while (not end of transfer)
{
    get ACK or SYN-ACK with sequence $y$, receiver window $R$
    if ($y > $sndBase)
    {
        sndBase = $y$
        effectiveWin = min ($W$, $R$)
        // how much we can advance the semaphore
        newReleased = sndBase + effectiveWin - lastReleased;
        ReleaseSemaphore (s, newReleased);
        lastReleased += newReleased;
    }
}
```
Chapter 4: Network Layer

Chapter goals:

- Understand principles behind network layer services:
 - How a router works (forwarding)
 - Routing (path selection)
 - Dealing with scale
 - Other topics: IPv6, multicasting
- Traceroute program as hw#4
- Big picture:

<table>
<thead>
<tr>
<th>Application (5)</th>
<th>Transport (4)</th>
<th>Network (3)</th>
<th>Data-link (2)</th>
<th>Physical (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>transport</td>
<td>network</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCP

UDP

IP

ICMP

IGMP
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Network Layer = IP Layer

- Transports segments from sending to receiving host
- On the sending side, encapsulates segments into datagrams
- On the receiving side, delivers segments to transport layer
- Network layer protocols in every host and router
- Router examines header fields in all IP datagrams passing through it
Key Network-Layer Functions

1) **Routing**: determine the path taken by packets from source to dest
 - Build a minimum-cost table at each router
 - Table has next-hop neighbor for each possible destination
 - **Goal**: send packet along the least-expensive path (e.g., in terms of hops, ISPs, or peering agreements)

2) **Forwarding**: move packets from a router’s input port to appropriate router output **port**
 - Table lookup
 - Port-to-port transfer
 - **Goal**: efficiency
Interplay Between Routing and Forwarding

Routing algorithm

Local forwarding table

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet’s header

0111
Connection Setup (ATM)

- **3) Connection setup** in certain network architectures:
 - e.g., ATM (Asynchronous Transfer Mode)
- Before datagrams flow in such networks, two hosts and intermediate routers establish virtual circuit (VC)
 - Routers get involved to set up a path
- Network and transport layer connection service:
 - **Network**: between two hosts
 - **Transport**: between two processes

network service model

- analogy: TCP
- connection-oriented (ATM)

- analogy: UDP
- datagram (IP)
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Virtual Circuits

• VCs may create a path that behaves much like a telephone circuit (no congestion, low delay, no loss)
• Call setup for each connection before data can flow
 - Similar to TCP’s handshake, but involves routers
• Each packet carries a VC tag instead of the 5-tuple <src addr, dest addr, src port, dest port, proto>
• Every router on source-dest path maintains “state” for each passing connection
 - Mapping from tags to next-hop router
• Fraction of router resources (bandwidth, buffers) are allocated to each VC
Forwarding Table

Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Routers maintain connection state information!
Virtual Circuits: Signaling Protocols

- Setup, maintain, teardown VC
- Used in ATM, frame-relay, etc.
- Not used end-to-end in today’s Internet
Datagram Networks

- No call setup at network layer
- Routers: no state about end-to-end connections
 - No network-level concept of “connection”
- Packets forwarded using destination host address
 - Packets between the same source-dest pair may take different paths (multi-path routing)
Datagram Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address Range (32 bit)</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 00000000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011111 11111111 through 11001000 00010111 00011111 00000000</td>
<td>2</td>
</tr>
<tr>
<td>otherwise through 11001000 00010111 00011111 11111111</td>
<td>3</td>
</tr>
</tbody>
</table>

4 billion possible entries
Longest Prefix Matching

<table>
<thead>
<tr>
<th>Prefix Match</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples (DA = destination address)

- DA: 11001000 00010111 00010110 00010110 10100001
- DA: 11001000 00010111 00011001 00011001 10101010
- DA: 11001000 00010111 00011000 00011000 10101010

Which interface?
Datagram or VC Network: Why?

Internet
- Driven by data exchange among computers
 - “Elastic” service, no strict timing requirements
- “Smart” end systems (computers)
 - Can adapt, perform control, error recovery
 - Simple network core, complexity at “edge”
- Many link types
 - Different characteristics
 - Uniform service difficult

ATM
- Evolved from telephony
- Human conversation:
 - Strict timing, bandwidth requirements
 - Need for guaranteed service
- “Dumb” end systems
 - Telephones
 - Complexity in network core