Transport Layer VII

Dmitri Loguinov
Texas A&M University

March 20, 2024
Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
 - Segment structure
 - Reliable data transfer
 - Flow control
 - Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
Principles of Congestion Control

Congestion:

• Informally: “too many sources sending too much data too fast for the network to handle”
• Different from flow control!
• Manifestations:
 - Lost packets (buffer overflows)
 - Delays (queueing in routers)
• Important networking problem
Causes/Costs of Congestion: Scenario 1

- Two senders, two receivers
- One router of capacity C, infinite buffers, no loss
- No retransmission

Cost 1: queuing delays in congested routers
Causes/Costs of Congestion: Scenario 2

- One router, *finite* buffers (pkt loss is possible now)
- Sender retransmission of lost packet
- During congestion $2\lambda_{net} = 2(\lambda_{in} + \lambda_{retx}) = C$

λ_{in}: app rate
λ_{net}: network rate (original + retransmitted pkts)

finite shared output link buffers
Causes/Costs of Congestion: Scenario 2

- We call λ_{out} goodput and λ_{net} throughput
 - Case A: pkts never lost while $\lambda_{net} < C/2$ (not realistic)
 - Case B: pkts are lost when λ_{net} is “sufficiently large,” but timeouts are perfectly accurate (not realistic either)
 - Case C: same as B, but timer is not perfect (duplicate packets are possible)

Cost 2: retransmission of lost packets and premature timeouts increase network load, reduce flow’s own goodput
Causes/Costs of Congestion: Scenario 3

- Multihop case
 - Timeout/retransmit
 - $R_2 = 50 \text{ Mbps}$, $R_1 = R_3 = R_4 = 100 \text{ Mbps}$
 - Flow C-A: sends 90 Mbps

flow B-D suffers packet loss and reduced goodput

green flow D-B is affected by "junk" pkts that are lost at router R2

finite shared output link buffers

Cost 3: congestion causes goodput reduction for other flows
Two broad approaches towards congestion control:

End-to-end:
- No explicit feedback from network
- Congestion inferred by end-systems from observed loss/delay
 - Approach taken by TCP (relies on loss)

Network-assisted:
- Routers provide feedback to end systems
 - Single bit indicating congestion (DECbit, TCP/IP ECN)
 - Two bits (ATM)
 - Explicit rate senders should send at (ATM)

ATM = Asynchronous Transfer Mode
Case Study: ATM ABR Congestion Control

• For network-assisted protocols, the logic can be **binary**:
 - Path underloaded, increase rate
 - Path congested, reduce rate
• It can also be **ternary**
 - Increase, decrease, hold steady
 - ATM ABR (Available Bit Rate) profile

RM (resource management) packets (cells):

• Sent by sender, interspersed with data cells
• Bits in RM cell set by switches/routers
 - **NI bit**: no increase in rate (impending congestion)
 - **CI bit**: reduce rate (congestion in progress)
• RM cells returned to sender by receiver, with bits intact
Case Study: ATM ABR Congestion Control

- Additional approach is to use a two-byte ER (explicit rate) field in RM cell
 - Congested switch may lower ER value
 - Senders obtain the maximum supported rate on their path
- Issues with network-assisted congestion control?
Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP
 - Segment structure
 - Reliable data transfer
 - Flow control
 - Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
TCP Congestion Control

• TCP congestion control has a variety of algorithms developed over the years
 - High-Speed TCP (2002), Scalable TCP (2002)
• Many others: H-TCP, CUBIC TCP, L-TCP, TCP Westwood, TCP Veno (Vegas + Reno), TCP Africa
• Linux: BIC TCP (2004), CUBIC TCP (2008)
• Vista and later: Compound TCP (2005)
 - Server 2019 switched to CUBIC
• Google: BBR (2016)