
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2024
 

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2024Spring 2024

Transport Layer IITransport Layer II
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

February 28, 2024February 28, 2024



2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control



3

UDP: User Datagram Protocol [RFC 768]UDP: User Datagram Protocol [RFC 768]UDP: User Datagram Protocol [RFC 768]

•
 

Standardized in 1980
━

 

Hasn’t changed since
•

 
Best-effort

 
service

•
 

UDP segments may be:
━

 

Lost or corrupted
━

 

Delivered out of order to 
the application

•
 

Connectionless:
━

 

No handshaking between 
UDP sender and receiver

━

 

Each UDP segment 
handled independently of 
others

Why is there a UDP?
•

 
Low overhead: no 
connection establishment 
or retransmission

•
 

Simplicity: no connection 
state at sender/receiver

•
 

Small segment header
•

 
No congestion control
━

 

For short transfers, this is 
completely unnecessary

━

 

In other cases, desirable 
to control rate directly from 
application



4

UDP: MoreUDP: MoreUDP: More

•
 

Often used for 
streaming multimedia 
or online gaming
━

 

Loss tolerant
━

 

Rate/delay sensitive
•

 
Other UDP uses
━

 

DNS
━

 

SNMP
━

 

NFSv2 (1989)
•

 
Reliable transfer over 
UDP: add reliability at 
application layer
━

 

Application-specific 
error recovery

source port #

32 bits

Application
data 

(message)

UDP segment format

length
dest port #
checksum

Length (in bytes) of 
UDP segment, 

including header



5

UDP ChecksumUDP ChecksumUDP Checksum

Sender (simplified):
•

 
Set checksum = 0 in hdr

•
 

Treat packet contents 
as a sequence of 16-bit 
integers (padded with 0s 
to 2-byte boundary)

•
 

Checksum: add all 
integers, then XOR with 
0xffff

•
 

Sender puts checksum 
value into UDP 
checksum field

Receiver:
•

 
Sum all 16-bit words in entire 
received segment (including the 
checksum field in the header)

•
 

Check if result = 0xffff
━

 

NO -
 

error detected
━

 

YES -
 

no error detected
•

 
Idea: (x XOR 0xffff) + x = 0xffff

•
 

Are undetected errors possible 
nonetheless?

Goal:
 

detect “errors”
 

(e.g., flipped bits) in transmitted 
segment (packet)



6

UDP Checksum ExampleUDP Checksum ExampleUDP Checksum Example

•
 

Note on 1’s complement addition:
━

 

When adding numbers, a carryout from the most significant 
bit needs to be added to the result

•
 

Example: add two 16-bit integers

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum



7

UDP Checksum (Cont)UDP Checksum (Cont)UDP Checksum (Cont)

•
 

How many corrupted bits does UDP detect?
•

 
Example of undetected single-bit corruption?
━

 

Not possible
•

 
Example of undetected 2-bit corruption?
━

 

Two words (0, 5) result in sum = 5
━

 

Suppose 0 is corrupted to become 1 and 5 is corrupted to 
become 4, then the checksum is the same

•
 

Example of undetected 3-bit corruption w/two words?
━

 

Two words (1, 1)  (0, 2) 
•

 
What if the transmitted words are 0 and 12?
━

 

Can two-bit corruption produce the same checksum?
━

 

If yes, how many ways can (0,12) be affected by 2-bit 
corruption so as to avoid detection?



8

UDP Checksum (Cont)UDP Checksum (Cont)UDP Checksum (Cont)

•
 

Is there a pair of integers (x,y) that allow the UDP 
checksum to detect any

 
2-bit corruption?

•
 

Data-link and physical layers are often assumed to 
have their own checksums and error correction
━

 

Why is transport-level checksum important then?
•

 
Reasons:

1) Lower layers do not always run error checking
━

 

Even then, implementation bugs may affect the result
2) Corruption may occur in router RAM or faulty 

hardware, outside the control of data-link protocols



9

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control



10

Principles of Reliable Data TransferPrinciples of Reliable Data TransferPrinciples of Reliable Data Transfer

•
 

Important in application, transport, link layers

•
 

Characteristics of unreliable channel will determine 
complexity of reliable data transfer

 
(rdt) protocol



11

Reliable Data Transfer: Getting StartedReliable Data Transfer: Getting StartedReliable Data Transfer: Getting Started

send
side

receive
side

udt_send():

 

called by rdt
to pass packets to lower layer

rdt_rcv():

 

called by lower layer when 
it has a packet to deliver to rdt

deliver_data():

 

called by rdt

 
to deliver data to upper layerrdt_send():

 

called by layer above to 
pass data to rdt



12

Reliable Data Transfer: Getting StartedReliable Data Transfer: Getting StartedReliable Data Transfer: Getting Started

We will:
•

 
Incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)

•
 

Consider only unidirectional data transfer
━

 

With receiver feedback, packets travel in both directions!
•

 
Use finite state machines

 
(FSM) to specify both 

sender and receiver

state
1

state
2

event causing state transition
actions taken on state transition

•
 

From any state, 
the next state is 
uniquely 
determined by 
next event

event
actions



13

Rdt1.0: Transfer Over a Reliable ChannelRdt1.0: Transfer Over a Reliable ChannelRdt1.0: Transfer Over a Reliable Channel

•
 

Underlying channel perfectly reliable
━

 

No bit errors
━

 

No loss of packets 
━

 

No reordering
•

 
Separate FSMs for sender and receiver:
━

 

Sender transmits app data into underlying channel
━

 

Receiver passes data from underlying channel to app

packet = make_pkt(data)
udt_send(packet)

rdt_send(data)Wait for 
call from 
above

Wait for 
call from 

below
extract (packet,data)
deliver_data(data)

rdt_rcv(packet)

sender receiver



14

Rdt2.0: Channel With Bit ErrorsRdt2.0: Channel With Bit ErrorsRdt2.0: Channel With Bit Errors

•
 

Underlying channel may flip bits in packet (no loss)
━

 

Checksum to detect bit errors (assume perfect detection)
•

 
Question: how to recover from errors?

•
 

One possible approach is to use two feedback msgs:
━

 

Positive acknowledgments (ACKs): receiver explicitly tells 
sender that packet was received OK

━

 

Negative acknowledgments (NAKs): receiver explicitly tells 
sender that packet had errors

━

 

Sender retransmits packet on receipt of NAK
•

 
New mechanisms in rdt 2.0 (beyond rdt 1.0):
━

 

Error detection
━

 

Receiver feedback (control msgs ACK/NAK)
━

 

Retransmission



15

sender

receiver

Rdt2.0: FSM SpecificationRdt2.0: FSM SpecificationRdt2.0: FSM Specification

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) AND 
NOT corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) AND 
corrupt(rcvpkt)

Wait for 
call from 

below

udt_send(sndpkt)

rdt_rcv(rcvpkt) 
AND isNAK(rcvpkt)Wait for 

call from 
above

Wait for 
ACK or 

NAK

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) AND isACK(rcvpkt)





 

= empty action, i.e., do nothing



16

Rdt2.0: Operation With No ErrorsRdt2.0: Operation With No ErrorsRdt2.0: Operation With No Errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)





17

Rdt2.0: Error ScenarioRdt2.0: Error ScenarioRdt2.0: Error Scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)



Any problems with 
this protocol?


	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 3: Roadmap
	UDP: User Datagram Protocol [RFC 768]
	UDP: More
	UDP Checksum
	UDP Checksum Example
	UDP Checksum (Cont)
	UDP Checksum (Cont)
	Chapter 3: Roadmap
	Principles of Reliable Data Transfer
	Reliable Data Transfer: Getting Started
	Reliable Data Transfer: Getting Started
	Rdt1.0: Transfer Over a Reliable Channel
	Rdt2.0: Channel With Bit Errors
	Rdt2.0: FSM Specification
	Rdt2.0: Operation With No Errors
	Rdt2.0: Error Scenario

