Network Layer II

Dmitri Loguinov
Texas A&M University

November 9, 2021
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
Router Architecture Overview

Two key router functions:
- Run routing algorithms/protocol (RIP, OSPF, BGP)
- Forward datagrams from incoming to outgoing link
 - Terminology: *port* = interface capable of sending/receiving

```
port 1

... Switch fabric hardware

port M
```
Decentralized switching:

- Given datagram destination, look up output port using forwarding table in input port memory
- **Goal**: complete input port processing at “line speed”
- **Queuing**: if datagrams arrive faster than forwarding rate into switch fabric
Switching Via Memory

First generation routers (1960s-mid 1980s):

- Traditional computers with switching under direct control of CPU
- Packet copied to system memory
- Speed limited by CPU, memory latency/bandwidth, and bus bandwidth (two bus crossings per datagram)
- Honeywell 316 (1969)
Switching Via a Bus

- Datagram from input port memory to output port memory via a shared bus
- **Bus contention**: switching speed limited by bus bandwidth
- 1 Gbps bus in Cisco 1900: sufficient speed for access and small enterprise networks (not ISPs)
Switching Via An Interconnection Network

- Overcomes bus bandwidth limitations
 - Crossbar: packets transmitted in parallel as long as they do not occupy the same horizontal or vertical bus

- Cisco 12000 (1996): uses an interconnection network
 - CRS-X (2013): 1600 lbs, 84” rack, 7.6 KWatt, 800 Gbps/slot
 - 16 slots/rack = 12.8 Tbps
 - Up to 72 racks (922 Tbps)
Output Ports

- **Buffering/queuing** required when datagrams arrive from fabric faster than the transmission rate
- **Scheduling discipline** chooses among queued datagrams for transmission
 - Customer traffic: single FIFO drop-tail queue
 - ISP traffic: multiple queues with WRR or priority queuing
Output Port Queuing

- Buffering when arrival rate via switch fabric exceeds output line speed
 - Queuing delay and loss due to output buffer overflow
- Switch fabric is M times faster than individual ports
 - Produces large bursts of arrivals into output queues
Input Port Queuing

- Reasons for input-port queuing:
 - Head-of-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
 - Queuing delay and loss due to input buffer overflow!
 - How likely is this compared to output port queuing/loss?

![Diagram of input port queuing]

<table>
<thead>
<tr>
<th>time t</th>
<th>time $t+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>output port contention at time t - only one red packet can be transferred</td>
<td>green packet experiences HOL blocking</td>
</tr>
</tbody>
</table>
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
The Internet Network Layer

Host and router network layer functions:

- **Routing protocols**
 - Path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - Datagram format
 - Addressing conventions

- **ICMP protocol**
 - Error reporting
 - Ping, traceroute

- **IGMP protocol**
 - Multicast

- **Transport layer: TCP, UDP**

- **Network layer**

- **Link layer**

- **Physical layer**
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
IPv4 Datagram Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP protocol version number</td>
<td>8 bits, identifies the IP protocol version (IPv4)</td>
</tr>
<tr>
<td>Header length (in 4-byte words)</td>
<td>4 bits, indicates the length of the header in 4-byte units</td>
</tr>
<tr>
<td>QoS requested</td>
<td>8 bits, indicates the Quality of Service (QoS)</td>
</tr>
<tr>
<td>Total datagram length (bytes)</td>
<td>16 bits, the total length of the datagram in bytes</td>
</tr>
<tr>
<td>Upper layer protocol to deliver payload to</td>
<td>The protocol used for delivering the payload, such as TCP or UDP</td>
</tr>
</tbody>
</table>
| How much overhead with TCP? | - 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes |

- **Ver:** 4 bits, identifies the IP version (IPv4)
- **Hdr Len:** 4 bits, indicates the length of the header in 4-byte units
- **Type of service:** 8 bits, indicates the type of service
- **Length:** 16 bits, the length of the datagram in bytes
- **16-bit identifier:** 16 bits, identifies the datagram
- **Time to live:** 16 bits, indicates the number of hops remaining
- **Upper layer:** 16 bits, identifies the upper layer protocol
- **Internet checksum:** 32 bits, checksum for error checking
- **Fragment offset:** 16 bits, offset for fragmentation
- **Fragment:** 1 bit, indicates fragmentation
- **Flags:** 3 bits, various flags for control
- **Options (if any):** Additional information
- **Data:** Variable length, typically a TCP or UDP segment

E.g. timestamp, record route taken, specify list of routers to visit
IP Fragmentation & Reassembly

- Network links have varying MTUs (maximum transmission units) – largest possible link-level frames
 - Different link types, different MTUs (most common 1500)
- Large IP datagram divided (“fragmented”) within network
 - One datagram becomes several datagrams
 - “Reassembled” only at final destination
 - IP header bits used to identify, order related fragments
Example

- 4000 byte datagram (including IP header)
- MTU = 1500 bytes

1480 bytes in payload

offset is in 8-byte words: $185 = 1480/8$
Chapter 4: Roadmap

4.1 Introduction
4.2 Virtual circuit and datagram networks
4.3 What’s inside a router
4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
4.5 Routing algorithms
4.6 Routing in the Internet
4.7 Broadcast and multicast routing
IP Addressing: Introduction

- **IP address:** 32-bit identifier for host or router *interface*
- **Interface:** connection between host/router and physical link
 - Also called a *port*
 - Routers have many interfaces
- Can hosts have multiple interfaces?
 - Yes, it’s called *multi-homing*
Subnets

- IP address:
 - Subnet prefix: k bits
 - Host suffix: $32-k$ remaining bits

- What’s a subnet (LAN)?
 - Network composed of devices with the same subnet prefix of IP address
 - Can physically reach each other without intervening router
Recipe

• To determine the subnets, detach each interface from its host or router, creating islands of isolated networks

• Each isolated network is a subnet

Subnet mask:
• 255.255.255.0
• or /24
Subnets

How many?
IP Addressing: CIDR

• In the early Internet, only subnets with 8, 16, or 24 bit prefixes were allowed ("class A, B, C" networks)
• This was inflexible and wasteful as well

CIDR: Classless InterDomain Routing
 - Subnet portion of address of arbitrary length
 - Address format: a.b.c.d/x, where x is # bits in the subnet portion of address

```
11001000  00010111  00010000  00000000
```

```
200.23.16.0/23
```
IP Addresses: How to Get One?

Q: How does a host get an IP address?

- Either hard-coded by system admin in a file
 - Windows: Control-panel → network → configuration → tcp/ip → properties
 - Linux: /etc/rc.config
- Or dynamically assigned by DHCP (Dynamic Host Configuration Protocol)
 - “Plug-and-play” (more in Chapter 5)
IP Addresses: How to Get One?

Q: How does a network get subnet part of IP addr?

A: Gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>......</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011100 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>

- **Task:** split this ISP into one /21, three /23, and eight /26
Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

ISP-A

ISP-B

Organization 0
200.23.16.0/23

Organization 1
200.23.18.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

“Send me anything with addresses beginning with 200.23.16.0/20”

“Send me anything with addresses beginning with 199.31.0.0/16”

Internet
Hierarchical Addressing: More Specific Routes

ISP-B has a more specific route to Organization 1

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

ISP-A

ISP-B

Organization 1
200.23.18.0/23

“Send me anything in 200.23.16.0/20”

“Send me anything in 199.31.0.0/16 or 200.23.18.0/23”

Internet
IP Addressing: Last Word...

Q: How does an ISP get a block of addresses?
A: ICANN: Internet Corporation for Assigned Names and Numbers assigns IPs to regional registries
 - These are ARIN (North/South America), RIPE (Europe), APNIC (Asia-Pacific), and AfriNIC (Africa)

- These registries process ISP and user requests for subnet space
 - Also manage DNS and resolve disputes

- Quiz #3 covers
 - Chapter 3: P7-9, 22-24, 26-28, 31-37, 40-41, 43-49
 - Chapter 4: P1-17 (including today’s lecture)