Data-link Layer I

Dmitri Loguinov
Texas A&M University

November 21, 2019
Homework #4

• ICMP header:

```cpp
class ICMPHeader{
    public:
        u_char type;  // ICMP packet type
        u_char code;  // ICMP type subcode
        u_short checksum;  // checksum
        u_short ID;  // usually process ID
        u_short seq;  // sequence
    }
}
```

• Received ICMP pkts are delivered to all open ICMP sockets (since ICMP has no port numbers)
 - Routers will echo your entire IP packet in their TTL expired messages
 - Use the ID field to distinguish your pkts from junk
Homework #4

- TTL Expired pkt structure:

<table>
<thead>
<tr>
<th>IP header (20 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP reply header (8 bytes)</td>
</tr>
<tr>
<td>Original IP header (20 bytes)</td>
</tr>
<tr>
<td>Original ICMP header (8 bytes)</td>
</tr>
</tbody>
</table>

- Find out whether the ID field in the 4-th header matches your ID
Homework #4

• Other things to consider:
 – If your checksums are incorrect, the packet will likely be dropped and you won’t get a reply
 – If your firewall is enabled to block all incoming traffic, the kernel will not deliver ICMP packets
• In some Windows configurations, you must be a member of the administrator group
• Mores caveats – read the handout!
 – UAC needs to be disabled or VS run as administrator
 – Custom in-bound firewall rules
 – Batch mode requires pinging the target before tracing
 – Hard limits on trace delay in batch mode
5.1 Introduction and services
5.2 Error detection and correction
5.3 Multiple access protocols
5.4 Link-Layer Addressing
5.5 Ethernet
5.6 Hubs and switches
Summary
Link Layer: Introduction

Terminology:
- Hosts and routers are **nodes**
- Communication channels that connect adjacent nodes are **layer-3 links**
 - Wired or wireless
- Each link may contain multiple layer-2 devices (e.g., switches)

Data-link layer has responsibility of transferring IP datagram from one node to adjacent node over a single link.
Link Layer Services

• Framing:
 - Add header, trailer to IP packet
 - Data-link addresses (completely independent of IP addresses) used in frame headers to identify source, dest

• Link access:
 - Channel access if shared medium

• Flow control:
 - Pacing between adjacent sending and receiving nodes

• Error detection:
 - Errors caused by signal attenuation, noise
 - Receiver detects presence of errors and signals data-link layer of adjacent node for retransmission or drops frame
Link Layer Services

- Forward Error Correction (FEC):
 - Receiver identifies *and corrects* bit error(s) without resorting to retransmission
- Reliable delivery (rdt) between adjacent nodes
 - Rdt 3.0 is a common technique (chapter 3)
 - Seldom used on low bit error links (fiber, twisted pair), but may be implemented in wireless networks
- More terminology
 - In *half-duplex* mode, nodes at both ends of link can transmit, but not at the same time
 - In *full-duplex*, bidirectional transfer happens concurrently
Link Layer

5.1 Introduction and services
5.2 Error detection and correction
5.3 Multiple access protocols
5.4 Link-Layer Addressing
5.5 Ethernet
5.6 Hubs and switches
Summary
Multiple Access Links and Protocols

Two types of links:

- **Point-to-point, e.g.**:
 - PPP for dial-up and DSL access
 - Dedicated cable between Ethernet switch and host

- **Broadcast (shared wire/medium)**:
 - Traditional Ethernet
 - Upstream HFC
 - 802.11 wireless LAN, satellite
Multiple Access Protocols

- Assume a single shared broadcast channel
- Two or more simultaneous transmissions by nodes is called **interference** or **collision**
 - Receiver cannot discern packets when multiple signals are jammed together

Link access protocol
- Distributed algorithm that determines how nodes share channel
- Communication about channel sharing must use the channel itself!
 - No out-of-band channel for coordination
- MAC (**Media Access Control**) layer = data-link layer = layer 2
Ideal Multiple Access Protocol

Desired properties

1. Single node can achieve full channel rate R (high utilization without competition)
2. When M nodes want to transmit, each can send at average rate R/M (fairness and high utilization during competition)
3. Fully decentralized:
 - No special node to coordinate transmissions
 - No synchronization of clocks
4. Simple
MAC Protocols: Taxonomy

Three broad classes:

- **Channel Partitioning**
 - Divide channel into smaller “pieces” (time slots, frequency, wavelengths)
 - Allocate piece to node for exclusive use

- **Random Access**
 - Channel not divided, allow collisions
 - Recover from collisions

- **“Taking turns”**
 - Nodes take turns, but nodes with more to send can take longer turns
Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- Access to channel in “rounds” (time frames)
 - Each station gets fixed length slot in each round (1/N of frame time to each node), unused slots go idle

- Example: 6-station LAN

- Maximum throughput for a single user is R / N, which is far from ideal!
Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- Channel spectrum divided into frequency bands
 - Each station assigned fixed frequency band
 - Unused transmission time in frequency bands go idle
- Example: 6-station LAN

![Diagram of FDMA channel partitioning](chart)
Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No *a-priori* coordination among nodes
- Two or more transmitting nodes cause collision
- **Random access MAC protocol** specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - ALOHA, Slotted ALOHA
 - CSMA, CSMA/CD
Slotted ALOHA (1975)

Assumptions
- All frames same size
 - Time is divided into equal size slots, time to transmit 1 frame
- Nodes start transmission only at beginning of slots
 - Clocks are synchronized
- If 2 or more nodes transmit in slot, all nodes detect collision

Operation
- When node obtains fresh frame from IP, it transmits in the next time slot
- No collision, node can send new frame in next slot
- If collision, node retransmits frame in each subsequent slot with probability p until success
Slotted ALOHA

Pros
- Single active node can continuously transmit at full rate of channel
- Reasonably decentralized: only slots need to be in sync
- Simple

Cons
- Collisions
- Idle/empty slots
- Full slot wasted on collision
- Accurate clock synchronization is still a headache
Slotted Aloha Efficiency

Efficiency is the long-term fraction of successful slots when there are many nodes, each with many frames to send.

- Assume \(N \) nodes with infinite data to send, each transmits in every slot with probability \(p \).
- Probability that \(k \) nodes transmit in slot = \(\binom{N}{k} p^k (1-p)^{N-k} \).
- Prob that exactly one node transmits in a given slot (i.e., success) is \(Np(1-p)^{N-1} \).

- For max efficiency with \(N \) nodes, find \(p \) that maximizes \(Np(1-p)^{N-1} \).
- Optimal \(p_0 = \frac{1}{N} \).
- For many nodes, take limit of \(Np_0(1-p_0)^{N-1} \) as \(N \) goes to infinity, which gives optimal efficiency \(\frac{1}{e} = 0.37 \).

Slotted Aloha with many users: channel utilization only 37%!
CSMA (Carrier Sense Multiple Access)

• Remove slots and allow transmission at any time

CSMA: listen before transmit

• If channel sensed idle, transmit entire frame

• If channel sensed busy, defer transmission
 – Human analogy: don’t interrupt others!

• If collision is detected at the end of transfer, wait a random period of time, then retransmit
 – Human analogy: talk until you’re done, pause, then repeat if someone else happened to start at the same time
CSMA Collisions

Collisions *can still occur:* propagation delay means two nodes may not hear each other’s transmission

Collision:
entire packet transmission time wasted

Note:
role of distance & propagation delay in determining collision probability
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
- But now collisions are detected **immediately**
- Colliding transmissions aborted, reducing channel waste

- Human analogy: the polite conversationalist
- Collision detection:
 - Easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - Difficult in wireless LANs: receiver shut off while transmitting
CSMA/CD Collision Detection

The diagram illustrates the concept of collision detection in a CSMA/CD network. The horizontal axis represents space, while the vertical axis represents time. Points A, B, C, and D indicate different nodes or positions in the network. The collision detection mechanism is depicted between time t_0 and t_1, where the areas marked by yellow and red indicate the overlapping transmission windows, leading to a collision. The text "collision detect/abort" is used to describe the action taken when a collision is detected.
Features

TDMA/FDMA:
- Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access:
- Efficient at low load: single node can fully utilize channel
- High load: potentially huge collision overhead

“Taking turns” protocols:
- Look for best of both worlds?
“Taking Turns” MAC Protocols

A) Polling:
- Master node “invites” slave nodes to transmit in turn
- Concerns:
 - Polling overhead
 - Latency
 - Single point of failure (master)

B) Token passing:
- Control **token** passed from one node to next sequentially
- Can send only if holding token
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)